Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 2, pp. 470-481

Title:
On linear preservers of sgut-majorization on $\mathbf{M}_{n, m}$

> Author(s):

A. Ilkhanizadeh Manesh

Published by Iranian Mathematical Society
http://bims.ims.ir

ON LINEAR PRESERVERS OF SGUT-MAJORIZATION ON
 $\mathbf{M}_{n, m}$

A. ILKHANIZADEH MANESH
(Communicated by Abbas Salemi)

Abstract

Let $\mathbf{M}_{n, m}$ be the set of n-by- m matrices with entries in the field of real numbers. A matrix R in $\mathbf{M}_{n}=\mathbf{M}_{n, n}$ is a generalized row substochastic matrix (g-row substochastic, for short) if $R e \leq e$, where $e=(1,1, \ldots, 1)^{t}$. For $X, Y \in \mathbf{M}_{n, m}, X$ is said to be sgut-majorized by Y (denoted by $X \prec_{\text {sgut }} Y$) if there exists an n-by- n upper triangular g-row substochastic matrix R such that $X=R Y$. This paper characterizes all linear preservers and strong linear preservers of $\prec_{\text {sgut }}$ on \mathbb{R}^{n} and $\mathbf{M}_{n, m}$ respectively. Keywords: Linear preserver, strong linear preserver, g-row substochastic matrices, sgut-majorization. MSC(2010): Primary: 15A03, 15A04; Secondary: 15A51.

1. Introduction

Vector majorization is a much studied concept in linear algebra and its applications. The reader can find that majorization has been connected with combinatorics, analytic inequalities, numerical analysis, matrix theory, probability and statistics in a book written by Marshall, Olkin, and Arnold [13]. Several generalization of this concept have also been introduced. For more information we refer the reder to [2-12]. The purpose of this paper is introducing and studying a new type of generalized majorization. For more information on the type of majorization and linear preservers of majorization see [1] and [14].

Let \mathcal{V} be a linear space of matrices, T be a linear function on \mathcal{V}, and \mathcal{R} be a relation on \mathcal{V}. The linear function T is said to preserve \mathcal{R}, if $\mathcal{R}(\mathcal{T} \mathcal{X}, \mathcal{T} \mathcal{Y})$ whenever $\mathcal{R}(\mathcal{X}, \mathcal{Y})$. Also, T is said to strongly preserve \mathcal{R}, if

$$
\mathcal{R}(\mathcal{T X}, \mathcal{T} \mathcal{Y}) \Leftrightarrow \mathcal{R}(\mathcal{X}, \mathcal{Y})
$$

[^0]Throughout this paper, let $\mathbf{M}_{n, m}$ be the set of all n-by- m real matrices, \mathbb{R}^{n} be the set of all n-by- 1 real column vectors, $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard basis of $\mathbb{R}^{n}, A\left(n_{1}, \ldots, n_{l} \mid m_{1}, \ldots, m_{k}\right)$ be the submatrix of A obtained from A by deleting rows n_{1}, \ldots, n_{l} and columns $m_{1}, \ldots, m_{k}, A\left(n_{1}, \ldots, n_{l}\right)$ be the abbreviation of $A\left(n_{1}, \ldots, n_{l} \mid n_{1}, \ldots, n_{l}\right), \mathbb{N}_{k}$ be the set $\{1, \ldots, k\} \subset \mathbb{N}, J_{n, m}$ be the $n \times m$ matrix with all of the entries equal to one, E be the n-by- n matrix with all of the entries of the last column equal to one and the other entries equal to zero, A^{t} be the transpose of a given matrix $A \in \mathbf{M}_{n, m}, \operatorname{card}(\mathrm{~S})$ be the cardinal number of a set S, where S is a finite set, $[T]$ be the matrix representation of a linear function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with respect to the standard basis, $\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ be the matrix $A=\left[a_{i j}\right] \in \mathbf{M}_{n}$ such that $a_{i i}=a_{i}$ for each $i=1, \ldots, n$ and $a_{i j}=0$ if $i \neq j, r_{i}$ be the sum of entries on the i th row of [T], and $\mathcal{A}(S)$ be the set $\left\{\sum_{i=1}^{m} \lambda_{i} a_{i} \mid m \in \mathbb{N}, \sum_{i=1}^{m} \lambda_{i} \leq 1, a_{i} \in S, \forall i \in \mathbb{N}_{m}\right\}$, where $S \subseteq \mathbb{R}^{n}$, aff(S) be the set
$\left\{\sum_{i=1}^{m} \lambda_{i} a_{i} \mid m \in \mathbb{N}, \sum_{i=1}^{m} \lambda_{i}=1, a_{i} \in S, \lambda_{i} \in \mathbb{R}, \forall i \in \mathbb{N}_{m}\right\}$, where $S \subseteq \mathbb{R}^{n}$.
A real matrix R is called g-row stochastic provided that each its row sums is equal to one. For $X, Y \in \mathbf{M}_{n, m}, X$ is said to be gut-majorized by Y, and write $X \prec_{g u t} Y$, if there exists an n-by- n upper triangular g-row stochastic matrix R such that $X=R Y$. In [4], the authors, obtained the structure of linear preservers and strong linear preservers of $\prec_{\text {gut }}$ on \mathbb{R}^{n} and $\mathbf{M}_{n, m}$ respectively. In fact, they proved the following theorems:

Theorem 1.1. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear function. Then T preserves $\prec_{g u t}$ if and only if one of the following assertions hold:
(i) $T e_{1}=\cdots=T e_{n-1}=0$. In other words

$$
[T]=\left(\begin{array}{cccc}
0 & \ldots & 0 & a_{1 n} \\
0 & \ldots & 0 & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & a_{n n}
\end{array}\right)
$$

(ii) There exist $t \in \mathbb{N}_{n-1}$ and $1 \leq i_{1}<\cdots<i_{m} \leq n-1$ such that $a_{i_{1} t}, a_{i_{2} t+1}, \ldots, a_{i_{m} n-1} \neq 0$,

$$
[T]=\left(\begin{array}{ccccc}
0 & * & & & \\
& a_{i_{1} t} & & * & \\
& \ddots & & & \\
& & a_{i_{2} t+1} & & \\
& & \ddots & & \\
& 0 & & a_{i_{m} n-1} & \\
& & & 0 & *
\end{array}\right)
$$

and $r_{i_{k}} \in \operatorname{aff}\left\{r_{i_{k}+1}, \ldots, r_{n}\right\}$ for all $k \in \mathbb{N}_{m}$.

Let $\mathcal{R}_{n}^{\text {gut }}$ be the collection of all n-by- n upper triangular g-row stochastic matrices.

Theorem 1.2. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ be a linear function. Then T strongly preserves $\prec_{\text {gut }}$ if and only if $T X=A X R+E X S$ for some $R, S \in \boldsymbol{M}_{m}$ and invertible matrix $A \in \mathcal{R}_{n}^{\text {gut }}$, such that $R(R+S)$ is invertible.

In this work, we focus on the upper triangular g-row substochastic matrices and introduce a new type of majorization.

Definition 1.3. A matrix $R \in \mathbf{M}_{n}$ is called g-row substochastic if all its row sums is less than or equal to one.

Let $\mathcal{R} \mathcal{S}_{n}^{\text {gut }}$ be the collection of all n-by- n upper triangular g-row substochastic matrices.

Definition 1.4. Let $X, Y \in \mathbf{M}_{n, m}$. We say that X is sgut-majorized by Y (denoted by $X \prec_{\text {sgut }} Y$) if $X=R Y$, for some $R \in \mathcal{R} \mathcal{S}_{n}^{\text {gut }}$.

This paper is organized as follows. In section 2 , we state a necessary and sufficient condition for $x \prec_{\text {sgut }} y$ and some properties of sgut-majorization on \mathbb{R}^{n}. Then we characterize all (strong) linear preservers of sgut-majorization on \mathbb{R}^{n}. The last section of this paper studies some facts of this concept that are necessary for studying the strong linear preservers of $\prec_{s g u t}$ on $\mathbf{M}_{n, m}$. Also, the strong linear preservers of $\prec_{\text {sgut }}$ on $\mathbf{M}_{n, m}$ are obtained.

2. Sgut-majorization on \mathbb{R}^{n}

In this section we state some properties of sgut-majorization on \mathbb{R}^{n}. Also, we characterize all (strong) linear preservers of sgut-majorization on \mathbb{R}^{n}.
The following proposition can be easily obtained from the definition of sgutmajorization.
Proposition 2.1. Let $x=\left(x_{1}, \ldots, x_{n}\right)^{t}, y=\left(y_{1}, \ldots, y_{n}\right)^{t} \in \mathbb{R}^{n}$. Then $x \prec_{\text {sgut }}$ y if and only if $x_{i} \in \mathcal{A}\left\{y_{i}, \ldots, y_{n}\right\}$, for all $i \in \mathbb{N}_{n}$.

Now, we state some lemmas, which are necessary to prove the main results.
Lemma 2.2. Suppose that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear preserver of $\prec_{\text {sgut }}$ and let $S: \mathbb{R}^{n-k} \rightarrow \mathbb{R}^{n-k}$ be the linear function with $[S]=[T](1, \ldots, k)$. Then S preserves $\prec_{\text {sgut }}$ on \mathbb{R}^{n-k}.

Proof. Consider $x^{\prime}=\left(x_{k+1}, \ldots, x_{n}\right)^{t}, y^{\prime}=\left(y_{k+1}, \ldots, y_{n}\right)^{t} \in \mathbb{R}^{n-k}$ such that $x^{\prime} \prec_{\text {sgut }} y^{\prime}$. Proposition 2.1 ensures that $x:=\left(0, \ldots, 0, x_{k+1}, \ldots, x_{n}\right)^{t} \prec_{\text {sgut }}$ $y:=\left(0, \ldots, 0, y_{k+1}, \ldots, y_{n}\right)^{t}$, where $x, y \in \mathbb{R}^{n}$, and so $T x \prec_{\text {sgut }} T y$. This implies that $S x^{\prime} \prec_{\text {sgut }} S y^{\prime}$. Therefore, S preserves $\prec_{\text {sgut }}$ on \mathbb{R}^{n-k}, as desired.

Lemma 2.3. If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear preserver of $\prec_{\text {sgut }}$, then $[T]$ is upper triangular.

Proof. Assume that $[T]=\left[a_{i j}\right]$. If $n=1$; Then $A=\left[a_{11}\right]$ and the result is trivial. We proceed by induction on n. Suppose that $n \geq 2$ and that the assertion has been established for all linear preservers of $\prec_{\text {sgut }}$ on \mathbb{R}^{n-1}. Let $S: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ be the linear function with $[S]=[T](1)$. Lemma 2.2 ensures that S preserves $\prec_{\text {sgut }}$ on \mathbb{R}^{n-1}. According to the induction hypothesis $[S]$ is an $n-1$-by- $n-1$ upper triangular matrix. So it is enough to show that $a_{21}=\cdots=a_{n 1}=0$. As $e_{1} \prec_{\text {sgut }} e_{2}$, we observe that $T e_{1} \prec_{\text {sgut }} T e_{2}$ and hence $\left(a_{11}, \ldots, a_{n 1}\right)^{t} \prec_{\text {sgut }}\left(a_{12}, a_{22}, 0, \ldots, 0\right)^{t}$. This shows that $a_{31}=\cdots=a_{n 1}=0$. So it remains to prove that $a_{21}=0$. Assume, if possible, that $a_{21} \neq 0$. By setting $x=e_{1}$ and $y=\left(\frac{-a_{22}}{a_{21}}, 1,0, \ldots, 0\right)^{t}$, we observe that $x \prec_{\text {sgut }} y$, and then $T x \prec_{\text {sgut }} T y$. This ensures that $a_{21}=0$, which is a contradiction. Hence $a_{21}=0$ and the proof is complete.

Lemma 2.4. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear preserver of $\prec_{\text {sgut }}$, and let $[T]=$ $\left[a_{i j}\right]$. If there exist some $k, t \in \mathbb{N}_{n-1}$ such that $a_{k t} \neq 0$, and $a_{k+1 t}=a_{k+2 t}=$ $\cdots=a_{n t}=0$, then for each $j(t+1 \leq j \leq n)$ there is some $l(k+1 \leq l \leq n)$ such that $a_{l j} \neq 0$.

Proof. Since T preserves $\prec_{\text {sgut }}$ if and only if αT preserves $\prec_{\text {sgut }}$, for all $\alpha \in$ $\mathbb{R} \backslash\{0\}$, we can assume without loss of generality that $a_{k t}=1$. Suppose that there exists some $j(t+1 \leq j \leq n)$ such that $a_{k+1 j}=a_{k+2 j}=\cdots=a_{n j}=0$. Let $x=e_{t}$ and $y=-a_{k j} e_{t}+e_{j}$. Then $x \prec_{\text {sgut }} y$, but $T x \nprec_{\text {sgut }} T y$. This contradiction shows that for each $j(t+1 \leq j \leq n) a_{l j} \neq 0$, for some l $(k+1 \leq l \leq n)$.

In the following theorem we characterize the structure of linear functions $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserving sgut-majorization.

Theorem 2.5. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear function, and let $[T]=\left[a_{i j}\right]$. Then T preserves $\prec_{\text {sgut }}$ if and only if one of the following conditions hold:
(a) $T e_{1}=\cdots=T e_{n-1}=0$. In other words

$$
[T]=\left(\begin{array}{cccc}
0 & \ldots & 0 & a_{1 n} \\
0 & \ldots & 0 & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
0 & \ldots & 0 & a_{n n}
\end{array}\right)
$$

(b) There exist $t \in \mathbb{N}_{n-1}$ and $1 \leq i_{1}<\cdots<i_{m} \leq n$ such that $a_{i_{1} t}, a_{i_{2} t+1}, \ldots, a_{i_{m} n} \neq 0$,

$$
[T]=\left(\begin{array}{cccccc}
0 & * & & & \\
& a_{i_{1} t} & & * & & \\
& \ddots & & & \\
& & a_{i_{2} t+1} & & & \\
& & \ddots & & \\
& 0 & & a_{i_{m-1} n-1} & \\
& & & \ddots & \\
& & & & & a_{i_{m} n} \\
& & & & & *
\end{array}\right) \text {, }
$$

and one of the following statement happens.
(i) $\operatorname{card}\left(\mathrm{h}_{\mathrm{m}}\right) \geq 2$, where $h_{m}=\left\{r_{i_{m-1}+1}, \ldots, r_{n}\right\}$.
(ii) there exists $k \in \mathbb{N}_{m-1}$ such that $\operatorname{card}\left(\mathrm{h}_{\mathrm{k}}\right) \geq 2$, $r_{i_{k}}=r_{i_{k}+1}=\cdots=r_{n}$, and for each $i \geq i_{k}$, and for each $j \in \mathbb{N}_{n}, a_{i j} \geq 0$ or $a_{i j} \leq 0$, where $h_{1}=$ $\left\{r_{1}, r_{2}, \ldots, r_{i_{1}-1}, r_{n}\right\}$, and $h_{j}=\left\{r_{i_{j-1}+1}, \ldots, r_{i_{j}-1}, r_{n}\right\}$ for each $j(2 \leq j \leq$ $m-1)$.
(iii) $r_{1}=r_{2}=\cdots=r_{n}$, and for each $i, j \in \mathbb{N}_{n} a_{i j} \geq 0$ or $a_{i j} \leq 0$.

Proof. First, assume that (a) or (b) holds. Let $x=\left(x_{1}, \ldots, x_{n}\right)^{t}, y=\left(y_{1}, \ldots, y_{n}\right)^{t}$ $\in \mathbb{R}^{n}$ and let $x \prec_{\text {sgut }} y$. We should prove $T x \prec_{\text {sgut }} T y$. If (a) holds; It is easy to see that $T x \prec_{\text {sgut }} T y$. If (b) holds; Then $n \geq 2$. By induction on n we prove the statement. Let $n=2$; Proof, which is easy, is omitted for the sake of brevity. Assume that $n \geq 3$ and that the assertion has been established for the case $n-1$. Let $x=\left(x_{1}, \ldots, x_{n}\right)^{t}, y=\left(y_{1}, \ldots, y_{n}\right)^{t} \in \mathbb{R}^{n}$ and let $x \prec_{\text {sgut }} y$. Let $S: \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ be the linear function with $[S]=[T](1)$. Since $x^{\prime}=\left(x_{2}, \ldots, x_{n}\right)^{t}, y^{\prime}=\left(y_{2}, \ldots, y_{n}\right)^{t} \in \mathbb{R}^{n-1}$ and $x^{\prime} \prec_{\text {sgut }} y^{\prime}$, by the induction hypothesis, $S x^{\prime} \prec_{\text {sgut }} S y^{\prime}$. So for proving $T x \prec_{\text {sgut }} T y$ it suffices to show that $(T x)_{1} \in \mathcal{A}\left\{(T y)_{1}, \ldots,(T y)_{n}\right\}$. If $\operatorname{card}\left\{(T y)_{1}, \ldots,(T y)_{n}\right\} \geq 2$, then it holds. Otherwise, $(T y)_{1}=\ldots=(T y)_{n}$.
If (i) occurs; There is some $j\left(i_{m-1}+1 \leq j \leq n-1\right)$ such that $a_{j n} \neq a_{n n}$. As $(T y)_{j}=(T y)_{n}$, so $y_{n}=0 . \quad(T y)_{i_{1}}=\ldots=(T y)_{i_{m-1}}=(T y)_{n}$ and $a_{i_{1} t}, \ldots, a_{i_{m-1} n-1} \neq 0$ show that $y_{t}=\cdots=y_{n}=0$, and hence $x_{t}=\cdots=$ $x_{n}=0$. This means that $(T x)_{1} \in \mathcal{A}\left\{(T y)_{1}, \ldots,(T y)_{n}\right\}$. As a similar fashion, the cases (ii) and (iii) can be proved.

Next, suppose that T preserves $\prec_{\text {sgut }},[T]=\left[a_{i j}\right]$, and (a) dose not hold. We show that (b) holds. Use induction on n. For $n=2$, the proof is easy. Now assume that $n \geq 3$ and the statement holds for all linear preservers of $\prec_{\text {sgut }}$ on \mathbb{R}^{n-1}. From Lemma 2.3, we observe that $[T]$ is upper triangular. Let $S: \mathbb{R}^{n-1}$ $\rightarrow \mathbb{R}^{n-1}$ be the linear function with $[S]=[T](1)$. Lemma 2.2 ensures that S preserves $\prec_{\text {sgut }}$ on \mathbb{R}^{n-1}. Apply induction hypothesis for S. So the proof will
be divided into two steps.
Step 1. If $[S]$ satisfies (a); Lemma 2.4 ensures then that the first nonzero column of $[T]$ should be its $(n-1) s t$ column. If $\operatorname{card}\left(\mathrm{h}_{\mathrm{m}}\right) \geq 2$, then $(b)-(i)$ occurs. Otherwise, $r_{2}=\cdots=r_{n}$. Without loss of generality, assume that $a_{1 n-1}=1$. We should prove $r_{1}=r_{n}, a_{1 n}, a_{n n} \geq 0$, and $a_{n n} \neq 0$. Lemma 2.4 ensures that $a_{n n} \neq 0$. If $r_{1} \neq r_{n}$; Let $x_{n-1} \in \mathbb{R}$. Choose $x=x_{n-1} e_{n-1}$ and $y=\left(a_{n n}-a_{1 n}\right) e_{n-1}+e_{n}$. We observe that $x \prec_{\text {sgut }} y$, and thus $T x \prec_{\text {sgut }} T y$. This follows that $x_{n-1} \in \mathcal{A}\left\{a_{n n}\right\}$, a contradiction. So $r_{1}=r_{n}$. If $a_{n n}<0$; Since $e_{n} \prec_{\text {sgut }}\left(e_{n-1}+e_{n}\right)$, we obtain a contradiction. This contradiction implies that $a_{n n}>0$. Since $e_{n-1} \prec_{\text {sgut }}\left(e_{n-1}+e_{n}\right)$, we conclude that $a_{1 n} \geq 0$. Thus (iii) holds for $[T]$.
Step 2. If $[S]$ satisfies (b); Let the first nonzero column of $[S]$ be the $t^{\text {th }}$ column of $[T]$. We have two cases.
Case 1. The first nonzero column of $[T]$ is its $t^{t h}$ column. We see that $i_{1}>1$. If for $[S]$ one of the forms of (i) or (ii) happens, then there is no thing to prove. Otherwise, $(i i i)$ occurs for $[S]$. That is, $r_{2}=\cdots=r_{n}$ and for each $i, j(2 \leq i, j \leq n) a_{i j} \geq 0$ or $a_{i j} \leq 0$. If $r_{1} \neq r_{n}$, then (ii) occurs for $[T]$ with $k=1$. If not; Then $r_{1}=r_{n}$. Without loss of generality assume that for each $i, j(2 \leq i, j \leq n) a_{i j} \geq 0$. We should just prove $a_{1 t}, \ldots, a_{1 n} \geq 0$. Define $J_{1}=\left\{j: t \leq j \leq n, a_{1 j} \geq 0\right\}$ and $J_{2}=\left\{j: t \leq j \leq n, a_{1 j}<0\right\}$. It is enough to show that $J_{2}=\emptyset$. If $J_{2} \neq \emptyset$, then $r_{1} \geq 0$. If $J_{1}=\emptyset$, we conclude that $r_{1}<0$, a contradiction. This contradiction shows that $J_{1} \neq \emptyset$. Set $x=\sum_{j \in J_{1}} e_{j}$ and $y=\sum_{j=t}^{n} e_{j}$. We see that $x \prec_{\text {sgut }} y$, and then $T x \prec_{\text {sgut }} T y$. This shows that $\sum_{j \in J_{1}} a_{1 j} \in \mathcal{A}\left\{r_{1}\right\}$. So $\sum_{j \in J_{1}} a_{1 j} \leq r_{1}$, and then $\sum_{j \in J_{1}} a_{1 j} \leq$ $\sum_{j \in J_{1}} a_{1 j}+\sum_{j \in J_{2}} a_{1 j}$. This means that $\sum_{j \in J_{2}} a_{1 j} \geq 0$. Contradiction. So $J_{2}=\emptyset$. We see that (iii) holds for [T].
With an argument almost identical to that of the above, the following theme can be proved.
Case 2. The first nonzero column of $[T]$ is not its $t^{\text {th }}$ column. Lemma 2.4 ensures then that the first nonzero column of $[T]$ is its $t-1^{\text {th }}$ column.

Lemma 2.6. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an invertible linear preserver of $\prec_{\text {sgut }}$, and let $[T]=\left[a_{i j}\right]$. Then $[T]$ is upper triangular, $\prod_{i=1}^{n} a_{i i} \neq 0, r_{1}=r_{2}=\cdots=r_{n}$, and for each $i, j \in \mathbb{N}_{n} a_{i j} \geq 0$ or $a_{i j} \leq 0$.

Proof. By Lemma 2.3, $[T]$ is an upper triangular matrix. Since $[T]$ is upper triangular and invertible, we observe that $\prod_{i=1}^{n} a_{i i} \neq 0$. Theorem 2.5 ensures that $r_{1}=r_{2}=\cdots=r_{n}$ and for each $i, j \in \mathbb{N}_{n} a_{i j} \geq 0$ or $a_{i j} \leq 0$..

Lemma 2.7. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ be a linear function that strongly preserves sgut-majorization. Then T is invertible.

Proof. Suppose that $T(A)=0$, where $A \in \mathbf{M}_{n, m}$. Notice that since T is linear, we have $T(0)=0=T(A)$. Then it is obvious that $T(A) \prec_{\text {sgut }} T(0)$. Therefore,
$A \prec_{\text {sgut }} 0$, because T strongly preserves sgut-majorization. Then $\mathrm{A}=\mathrm{R} 0$, for some $R \in \mathcal{R} \mathcal{S}_{n}^{g u t}$. So $A=0$, and hence T is invertible.

Theorem 2.8. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear function. Then T strongly preserves $\prec_{\text {sgut }}$ if and only if $[T]=\alpha I_{n}$ for some $\alpha \in \mathbb{R} \backslash\{0\}$.

Proof. As the sufficiency part is clear, we prove the necessity part. Suppose that T strongly preserves $\prec_{\text {sgut }}$ and $[T]=\left[a_{i j}\right]$. Lemma 2.7 ensures that T is invertible. From Lemma 2.6, we have $[T]$ is an upper triangular matrix, $\prod_{i=1}^{n} a_{i i} \neq 0, r_{1}=\cdots=r_{n}$, and for each $i, j \in \mathbb{N}_{n} a_{i j} \geq 0$ or $a_{i j} \leq 0$. We prove the statement by induction. The result is trivial for $n=1$. Assume that our claim has been proved for all strong linear preservers of $\prec_{\text {sgut }}$ on \mathbb{R}^{n-1}. Let S : $\mathbb{R}^{n-1} \rightarrow \mathbb{R}^{n-1}$ be the linear function with $[S]=[T](1)$. Conclude from Lemma 2.2 that S preserves $\prec_{\text {sgut }}$ on \mathbb{R}^{n-1}. We claim that S strongly preserves $\prec_{\text {sgut }}$ on \mathbb{R}^{n-1}. Let $x^{\prime}=\left(x_{2}, \ldots, x_{n}\right)^{t}, y^{\prime}=\left(y_{2}, \ldots, y_{n}\right)^{t} \in \mathbb{R}^{n-1}$, and let $S x^{\prime} \prec_{\text {sgut }}$ $S y^{\prime}$. Set $x=\left(0, x^{\prime}\right)^{t}, y=\left(0, y^{\prime}\right)^{t} \in \mathbb{R}^{n}$. Observe that $T x=\left(\sum_{i=2}^{n} a_{1 i} x_{i}, S x^{\prime}\right)^{t}$ and $T y=\left(\sum_{i=2}^{n} a_{1 i} y_{i}, S y^{\prime}\right)^{t}$. For proving $T x \prec_{\text {sgut }} T y$ it suffices to show that $(T x)_{1} \in \mathcal{A}\left\{(T y)_{1}, \ldots,(T y)_{n}\right\}$. If $\operatorname{card}\left\{(T y)_{1}, \ldots,(T y)_{n}\right\} \geq 2$, then $(T x)_{1} \in$ $\mathcal{A}\left\{(T y)_{1}, \ldots,(T y)_{n}\right\}$. Otherwise, $(T y)_{2}=\cdots=(T y)_{n}$. Then $y_{2}=\cdots=y_{n}$, because $\prod_{i=2}^{n} a_{i i} \neq 0$ and $r_{2}=\cdots=r_{n}$. Since $(T y)_{1}=(T y)_{n}$, if $y_{n} \neq 0$ occurs, then $a_{11}=0$, which is a contradiction. So $y_{2}=\cdots=y_{n}=0$, and then $x_{2}=\cdots=x_{n}=0$. Thus $(T x)_{1} \in \mathcal{A}\left\{(T y)_{1}, \ldots,(T y)_{n}\right\}$. It is obvious that $T x \prec_{\text {sgut }} T y$, and then, since T strongly preserves $\prec_{\text {sgut }}$ on $\mathbb{R}^{n}, x \prec_{\text {sgut }} y$. This implies that $x^{\prime} \prec_{\text {sgut }} y^{\prime}$. Therefore, S strongly preserves $\prec_{\text {sgut }}$ on \mathbb{R}^{n-1}. The induction hypothesis ensures that there exists some $\alpha \in \mathbb{R} \backslash\{0\}$ such that $[S]=\alpha I_{n-1}$. If we prove that $a_{12}=\cdots=a_{1 n}=0$, since $r_{1}=\cdots=r_{n}$, we deduce that $[T]=\alpha I_{n}$. By a simple calculation, one may show that

$$
\left[T^{-1}\right]=\left(\begin{array}{ccccccc}
\frac{1}{a_{11}} & \frac{-a_{12}}{a_{11} \alpha} & \frac{-a_{13}}{a_{11} \alpha} & \ldots & 0 & 0 & \frac{-a_{1 n}}{a_{11} \alpha} \\
0 & \frac{1}{\alpha} & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\alpha} & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & \frac{1}{\alpha} & 0 \\
0 & 0 & 0 & \ldots & 0 & 0 & \frac{1}{\alpha}
\end{array}\right) .
$$

Since T strongly preserves $\prec_{\text {sgut }}$, the operator T^{-1} is a linear preserver of $\prec_{\text {sgut }}$, and hence, from Theorem 2.5, all entries of $\left[T^{-1}\right]$ have the same sign. As all entries of $[T]$ have the same sign too, it follows that $a_{12}=\cdots=a_{1 n}=0$.

3. Sgut-majorization on $\mathbf{M}_{n, m}$

In this section we discuss some properties of sgut-majorization on $\mathbf{M}_{n, m}$, and we find the structure of strong linear preservers of $\prec_{s g u t}$ on $\mathbf{M}_{n, m}$. First, we state some lemmas.

Lemma 3.1. The following statements about a given matrix $A \in \boldsymbol{M}_{n}$ are equivalent.
(a) For all $D \in \mathcal{R} \mathcal{S}_{n}^{\text {gut }}, A D=D A$.
(b) For some $\alpha \in \mathbb{R}, A=\alpha I$.
(c) For all $D \in \mathcal{R} \mathcal{S}_{n}^{\text {gut }}$ and all $x, y \in \mathbb{R}^{n},(D x+A D y) \prec_{\text {sgut }}(x+A y)$.

Proof. To verify that (a) implies (b), suppose that $D:=\operatorname{diag}\left(1, \frac{1}{2}, \ldots, \frac{1}{n}\right)$. Since $D \in \mathcal{R S}_{n}^{\text {gut }}$, observe that $a_{i j}=0$ for each $i, j \in \mathbb{N}_{n}, i \neq j$. Also, for $D=E \in \mathcal{R} \mathcal{S}_{n}^{g u t}$, this follows that $a_{11}=\cdots=a_{n n}$. Thus (b) holds. Clearly, (b) implies (c). For each $y \in \mathbb{R}^{n}$, let $x=-A y$. Put x, y in the relation (c). It is easy to see that $D A y=A D y$. Then $A D=D A$, and so (c) implies (a).

Remark 3.2. Let $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ be a linear function. For every $i, j \in \mathbb{N}_{m}$, consider the embedding $E^{j}: \mathbb{R}^{n} \rightarrow \mathbf{M}_{n, m}$ and the projection $E_{i}: \mathbf{M}_{n, m} \rightarrow \mathbb{R}^{n}$ which are defined by $E^{j}(x)=x e_{j}^{t}$ and $E_{i}(A)=A e_{i}$ respectively. Put $T_{i}^{j}=$ $E_{i} T E^{j}$, for all $i, j \in \mathbb{N}_{m}$. Then $T X=T\left[x_{1}|\ldots| x_{m}\right]=\left[\sum_{j=1}^{m} T_{1}^{j} x_{j}|\ldots|\right.$ $\left.\sum_{j=1}^{m} T_{m}^{j} x_{j}\right]$. Moreover, if T preserves $\prec_{\text {sgut }}$, then T_{i}^{j} preserves $\prec_{\text {sgut }}$ for all $i, j \in \mathbb{N}_{m}$ too.

Lemma 3.3. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ preserve $\prec_{\text {sgut }}$. If for any $i \in \mathbb{N}_{m}$ there exists $k \in \mathbb{N}_{m}$ such that T_{i}^{k} is invertible, then $\sum_{j=1}^{m} A_{i}^{j} x_{j}=A_{i}^{k} \sum_{j=1}^{m} \alpha_{i}^{j} x_{j}$, for some $\alpha_{i}^{j} \in \mathbb{R}$, where $A_{i}^{j}=\left[T_{i}^{j}\right]$.
Proof. We may assume without loss of generality that $i, k=1$ and $j=2$. We prove that there exists $\alpha_{1}^{2} \in \mathbb{R}$ such that $A_{1}^{2}=\alpha_{1}^{2} A_{1}^{1}$. Let $D \in \mathcal{R} \mathcal{S}_{n}^{\text {gut }}$ and $x, y \in \mathbb{R}^{n}$. So $D[x|y| 0|\ldots| 0] \prec_{\text {sgut }}[x|y| 0|\ldots| 0]$. This implies that $T[D x|D y| 0|\ldots| 0] \prec_{\text {sgut }} T[x|y| 0|\ldots| 0]$, and then $\left[A_{1}^{1} D x+A_{1}^{2} D y|*| *\right] \prec_{\text {sgut }}$ $\left[A_{1}^{1} x+A_{1}^{2} y|*| *\right]$. This ensures that $A_{1}^{1} D x+A_{1}^{2} D y \prec_{\text {sgut }} A_{1}^{1} x+A_{1}^{2} y$, and Lemma 3.1 ensures then that there exists $\alpha_{1}^{2} \in \mathbb{R}$ such that $A_{1}^{2}=\alpha_{1}^{2} A_{1}^{1}$.

Lemma 3.4. Suppose that $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ is a strong linear preserver of $\prec_{\text {sgut }}$. Then for each $i \in \mathbb{N}_{m}$ there exists $j \in \mathbb{N}_{m}$ such that T_{i}^{j} is invertible.

Proof. Define $I=\left\{i \in \mathbb{N}_{m} \mid T_{i}^{j} e_{1}=0, \forall j \in \mathbb{N}_{m}\right\}$. We prove that I is empty. We may assume that I is not empty. Assume without loss of generality that $I=$ $\{1,2, \ldots, k\}$, where $k \in \mathbb{N}_{m}$. If $k=m$, we choose $X=\left[e_{1}|0| \ldots \mid 0\right] \in \mathbf{M}_{n, m}$. We see that $X \neq 0$, but $T X=0$. It follows that T is not invertible, while T strongly preserves $\prec_{\text {sgut }}$. This contradiction determines $k<m$. Lemma 3.3 ensures for each $i(k+1 \leq i \leq m)$ and $j \in \mathbb{N}_{m}$, there exist invertible matrices A_{i}
and $\alpha_{i}^{j} \in \mathbb{R}$ such that $\sum_{j=1}^{m} A_{i}^{j} x_{j}=A_{i} \sum_{j=1}^{m} \alpha_{i}^{j} x_{j}$. So there exist $\gamma_{1}, \ldots, \gamma_{m} \in$ \mathbb{R}, not all zero, such that $\gamma_{1}\left(\alpha_{k+1}^{1}, \ldots, \alpha_{m}^{1}\right)^{t}+\cdots+\gamma_{m}\left(\alpha_{k+1}^{m}, \ldots, \alpha_{m}^{m}\right)^{t}=0$. Define $x_{j}=\gamma_{j} e_{1}$ for each $j \in \mathbb{N}_{m}$, and let $X=\left[x_{1}|\ldots| x_{m}\right] \in \mathbf{M}_{n, m}$. It is obvious that $X \neq 0$ and $T X=0$, which would be a contradiction. We conclude that for each $i \in \mathbb{N}_{m}$, there exists $j \in \mathbb{N}_{m}$ such that $T_{i}^{j} e_{1} \neq 0$, and hence T_{i}^{j} is invertible.

Theorem 3.5. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ strongly preserve $\prec_{\text {sgut }}$. Then $T X=$ $A X R$ for some invertible matrices $R \in M_{m}$ and $A \in \mathcal{R}_{n}^{g u t}$.
Proof. Theorem 2.8 ensures that the case $m=1$. So assume that $m>1$. Lemma 3.4 ensures then that, since T is invertible, for each $i \in \mathbb{N}_{m}$ there exists $j \in \mathbb{N}_{m}$ such that T_{i}^{j} is invertible. Now, by Lemma 3.3, there exist invertible matrices $A_{1}, \ldots, A_{m} \in \mathbf{M}_{n}$ and vectors $a_{1}, \ldots, a_{m} \in \mathbb{R}^{m}$ such that $T X=\left[A_{1} X a_{1}|\ldots| A_{m} X a_{m}\right]$.

We claim that $\operatorname{dim}\left(\operatorname{span}\left\{a_{1}, \ldots, a_{m}\right\}\right) \geq 2$. If not; then $\left\{a_{1}, \ldots, a_{m}\right\} \subseteq$ $\operatorname{span}\{\mathrm{a}\}$, for some $a \in \mathbb{R}^{m}$. Since $m>1$, we can choose $0 \neq b \in(\operatorname{span}\{\mathrm{a}\})^{\perp}$. Define $X \in \mathbf{M}_{n, m}$ such that the first row is b^{t} and the other rows are zero. We see that $X \neq 0$ and $T X=0$, which would be a contradiction, because of Lemma 2.7. Thus $\operatorname{rank}\left\{a_{1}, \ldots, a_{m}\right\} \geq 2$.

Without loss of generality, assume that $\left\{a_{1}, a_{2}\right\}$ is a linearly independent set. Let $X \in \mathbf{M}_{n, m}$ and $D \in \mathcal{R} \mathcal{S}_{n}^{\text {gut }}$. So $D X \prec_{\text {sgut }} X$, and hence $T D X \prec_{\text {sgut }} T X$. Thus $\left[A_{1} D X a_{1}|\ldots| A_{m} D X a_{m}\right] \prec_{\text {sgut }}\left[A_{1} X a_{1}|\ldots| A_{m} X a_{m}\right]$, and so $A_{1} D X a_{1}+A_{2} D X a_{2} \prec_{\text {sgut }} A_{1} X a_{1}+A_{2} X a_{2}$, and then
$D X a_{1}+A_{1}^{-1} A_{2} D X a_{2} \prec_{\text {sgut }} X a_{1}+A_{1}^{-1} A_{2} X a_{2}$, for all $X \in \mathbf{M}_{n, m}, D \in \mathcal{R} \mathcal{S}_{n}^{\text {gut }}$. (1)
Since $\left\{a_{1}, a_{2}\right\}$ is linearly independent, for every $x, y \in \mathbb{R}^{n}$, there exists $B_{x, y} \in$ $\mathbf{M}_{n, m}$ such that $B_{x, y} a_{1}=x$ and $B_{x, y} a_{2}=y$. Set $X=B_{x, y}$ in (1). So we have $D x+A_{1}^{-1} A_{2} D y \prec_{\text {sgut }} x+A_{1}^{-1} A_{2} y$, for all $D \in \mathcal{R} \mathcal{S}_{n}^{g u t}, x, y \in \mathbb{R}^{n}$. Lemma 3.1 ensures that $A_{1}^{-1} A_{2}=\alpha I$, for some $\alpha \in \mathbb{R}$, and hence $A_{2}=\alpha A_{1}$. For every $i \geq 3$ if $a_{i}=0$, choose $A_{i}=A_{1}$, and if $a_{i} \neq 0$, then $\left\{a_{1}, a_{i}\right\}$ or $\left\{a_{2}, a_{i}\right\}$ is linearly independent. Then, in a similar fashion, one shows that $A_{i}=\gamma_{i} A_{1}$, for some $\gamma_{i} \in \mathbb{R}$, or $A_{i}=\lambda_{i} A_{2}$, for some $\lambda_{i} \in \mathbb{R}$. Consider $A=A_{1}$. So for every $i \geq 2, A_{i}=r_{i} A$, for some $r_{i} \in \mathbb{R}$ and hence $T X=\left[A X a_{1}\left|A X\left(r_{2} a_{2}\right)\right| \ldots \mid\right.$ $\left.A X\left(r_{m} a_{m}\right)\right]=A X R$, where $R=\left[a_{1}\left|r_{2} a_{2}\right| r_{m} a_{m}\right]$. As T and A are invertible, we conclude that R is invertible too. Since A is the matrix representation of an invertible linear preserver of $\prec_{\text {sgut }}$, then there is some nonzero multiple of it belongs to $\mathcal{R}_{n}^{\text {gut }}$.

Lemma 3.6. Suppose that $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ satisfies $T X=A X R$ for some invertible matrices $R \in \boldsymbol{M}_{m}$ and $A \in \mathcal{R}_{n}^{\text {gut }}$. Let $A=\left[a_{i j}\right]$. If T strongly preserves $\prec_{\text {sgut }}$, then $a_{11}=1$ and $a_{12}=a_{13}=\cdots=a_{1 n}=0$.
Proof. Without loss of generality assume that $R=I_{m}$. First, we prove that $a_{11}=1$. Clearly, $a_{11} \neq 0$. The proof is first divided into two steps.

Step 1. If $a_{11}<0$ or $1<a_{11}$. If $a_{11}<0$, choose α such that $\alpha<\frac{1}{a_{11}}$, and if $1<a_{11}$, select α such that $\frac{1}{a_{11}}<\alpha \leq 1$. Define $X \in \mathbf{M}_{n, m}$ such that its first row is $(\alpha \alpha \ldots \alpha)$ and all its other rows are zero, $Y=J_{n, m}$, and $R \in \mathbf{M}_{n}$ such that its first row is $(\alpha 0 \ldots 0)$ and all its other rows are zero. We observe that $X=R Y$. As $R \in \mathcal{R}_{n}^{g u t}$, then $X \prec_{\text {sgut }} Y$. If $T X \prec_{\text {sgut }} T Y$, then there exists some $H \in \mathcal{R} \mathcal{S}_{n}^{g u t}$ such that $T X=H T Y$. This follows that $\alpha a_{11} \leq 1$, which is a contradiction. So $T X \prec_{\text {sgut }} T Y$. Thus T does not strongly preserve $\prec_{\text {sgut }}$. Step 2. If $0<a_{11}<1$. Set $X \in \mathbf{M}_{n, m}$ such that its first row is $\left(\frac{1}{a_{11}} \frac{1}{a_{11}} \ldots \frac{1}{a_{11}}\right)$ and all its other rows are zero, and $Y=J_{n, m}$. We see that $T X=R T Y$, where $R \in \mathbf{M}_{n}$ is the matrix that its first row is $\left(a_{11} 0 \ldots 0\right)$ and all its other rows are zero. Hence $T X \prec_{\text {sgut }} T Y$. But if $X \prec_{\text {sgut }} Y$, then there exists some $H \in \mathcal{R} \mathcal{S}_{n}^{\text {gut }}$ such that $X=H Y$. This shows that $\frac{1}{a_{11}} \leq 1$, which would be a contradiction. So $X \prec_{\text {sgut }} Y$, and thus T does not strongly preserve $\prec_{\text {sgut }}$. Therefore, $a_{11}=1$.

Now, we claim that $a_{12}=a_{13}=\cdots=a_{1 n}=0$. Assume, if possible, that $a_{1 j} \neq 0$, for some $2 \leq j \leq n$. Choose x_{1} such that $0 \leq 1-x_{1}<a_{1 j}$ if $a_{1 j}>0$, and $0 \leq 1-x_{1}$ if $a_{1 j}<0$. Select x_{j} such that $\frac{1-x_{1}}{a_{1 j}}<x_{j}<1$ if $a_{1 j}>0$, and $x_{j}<\frac{1-x_{1}}{a_{1 j}}$ if $a_{1 j}<0$. Define $X \in \mathbf{M}_{n, m}$ such that its first row is $\left(x_{1} \ldots x_{1}\right)$, its $j^{\text {th }}$ row is $\left(x_{j} \ldots x_{j}\right)$, and all its other rows are zero, $Y=J_{n, m}$, and $R \in \mathbf{M}_{n}$ such that its first row is $\left(x_{1} \quad 0 \ldots 0\right)$, its $j^{t h}$ row is $\left(0 \ldots 0 \quad x_{j}\right.$ $0 \ldots 0$) where x_{j} is $j^{t h}$ entry, and all its other rows are zero. We have $X=R Y$. As $R \in \mathcal{R S}_{n}^{\text {gut }}$, we deduce that $X \prec_{\text {sgut }} Y$. If $T X \prec_{\text {sgut }} T Y$, then there exists some $H \in \mathcal{R S}_{n}^{\text {gut }}$ such that $T X=H T Y$. This implies that $x_{1}+a_{1 j} x_{j} \leq 1$, which is a contradiction. Therefore, $a_{12}=a_{13}=\cdots=a_{1 n}=0$.

Lemma 3.7. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ satisfy $T X=A X R$ for some invertible matrices $R \in M_{m}$ and $A \in \mathcal{R}_{n}^{\text {gut }}$. Suppose that T strongly preserves $\prec_{\text {sgut }}$. If $S: \boldsymbol{M}_{n-1, m} \rightarrow \boldsymbol{M}_{n-1, m}$ satisfies $S X=A(1) X R$, then S is a strong linear preserver of $\prec_{\text {sgut }}$ on $\boldsymbol{M}_{n-1, m}$.

Proof. It can be assumed without loss of generality that $R=I_{m}$. Lemma 3.6 ensure that $A=\left(\begin{array}{cc}1 & 0 \\ 0 & A(1)\end{array}\right)$. Let $X^{\prime}, Y^{\prime} \in \mathbf{M}_{n-1, m}$ such that $X^{\prime} \prec_{\text {sgut }} Y^{\prime}$. Then there is some $R^{\prime} \in \mathcal{R} \mathcal{S}_{n-1}^{g u t}$ such that $X^{\prime}=R^{\prime} Y^{\prime}$. Set $X=\binom{0}{X^{\prime}} \in \mathbf{M}_{n, m}$ and $Y=\binom{0}{Y^{\prime}} \in \mathbf{M}_{n, m}$. We see that $X=R Y$, where $R=\left(\begin{array}{cc}0 & 0 \\ 0 & R^{\prime}\end{array}\right) \in \mathcal{R} \mathcal{S}_{n}^{\text {gut }}$, and then $X \prec_{\text {sgut }} Y$. Since T preserves $\prec_{\text {sgut }}$ on $\mathbf{M}_{n, m}$, we conclude that $T X \prec_{\text {sgut }} T Y$. Hence there exists some $H \in \mathcal{R} \mathcal{S}_{n}^{g u t}$ such that $T X=H T Y$. Partition $H=\left(\begin{array}{cc}H_{1} & H_{2} \\ 0 & H_{3}\end{array}\right)$, where $H_{3} \in \mathbf{M}_{n-1}$. This implies that $A(1) X^{\prime}=$ $H_{3} A(1) Y^{\prime}$. That is, $S X^{\prime}=H_{3} S Y^{\prime}$. As $H_{3} \in \mathcal{R} \mathcal{S}_{n-1}^{\text {gut }}$, we have $S X^{\prime} \prec_{\text {sgut }} S Y^{\prime}$.

Now, suppose that $X^{\prime}, Y^{\prime} \in \mathbf{M}_{n-1, m}$ such that $S X^{\prime} \prec_{\text {sgut }} S Y^{\prime}$. So there is some $R^{\prime} \in \mathcal{R} \mathcal{S}_{n-1}^{\text {gut }}$ such that $S X^{\prime}=R^{\prime} S Y^{\prime}$. Define $X=\binom{0}{X^{\prime}} \in \mathbf{M}_{n, m}$ and $Y=\binom{0}{Y^{\prime}} \in \mathbf{M}_{n, m}$. Set $R=\left(\begin{array}{cc}0 & 0 \\ 0 & R^{\prime}\end{array}\right)$. We have $R \in \mathcal{R S}_{n}^{\text {gut }}$ and $T X=R T Y$. Thus $T X \prec_{\text {sgut }} T Y$, and so $X \prec_{\text {sgut }} Y$. Then there exists some $H \in \mathcal{R S}_{n}^{\text {gut }}$ such that $X=H Y$. Partition $H=\left(\begin{array}{cc}H_{1} & H_{2} \\ 0 & H_{3}\end{array}\right)$, where $H_{3} \in \mathbf{M}_{n-1}$. This concludes that $X^{\prime}=H_{3} Y^{\prime}$, and then $X^{\prime} \prec_{\text {sgut }} Y^{\prime}$. Therefore, S strongly preserves $\prec_{\text {sgut }}$.

In the next theorem the structure of linear functions $T: \mathbf{M}_{n, m} \rightarrow \mathbf{M}_{n, m}$ strongly preserving sgut-majorization will be characterized.

Theorem 3.8. Let $T: \boldsymbol{M}_{n, m} \rightarrow \boldsymbol{M}_{n, m}$ be a linear function. Then T strongly preserves $\prec_{\text {sgut }}$ if and only if $T X=X R$ for some invertible matrix $R \in \boldsymbol{M}_{m}$.

Proof. As the sufficiency of the condition is easy to see, we just prove the necessity of the condition. Assume that T strongly preserves $\prec_{\text {sgut }}$. Theorem 3.5 ensures that $T X=A X R$ for some invertible matrices $R \in \mathbf{M}_{m}$ and $A \in$ $\mathcal{R}_{n}^{g u t}$. Let $A=\left[a_{i j}\right]$. From Lemma 3.6, we see that $a_{11}=1$ and $a_{12}=a_{13}=$ $\ldots=a_{1 n}=0$. Now, we claim that $A=I_{n}$. We proceed by induction on n. There is nothing to prove for $n=1$. Suppose that $n \geq 2$ and the assertion has been established for all strong linear preservers of $\prec_{\text {sgut }}$ on $\mathbf{M}_{n-1, m}$. Lemma 3.6 ensures that $A=\left(\begin{array}{cc}1 & 0 \\ 0 & A(1)\end{array}\right)$. Let $S: \mathbf{M}_{n-1, m} \rightarrow \mathbf{M}_{n-1, m}$ be the linear function by $S X=A(1) X R$. Lemma 3.7 implies that S strongly preserves $\prec_{\text {sgut }}$. Since $A(1) \in \mathcal{R}_{n-1}^{\text {gut }}$ is an invertible matrix, the induction hypothesis insures that $A(1)=I_{n-1}$. Therefore, $A=I_{n}$.

References

[1] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl. 118 (1989) 163-248.
[2] A. Armandnejad, Right gw-majorization on $\mathbf{M}_{n, m}$, Bull. Iranian math. Soc. 35 (2009), no. 2, 69-76.
[3] A. Armandnejad and H. Heydari, Linear preserving gd-majorization functions from $\mathbf{M}_{n, m}$ to $\mathbf{M}_{n, k}$, Bull. Iranian math. Soc. $\mathbf{3 7}$ (2011), no. 1, 215-224.
[4] A. Armandnejad and A. Ilkhanizadeh Manesh, Gut-majorization and its linear preservers, Electron. J. Linear Algebra 23 (2012) 646-654.
[5] A. Armandnejad and A. Salemi, On linear preservers of lgw-majorization on $\mathbf{M}_{n, m}$, Bull. Malays. Math. Soc. (2) 35 (2012), no. 3, 755-764.
[6] A. Armandnejad and A. Salemi, The structure of linear preservers of gs- majorization, Bull. Iranian Math. Soc. 32 (2006), no. 2, 31-42.
[7] H. Chiang and C. K. Li, Generalized doubly stochastic matrices and linear preservers, Linear Multilinear Algebra 53 (2005), no. 1, 1-11.
[8] A. M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, Linear Algebra Appl. 423 (2007), no. 2-3, 255-261.
[9] A. M. Hasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, Electron. J. Linear Algebra 15 (2006) 260-268.
[10] A. Ilkhanizadeh Manesh, Linear functions preserving sut-majorization on \mathbb{R}^{n}, Iran. J. Math. Sci. Inform., (submission).
[11] A. Ilkhanizadeh Manesh, Right gut-majorization on $\mathbf{M}_{n, m}$, Electron. J. Linear Algebra, Accepted.
[12] A. Ilkhanizadeh Manesh and A. Armandnejad, Ut-majorization on \mathbb{R}^{n} and its Linear Preservers, Operator theory, operator algebras and applications, 253-259, Oper. Theory Adv. Appl., 242, Birkhäuser-Springer, Basel, 2014.
[13] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of majorization and its applications, Springer, New York, 2011.
[14] B. Y. Wang, Foundations of Majorization Inequalities, Beijing Normal Univ. Press, Beijing, 1990.
(Asma Ilkhanizadeh Manesh) Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7713936417, Rafsanjan, Iran.

E-mail address: a.ilkhani@vru.ac.ir, ailkhanizade@gmail.com

[^0]: Article electronically published on April 30, 2016.
 Received: 14 April 2014, Accepted: 18 February 2015.

