ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 2, pp. 470-481

Title:

On linear preservers of sgut-majorization on $M_{n,m}$

Author(s):

A. Ilkhanizadeh Manesh

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 42 (2016), No. 2, pp. 470–481 Online ISSN: 1735-8515

ON LINEAR PRESERVERS OF SGUT-MAJORIZATION ON $\mathbf{M}_{n,m}$

A. ILKHANIZADEH MANESH

(Communicated by Abbas Salemi)

ABSTRACT. Let $\mathbf{M}_{n,m}$ be the set of *n*-by-*m* matrices with entries in the field of real numbers. A matrix R in $\mathbf{M}_n = \mathbf{M}_{n,n}$ is a generalized row substochastic matrix (g-row substochastic, for short) if $Re \leq e$, where $e = (1, 1, \ldots, 1)^t$. For $X, Y \in \mathbf{M}_{n,m}$, X is said to be sgut-majorized by Y (denoted by $X \prec_{sgut} Y$) if there exists an *n*-by-*n* upper triangular g-row substochastic matrix R such that X = RY. This paper characterizes all linear preservers and strong linear preservers of \prec_{sgut} on \mathbb{R}^n and $\mathbf{M}_{n,m}$ respectively.

Keywords: Linear preserver, strong linear preserver, g-row substochastic matrices, sgut-majorization.

MSC(2010): Primary: 15A03, 15A04; Secondary: 15A51.

1. Introduction

Vector majorization is a much studied concept in linear algebra and its applications. The reader can find that majorization has been connected with combinatorics, analytic inequalities, numerical analysis, matrix theory, probability and statistics in a book written by Marshall, Olkin, and Arnold [13]. Several generalization of this concept have also been introduced. For more information we refer the reder to [2-12]. The purpose of this paper is introducing and studying a new type of generalized majorization. For more information on the type of majorization and linear preservers of majorization see [1] and [14].

Let \mathcal{V} be a linear space of matrices, T be a linear function on \mathcal{V} , and \mathcal{R} be a relation on \mathcal{V} . The linear function T is said to preserve \mathcal{R} , if $\mathcal{R}(\mathcal{TX}, \mathcal{TY})$ whenever $\mathcal{R}(\mathcal{X}, \mathcal{Y})$. Also, T is said to strongly preserve \mathcal{R} , if

$$\mathcal{R}(\mathcal{TX},\mathcal{TY}) \Leftrightarrow \mathcal{R}(\mathcal{X},\mathcal{Y}).$$

©2016 Iranian Mathematical Society

470

Article electronically published on April 30, 2016. Received: 14 April 2014, Accepted: 18 February 2015.

Throughout this paper, let $\mathbf{M}_{n,m}$ be the set of all *n*-by-*m* real matrices, \mathbb{R}^n be the set of all *n*-by-1 real column vectors, $\{e_1, \ldots, e_n\}$ be the standard basis of \mathbb{R}^n , $A(n_1, \ldots, n_l | m_1, \ldots, m_k)$ be the submatrix of A obtained from A by deleting rows n_1, \ldots, n_l and columns m_1, \ldots, m_k , $A(n_1, \ldots, n_l)$ be the abbreviation of $A(n_1, \ldots, n_l | n_1, \ldots, n_l)$, \mathbb{N}_k be the set $\{1, \ldots, k\} \subset \mathbb{N}$, $J_{n,m}$ be the $n \times m$ matrix with all of the entries equal to one, E be the *n*-by-*n* matrix with all of the entries of the last column equal to one and the other entries equal to zero, A^t be the transpose of a given matrix $A \in \mathbf{M}_{n,m}$, card(S) be the cardinal number of a set S, where S is a finite set, [T] be the matrix representation of a linear function $T : \mathbb{R}^n \to \mathbb{R}^n$ with respect to the standard basis, $diag(a_1, \ldots, a_n)$ be the matrix $A = [a_{ij}] \in \mathbf{M}_n$ such that $a_{ii} = a_i$ for each $i = 1, \ldots, n$ and $a_{ij} = 0$ if $i \neq j, r_i$ be the sum of entries on the *i*th row of [T], and $\mathcal{A}(S)$ be the set $\{\sum_{i=1}^m \lambda_i a_i \mid m \in \mathbb{N}, \sum_{i=1}^m \lambda_i \leq 1, a_i \in S, \forall i \in \mathbb{N}_m\}$, where $S \subseteq \mathbb{R}^n$, aff(S) be the set

 $\{\sum_{i=1}^{m} \lambda_i a_i \mid m \in \mathbb{N}, \sum_{i=1}^{m} \lambda_i = 1, a_i \in S, \lambda_i \in \mathbb{R}, \forall i \in \mathbb{N}_m\}, \text{ where } S \subseteq \mathbb{R}^n.$

A real matrix R is called *g-row stochastic* provided that each its row sums is equal to one. For $X, Y \in \mathbf{M}_{n,m}, X$ is said to be *gut-majorized* by Y, and write $X \prec_{gut} Y$, if there exists an *n*-by-*n* upper triangular g-row stochastic matrix R such that X = RY. In [4], the authors, obtained the structure of linear preservers and strong linear preservers of \prec_{gut} on \mathbb{R}^n and $\mathbf{M}_{n,m}$ respectively. In fact, they proved the following theorems:

Theorem 1.1. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear function. Then T preserves \prec_{gut} if and only if one of the following assertions hold: (i) $Te_1 = \cdots = Te_{n-1} = 0$. In other words

$$[T] = \begin{pmatrix} 0 & \dots & 0 & a_{1n} \\ 0 & \dots & 0 & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}.$$

(*ii*) There exist $t \in \mathbb{N}_{n-1}$ and $1 \le i_1 < \cdots < i_m \le n-1$ such that $a_{i_1t}, a_{i_2t+1}, \ldots, a_{i_mn-1} \ne 0$,

$$[T] = \begin{pmatrix} 0 & * & & & \\ & a_{i_1t} & & * & & \\ & \ddots & & & & \\ & & a_{i_2t+1} & & & \\ & & & \ddots & & \\ & & & \ddots & & \\ & 0 & & & a_{i_mn-1} & \\ & & & 0 & & * \end{pmatrix},$$

and $r_{i_k} \in \operatorname{aff}\{r_{i_k+1}, \ldots, r_n\}$ for all $k \in \mathbb{N}_m$.

471

Let \mathcal{R}_n^{gut} be the collection of all *n*-by-*n* upper triangular g-row stochastic matrices.

Theorem 1.2. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear function. Then T strongly preserves \prec_{gut} if and only if TX = AXR + EXS for some $R, S \in \mathbf{M}_m$ and invertible matrix $A \in \mathcal{R}_n^{gut}$, such that R(R+S) is invertible.

In this work, we focus on the upper triangular g-row substochastic matrices and introduce a new type of majorization.

Definition 1.3. A matrix $R \in \mathbf{M}_n$ is called *g-row substochastic* if all its row sums is less than or equal to one.

Let \mathcal{RS}_n^{gut} be the collection of all *n*-by-*n* upper triangular g-row substochastic matrices.

Definition 1.4. Let $X, Y \in \mathbf{M}_{n,m}$. We say that X is *sgut-majorized* by Y (denoted by $X \prec_{sgut} Y$) if X = RY, for some $R \in \mathcal{RS}_n^{gut}$.

This paper is organized as follows. In section 2, we state a necessary and sufficient condition for $x \prec_{sgut} y$ and some properties of sgut-majorization on \mathbb{R}^n . Then we characterize all (strong) linear preservers of sgut-majorization on \mathbb{R}^n . The last section of this paper studies some facts of this concept that are necessary for studying the strong linear preservers of \prec_{sgut} on $\mathbf{M}_{n,m}$. Also, the strong linear preservers of \prec_{sgut} on $\mathbf{M}_{n,m}$. Also,

2. Sgut-majorization on \mathbb{R}^n

In this section we state some properties of sgut-majorization on \mathbb{R}^n . Also, we characterize all (strong) linear preservers of sgut-majorization on \mathbb{R}^n . The following proposition can be easily obtained from the definition of sgut-majorization.

Proposition 2.1. Let $x = (x_1, \ldots, x_n)^t$, $y = (y_1, \ldots, y_n)^t \in \mathbb{R}^n$. Then $x \prec_{sgut} y$ if and only if $x_i \in \mathcal{A}\{y_i, \ldots, y_n\}$, for all $i \in \mathbb{N}_n$.

Now, we state some lemmas, which are necessary to prove the main results.

Lemma 2.2. Suppose that $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear preserver of \prec_{sgut} and let $S : \mathbb{R}^{n-k} \to \mathbb{R}^{n-k}$ be the linear function with $[S] = [T](1, \ldots, k)$. Then S preserves \prec_{sgut} on \mathbb{R}^{n-k} .

Proof. Consider $x' = (x_{k+1}, \ldots, x_n)^t$, $y' = (y_{k+1}, \ldots, y_n)^t \in \mathbb{R}^{n-k}$ such that $x' \prec_{sgut} y'$. Proposition 2.1 ensures that $x := (0, \ldots, 0, x_{k+1}, \ldots, x_n)^t \prec_{sgut} y := (0, \ldots, 0, y_{k+1}, \ldots, y_n)^t$, where $x, y \in \mathbb{R}^n$, and so $Tx \prec_{sgut} Ty$. This implies that $Sx' \prec_{sgut} Sy'$. Therefore, S preserves \prec_{sgut} on \mathbb{R}^{n-k} , as desired.

Lemma 2.3. If $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear preserver of \prec_{sgut} , then [T] is upper triangular.

Proof. Assume that $[T] = [a_{ij}]$. If n = 1; Then $A = [a_{11}]$ and the result is trivial. We proceed by induction on n. Suppose that $n \ge 2$ and that the assertion has been established for all linear preservers of \prec_{sgut} on \mathbb{R}^{n-1} . Let $S : \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ be the linear function with [S] = [T](1). Lemma 2.2 ensures that S preserves \prec_{sgut} on \mathbb{R}^{n-1} . According to the induction hypothesis [S]is an n - 1-by-n - 1 upper triangular matrix. So it is enough to show that $a_{21} = \cdots = a_{n1} = 0$. As $e_1 \prec_{sgut} e_2$, we observe that $Te_1 \prec_{sgut} Te_2$ and hence $(a_{11}, \ldots, a_{n1})^t \prec_{sgut} (a_{12}, a_{22}, 0, \ldots, 0)^t$. This shows that $a_{31} = \cdots = a_{n1} = 0$. So it remains to prove that $a_{21} = 0$. Assume, if possible, that $a_{21} \neq 0$. By setting $x = e_1$ and $y = (\frac{-a_{22}}{a_{21}}, 1, 0, \ldots, 0)^t$, we observe that $x \prec_{sgut} y$, and then $Tx \prec_{sgut} Ty$. This ensures that $a_{21} = 0$, which is a contradiction. Hence $a_{21} = 0$ and the proof is complete. \Box

Lemma 2.4. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear preserver of \prec_{sgut} , and let $[T] = [a_{ij}]$. If there exist some $k, t \in \mathbb{N}_{n-1}$ such that $a_{kt} \neq 0$, and $a_{k+1t} = a_{k+2t} = \cdots = a_{nt} = 0$, then for each j $(t+1 \leq j \leq n)$ there is some l $(k+1 \leq l \leq n)$ such that $a_{lj} \neq 0$.

Proof. Since T preserves \prec_{sgut} if and only if αT preserves \prec_{sgut} , for all $\alpha \in \mathbb{R} \setminus \{0\}$, we can assume without loss of generality that $a_{kt} = 1$. Suppose that there exists some j $(t + 1 \leq j \leq n)$ such that $a_{k+1j} = a_{k+2j} = \cdots = a_{nj} = 0$. Let $x = e_t$ and $y = -a_{kj}e_t + e_j$. Then $x \prec_{sgut} y$, but $Tx \not\prec_{sgut} Ty$. This contradiction shows that for each j $(t + 1 \leq j \leq n)$ $a_{lj} \neq 0$, for some l $(k + 1 \leq l \leq n)$.

In the following theorem we characterize the structure of linear functions $T: \mathbb{R}^n \to \mathbb{R}^n$ preserving sgut-majorization.

Theorem 2.5. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear function, and let $[T] = [a_{ij}]$. Then T preserves \prec_{sgut} if and only if one of the following conditions hold: (a) $Te_1 = \cdots = Te_{n-1} = 0$. In other words

$$[T] = \begin{pmatrix} 0 & \dots & 0 & a_{1n} \\ 0 & \dots & 0 & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & a_{nn} \end{pmatrix}.$$

(b) There exist $t \in \mathbb{N}_{n-1}$ and $1 \le i_1 < \cdots < i_m \le n$ such that $a_{i_1t}, a_{i_2t+1}, \ldots, a_{i_mn} \ne 0$,

and one of the following statement happens.

(i) card(h_m) ≥ 2 , where $h_m = \{r_{i_{m-1}+1}, \dots, r_n\}.$

(ii) there exists $k \in \mathbb{N}_{m-1}$ such that $\operatorname{card}(h_k) \geq 2$, $r_{i_k} = r_{i_k+1} = \cdots = r_n$, and for each $i \geq i_k$, and for each $j \in \mathbb{N}_n$, $a_{ij} \geq 0$ or $a_{ij} \leq 0$, where $h_1 = \{r_1, r_2, \ldots, r_{i_1-1}, r_n\}$, and $h_j = \{r_{i_{j-1}+1}, \ldots, r_{i_j-1}, r_n\}$ for each $j \ (2 \leq j \leq m-1)$.

(iii) $r_1 = r_2 = \cdots = r_n$, and for each $i, j \in \mathbb{N}_n$ $a_{ij} \ge 0$ or $a_{ij} \le 0$.

Proof. First, assume that (a) or (b) holds. Let $x = (x_1, \ldots, x_n)^t$, $y = (y_1, \ldots, y_n)^t \in \mathbb{R}^n$ and let $x \prec_{sgut} y$. We should prove $Tx \prec_{sgut} Ty$. If (a) holds; It is easy to see that $Tx \prec_{sgut} Ty$. If (b) holds; Then $n \ge 2$. By induction on n we prove the statement. Let n = 2; Proof, which is easy, is omitted for the sake of brevity. Assume that $n \ge 3$ and that the assertion has been established for the case n - 1. Let $x = (x_1, \ldots, x_n)^t$, $y = (y_1, \ldots, y_n)^t \in \mathbb{R}^n$ and let $x \prec_{sgut} y$. Let $S : \mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ be the linear function with [S] = [T](1). Since $x' = (x_2, \ldots, x_n)^t$, $y' = (y_2, \ldots, y_n)^t \in \mathbb{R}^{n-1}$ and $x' \prec_{sgut} y'$, by the induction hypothesis, $Sx' \prec_{sgut} Sy'$. So for proving $Tx \prec_{sgut} Ty$ it suffices to show that $(Tx)_1 \in \mathcal{A}\{(Ty)_1, \ldots, (Ty)_n\}$. If $card\{(Ty)_1, \ldots, (Ty)_n\} \ge 2$, then it holds. Otherwise, $(Ty)_1 = \ldots = (Ty)_n$.

If (i) occurs; There is some j $(i_{m-1}+1 \le j \le n-1)$ such that $a_{jn} \ne a_{nn}$. As $(Ty)_j = (Ty)_n$, so $y_n = 0$. $(Ty)_{i_1} = \ldots = (Ty)_{i_{m-1}} = (Ty)_n$ and $a_{i_1t}, \ldots, a_{i_{m-1}n-1} \ne 0$ show that $y_t = \cdots = y_n = 0$, and hence $x_t = \cdots = x_n = 0$. This means that $(Tx)_1 \in \mathcal{A}\{(Ty)_1, \ldots, (Ty)_n\}$.

As a similar fashion, the cases (ii) and (iii) can be proved.

Next, suppose that T preserves \prec_{sgut} , $[T] = [a_{ij}]$, and (a) dose not hold. We show that (b) holds. Use induction on n. For n = 2, the proof is easy. Now assume that $n \geq 3$ and the statement holds for all linear preservers of \prec_{sgut} on \mathbb{R}^{n-1} . From Lemma 2.3, we observe that [T] is upper triangular. Let $S : \mathbb{R}^{n-1}$ $\rightarrow \mathbb{R}^{n-1}$ be the linear function with [S] = [T](1). Lemma 2.2 ensures that Spreserves \prec_{sgut} on \mathbb{R}^{n-1} . Apply induction hypothesis for S. So the proof will be divided into two steps.

Step 1. If [S] satisfies (a); Lemma 2.4 ensures then that the first nonzero column of [T] should be its (n-1)st column. If $\operatorname{card}(h_m) \ge 2$, then (b) - (i) occurs. Otherwise, $r_2 = \cdots = r_n$. Without loss of generality, assume that $a_{1n-1} = 1$. We should prove $r_1 = r_n$, $a_{1n}, a_{nn} \ge 0$, and $a_{nn} \ne 0$. Lemma 2.4 ensures that $a_{nn} \ne 0$. If $r_1 \ne r_n$; Let $x_{n-1} \in \mathbb{R}$. Choose $x = x_{n-1}e_{n-1}$ and $y = (a_{nn} - a_{1n})e_{n-1} + e_n$. We observe that $x \prec_{sgut} y$, and thus $Tx \prec_{sgut} Ty$. This follows that $x_{n-1} \in \mathcal{A}\{a_{nn}\}$, a contradiction. So $r_1 = r_n$. If $a_{nn} < 0$; Since $e_n \prec_{sgut} (e_{n-1} + e_n)$, we obtain a contradiction. This contradiction implies that $a_{nn} > 0$. Since $e_{n-1} \prec_{sgut} (e_{n-1} + e_n)$, we conclude that $a_{1n} \ge 0$. Thus (iii) holds for [T].

Step 2. If [S] satisfies (b); Let the first nonzero column of [S] be the t^{th} column of [T]. We have two cases.

Case 1. The first nonzero column of [T] is its t^{th} column. We see that $i_1 > 1$. If for [S] one of the forms of (i) or (ii) happens, then there is no thing to prove. Otherwise, (iii) occurs for [S]. That is, $r_2 = \cdots = r_n$ and for each i, j $(2 \le i, j \le n)$ $a_{ij} \ge 0$ or $a_{ij} \le 0$. If $r_1 \ne r_n$, then (ii) occurs for [T]with k = 1. If not; Then $r_1 = r_n$. Without loss of generality assume that for each i, j $(2 \le i, j \le n)$ $a_{ij} \ge 0$. We should just prove $a_{1t}, \ldots, a_{1n} \ge 0$. Define $J_1 = \{j : t \le j \le n, a_{1j} \ge 0\}$ and $J_2 = \{j : t \le j \le n, a_{1j} < 0\}$. It is enough to show that $J_2 = \emptyset$. If $J_2 \ne \emptyset$, then $r_1 \ge 0$. If $J_1 = \emptyset$, we conclude that $r_1 < 0$, a contradiction. This contradiction shows that $J_1 \ne \emptyset$. Set $x = \sum_{j \in J_1} e_j$ and $y = \sum_{j=t}^n e_j$. We see that $x \prec_{sgut} y$, and then $Tx \prec_{sgut} Ty$. This shows that $\sum_{j \in J_1} a_{1j} \in \mathcal{A}\{r_1\}$. So $\sum_{j \in J_1} a_{1j} \le r_1$, and then $\sum_{j \in J_1} a_{1j} \le$ $\sum_{j \in J_1} a_{1j} + \sum_{j \in J_2} a_{1j}$. This means that $\sum_{j \in J_2} a_{1j} \ge 0$. Contradiction. So $J_2 = \emptyset$. We see that (iii) holds for [T].

With an argument almost identical to that of the above, the following theme can be proved.

Case 2. The first nonzero column of [T] is not its t^{th} column. Lemma 2.4 ensures then that the first nonzero column of [T] is its $t - 1^{th}$ column.

Lemma 2.6. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be an invertible linear preserver of \prec_{sgut} , and let $[T] = [a_{ij}]$. Then [T] is upper triangular, $\prod_{i=1}^n a_{ii} \neq 0$, $r_1 = r_2 = \cdots = r_n$, and for each $i, j \in \mathbb{N}_n$ $a_{ij} \geq 0$ or $a_{ij} \leq 0$.

Proof. By Lemma 2.3, [T] is an upper triangular matrix. Since [T] is upper triangular and invertible, we observe that $\prod_{i=1}^{n} a_{ii} \neq 0$. Theorem 2.5 ensures that $r_1 = r_2 = \cdots = r_n$ and for each $i, j \in \mathbb{N}_n$ $a_{ij} \geq 0$ or $a_{ij} \leq 0$.

Lemma 2.7. Let $T : M_{n,m} \to M_{n,m}$ be a linear function that strongly preserves squt-majorization. Then T is invertible.

Proof. Suppose that T(A) = 0, where $A \in \mathbf{M}_{n,m}$. Notice that since T is linear, we have T(0) = 0 = T(A). Then it is obvious that $T(A) \prec_{squt} T(0)$. Therefore,

 $A \prec_{sgut} 0$, because T strongly preserves sgut-majorization. Then A = R0, for some $R \in \mathcal{RS}_n^{gut}$. So A = 0, and hence T is invertible.

Theorem 2.8. Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear function. Then T strongly preserves \prec_{squt} if and only if $[T] = \alpha I_n$ for some $\alpha \in \mathbb{R} \setminus \{0\}$.

Proof. As the sufficiency part is clear, we prove the necessity part. Suppose that T strongly preserves \prec_{squt} and $[T] = [a_{ij}]$. Lemma 2.7 ensures that T is invertible. From Lemma 2.6, we have [T] is an upper triangular matrix, $\prod_{i=1}^{n} a_{ii} \neq 0, r_1 = \cdots = r_n$, and for each $i, j \in \mathbb{N}_n$ $a_{ij} \geq 0$ or $a_{ij} \leq 0$. We prove the statement by induction. The result is trivial for n = 1. Assume that our claim has been proved for all strong linear preservers of \prec_{squt} on \mathbb{R}^{n-1} . Let S: $\mathbb{R}^{n-1} \to \mathbb{R}^{n-1}$ be the linear function with [S] = [T](1). Conclude from Lemma 2.2 that S preserves \prec_{sgut} on \mathbb{R}^{n-1} . We claim that S strongly preserves \prec_{sgut} on \mathbb{R}^{n-1} . Let $x' = (x_2, \dots, x_n)^t$, $y' = (y_2, \dots, y_n)^t \in \mathbb{R}^{n-1}$, and let $Sx' \prec_{sgut} Sy'$. Set $x = (0, x')^t$, $y = (0, y')^t \in \mathbb{R}^n$. Observe that $Tx = (\sum_{i=2}^n a_{1i}x_i, Sx')^t$ and $Ty = (\sum_{i=2}^{n} a_{1i}y_i, Sy')^t$. For proving $Tx \prec_{sgut} Ty$ it suffices to show that $(Tx)_1 \in \mathcal{A}\{(Ty)_1, \ldots, (Ty)_n\}$. If $card\{(Ty)_1, \ldots, (Ty)_n\} \ge 2$, then $(Tx)_1 \in \mathcal{A}\{(Ty)_1, \ldots, (Ty)_n\}$ $\mathcal{A}\{(Ty)_1,\ldots,(Ty)_n\}$. Otherwise, $(Ty)_2 = \cdots = (Ty)_n$. Then $y_2 = \cdots = y_n$, because $\prod_{i=2}^{n} a_{ii} \neq 0$ and $r_2 = \cdots = r_n$. Since $(Ty)_1 = (Ty)_n$, if $y_n \neq 0$ occurs, then $a_{11} = 0$, which is a contradiction. So $y_2 = \cdots = y_n = 0$, and then $x_2 = \cdots = x_n = 0$. Thus $(Tx)_1 \in \mathcal{A}\{(Ty)_1, \ldots, (Ty)_n\}$. It is obvious that $Tx \prec_{squt} Ty$, and then, since T strongly preserves \prec_{squt} on \mathbb{R}^n , $x \prec_{squt} y$. This implies that $x' \prec_{sgut} y'$. Therefore, S strongly preserves \prec_{sgut} on \mathbb{R}^{n-1} . The induction hypothesis ensures that there exists some $\alpha \in \mathbb{R} \setminus \{0\}$ such that $[S] = \alpha I_{n-1}$. If we prove that $a_{12} = \cdots = a_{1n} = 0$, since $r_1 = \cdots = r_n$, we deduce that $[T] = \alpha I_n$. By a simple calculation, one may show that

	$\left(\frac{1}{a_{11}}\right)$	$\frac{-a_{12}}{a_{11}\alpha}$	$\frac{-a_{13}}{a_{11}\alpha}$	•••	0	0	$\left(\frac{-a_{1n}}{a_{11}\alpha}\right)$
$[T^{-1}] =$	0	$\frac{1}{\alpha}$	0		0	0	0
	0	0	$\frac{1}{\alpha}$		0	0	0
	:	:	÷		÷	:	:
	0	0	0		0	$\frac{1}{\alpha}$	0
	0	0	0		0	0	$\frac{1}{\alpha}$

Since T strongly preserves \prec_{sgut} , the operator T^{-1} is a linear preserver of \prec_{sgut} , and hence, from Theorem 2.5, all entries of $[T^{-1}]$ have the same sign. As all entries of [T] have the same sign too, it follows that $a_{12} = \cdots = a_{1n} = 0$. \Box

3. Sgut-majorization on $M_{n,m}$

In this section we discuss some properties of sgut-majorization on $\mathbf{M}_{n,m}$, and we find the structure of strong linear preservers of \prec_{squt} on $\mathbf{M}_{n,m}$. First, we state some lemmas.

Lemma 3.1. The following statements about a given matrix $A \in M_n$ are equivalent.

- (a) For all $D \in \mathcal{RS}_n^{gut}$, AD = DA.
- (b) For some $\alpha \in \mathbb{R}$, $A = \alpha I$. (c) For all $D \in \mathcal{RS}_n^{gut}$ and all $x, y \in \mathbb{R}^n$, $(Dx + ADy) \prec_{sgut} (x + Ay)$.

Proof. To verify that (a) implies (b), suppose that $D := diag(1, \frac{1}{2}, \ldots, \frac{1}{n})$. Since $D \in \mathcal{RS}_n^{gut}$, observe that $a_{ij} = 0$ for each $i, j \in \mathbb{N}_n$, $i \neq j$. Also, for $D = E \in \mathcal{RS}_n^{gut}$, this follows that $a_{11} = \cdots = a_{nn}$. Thus (b) holds. Clearly, (b) implies (c). For each $y \in \mathbb{R}^n$, let x = -Ay. Put x, y in the relation (c). It is easy to see that DAy = ADy. Then AD = DA, and so (c) implies (a).

Remark 3.2. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear function. For every $i, j \in \mathbb{N}_m$, consider the embedding $E^j : \mathbb{R}^n \to \mathbf{M}_{n,m}$ and the projection $E_i : \mathbf{M}_{n,m} \to \mathbb{R}^n$ which are defined by $E^{j}(x) = xe_{j}^{t}$ and $E_{i}(A) = Ae_{i}$ respectively. Put $T_{i}^{j} =$ $E_i T E^j$, for all $i, j \in \mathbb{N}_m$. Then $TX = T[x_1 \mid \ldots \mid x_m] = [\sum_{j=1}^m T_1^j x_j \mid \ldots \mid x_m]$ $\sum_{j=1}^{m} T_m^j x_j$]. Moreover, if T preserves \prec_{sgut} , then T_i^j preserves \prec_{sgut} for all $i, j \in \mathbb{N}_m$ too.

Lemma 3.3. Let $T : M_{n,m} \to M_{n,m}$ preserve \prec_{sgut} . If for any $i \in \mathbb{N}_m$ there exists $k \in \mathbb{N}_m$ such that T_i^k is invertible, then $\sum_{j=1}^m A_i^j x_j = A_i^k \sum_{j=1}^m \alpha_i^j x_j$, for some $\alpha_i^j \in \mathbb{R}$, where $A_i^j = [T_i^j]$.

Proof. We may assume without loss of generality that i, k = 1 and j = 2. We prove that there exists $\alpha_1^2 \in \mathbb{R}$ such that $A_1^2 = \alpha_1^2 A_1^1$. Let $D \in \mathcal{RS}_n^{gut}$ and $x, y \in \mathbb{R}^n$. So $D[x|y|0| \dots |0] \prec_{sgut} [x|y|0| \dots |0]$. This implies that $T[Dx|Dy|0|\dots|0] \prec_{sgut} T[x|y|0|\dots|0]$, and then $[A_1^1Dx + A_1^2Dy \mid * \mid *] \prec_{sgut}$ $[A_1^1x + A_1^2y | * | *]$. This ensures that $A_1^1Dx + A_1^2Dy \prec_{sgut} A_1^1x + A_1^2y$, and Lemma 3.1 ensures then that there exists $\alpha_1^2 \in \mathbb{R}$ such that $A_1^2 = \alpha_1^2 A_1^1$.

Lemma 3.4. Suppose that $T: M_{n,m} \to M_{n,m}$ is a strong linear preserver of \prec_{squt} . Then for each $i \in \mathbb{N}_m$ there exists $j \in \mathbb{N}_m$ such that T_i^j is invertible.

Proof. Define $I = \{i \in \mathbb{N}_m \mid T_i^j e_1 = 0, \forall j \in \mathbb{N}_m\}$. We prove that I is empty. We may assume that I is not empty. Assume without loss of generality that I = $\{1, 2, ..., k\}$, where $k \in \mathbb{N}_m$. If k = m, we choose $X = [e_1 \mid 0 \mid ... \mid 0] \in \mathbf{M}_{n,m}$. We see that $X \neq 0$, but TX = 0. It follows that T is not invertible, while T strongly preserves \prec_{saut} . This contradiction determines k < m. Lemma 3.3 ensures for each i $(k+1 \le i \le m)$ and $j \in \mathbb{N}_m$, there exist invertible matrices A_i and $\alpha_i^j \in \mathbb{R}$ such that $\sum_{j=1}^m A_i^j x_j = A_i \sum_{j=1}^m \alpha_i^j x_j$. So there exist $\gamma_1, \ldots, \gamma_m \in \mathbb{R}$, not all zero, such that $\gamma_1(\alpha_{k+1}^1, \ldots, \alpha_m^1)^t + \cdots + \gamma_m(\alpha_{k+1}^m, \ldots, \alpha_m^m)^t = 0$. Define $x_j = \gamma_j e_1$ for each $j \in \mathbb{N}_m$, and let $X = [x_1 \mid \ldots \mid x_m] \in \mathbf{M}_{n,m}$. It is obvious that $X \neq 0$ and TX = 0, which would be a contradiction. We conclude that for each $i \in \mathbb{N}_m$, there exists $j \in \mathbb{N}_m$ such that $T_i^j e_1 \neq 0$, and hence T_i^j is invertible. \Box

Theorem 3.5. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ strongly preserve \prec_{sgut} . Then TX = AXR for some invertible matrices $R \in \mathbf{M}_m$ and $A \in \mathcal{R}_n^{gut}$.

Proof. Theorem 2.8 ensures that the case m = 1. So assume that m > 1. Lemma 3.4 ensures then that, since T is invertible, for each $i \in \mathbb{N}_m$ there exists $j \in \mathbb{N}_m$ such that T_i^j is invertible. Now, by Lemma 3.3, there exist invertible matrices $A_1, \ldots, A_m \in \mathbb{M}_n$ and vectors $a_1, \ldots, a_m \in \mathbb{R}^m$ such that $TX = [A_1Xa_1 | \ldots | A_mXa_m]$.

We claim that dim(span{ a_1, \ldots, a_m }) ≥ 2 . If not; then $\{a_1, \ldots, a_m\} \subseteq$ span{a}, for some $a \in \mathbb{R}^m$. Since m > 1, we can choose $0 \neq b \in (\text{span}\{a\})^{\perp}$. Define $X \in \mathbf{M}_{n,m}$ such that the first row is b^t and the other rows are zero. We see that $X \neq 0$ and TX = 0, which would be a contradiction, because of Lemma 2.7. Thus rank $\{a_1, \ldots, a_m\} \geq 2$.

Without loss of generality, assume that $\{a_1, a_2\}$ is a linearly independent set. Let $X \in \mathbf{M}_{n,m}$ and $D \in \mathcal{RS}_n^{gut}$. So $DX \prec_{sgut} X$, and hence $TDX \prec_{sgut} TX$. Thus $[A_1DXa_1 \mid \ldots \mid A_mDXa_m] \prec_{sgut} [A_1Xa_1 \mid \ldots \mid A_mXa_m]$, and so $A_1DXa_1 + A_2DXa_2 \prec_{sgut} A_1Xa_1 + A_2Xa_2$, and then

 $DXa_1 + A_1^{-1}A_2DXa_2 \prec_{sgut} Xa_1 + A_1^{-1}A_2Xa_2$, for all $X \in \mathbf{M}_{n,m}, D \in \mathcal{RS}_n^{gut}$. (1)

Since $\{a_1, a_2\}$ is linearly independent, for every $x, y \in \mathbb{R}^n$, there exists $B_{x,y} \in \mathbb{M}_{n,m}$ such that $B_{x,y}a_1 = x$ and $B_{x,y}a_2 = y$. Set $X = B_{x,y}$ in (1). So we have $Dx + A_1^{-1}A_2Dy \prec_{sgut} x + A_1^{-1}A_2y$, for all $D \in \mathcal{RS}_n^{gut}, x, y \in \mathbb{R}^n$. Lemma 3.1 ensures that $A_1^{-1}A_2 = \alpha I$, for some $\alpha \in \mathbb{R}$, and hence $A_2 = \alpha A_1$. For every $i \geq 3$ if $a_i = 0$, choose $A_i = A_1$, and if $a_i \neq 0$, then $\{a_1, a_i\}$ or $\{a_2, a_i\}$ is linearly independent. Then, in a similar fashion, one shows that $A_i = \gamma_i A_1$, for some $\gamma_i \in \mathbb{R}$, or $A_i = \lambda_i A_2$, for some $\lambda_i \in \mathbb{R}$. Consider $A = A_1$. So for every $i \geq 2$, $A_i = r_i A$, for some $r_i \in \mathbb{R}$ and hence $TX = [AXa_1 \mid AX(r_2a_2) \mid \ldots \mid AX(r_ma_m)] = AXR$, where $R = [a_1 \mid r_2a_2 \mid r_ma_m]$. As T and A are invertible, we conclude that R is invertible too. Since A is the matrix representation of an invertible linear preserver of \prec_{sgut} , then there is some nonzero multiple of it belongs to \mathcal{R}_n^{gut} .

Lemma 3.6. Suppose that $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ satisfies TX = AXR for some invertible matrices $R \in \mathbf{M}_m$ and $A \in \mathcal{R}_n^{gut}$. Let $A = [a_{ij}]$. If T strongly preserves \prec_{squt} , then $a_{11} = 1$ and $a_{12} = a_{13} = \cdots = a_{1n} = 0$.

Proof. Without loss of generality assume that $R = I_m$. First, we prove that $a_{11} = 1$. Clearly, $a_{11} \neq 0$. The proof is first divided into two steps.

Step 1. If $a_{11} < 0$ or $1 < a_{11}$. If $a_{11} < 0$, choose α such that $\alpha < \frac{1}{a_{11}}$, and if $1 < a_{11}$, select α such that $\frac{1}{a_{11}} < \alpha \leq 1$. Define $X \in \mathbf{M}_{n,m}$ such that its first row is $(\alpha \ \alpha \dots \alpha)$ and all its other rows are zero, $Y = J_{n,m}$, and $R \in \mathbf{M}_n$ such that its first row is $(\alpha \ 0 \dots 0)$ and all its other rows are zero. We observe that X = RY. As $R \in \mathcal{R}_n^{gut}$, then $X \prec_{sgut} Y$. If $TX \prec_{sgut} TY$, then there exists some $H \in \mathcal{RS}_n^{gut}$ such that TX = HTY. This follows that $\alpha a_{11} \leq 1$, which is a contradiction. So $TX \not\prec_{sgut} TY$. Thus T does not strongly preserve \prec_{sgut} . Step 2. If $0 < a_{11} < 1$. Set $X \in \mathbf{M}_{n,m}$ such that its first row is $(\frac{1}{a_{11}} \ \frac{1}{a_{11}} \dots \ \frac{1}{a_{11}})$ and all its other rows are zero, and $Y = J_{n,m}$. We see that TX = RTY, where $R \in \mathbf{M}_n$ is the matrix that its first row is $(a_{11} \ 0 \dots 0)$ and all its other rows are zero. Hence $TX \prec_{sgut} TY$. But if $X \prec_{sgut} Y$, then there exists some $H \in \mathcal{RS}_n^{gut}$ such that X = HY. This shows that $\frac{1}{a_{11}} \leq 1$, which would be a contradiction. So $X \not\prec_{sgut} Y$, and thus T does not strongly preserve \prec_{sgut} . Therefore, $a_{11} = 1$.

Now, we claim that $a_{12} = a_{13} = \cdots = a_{1n} = 0$. Assume, if possible, that $a_{1j} \neq 0$, for some $2 \leq j \leq n$. Choose x_1 such that $0 \leq 1 - x_1 < a_{1j}$ if $a_{1j} > 0$, and $0 \leq 1 - x_1$ if $a_{1j} < 0$. Select x_j such that $\frac{1-x_1}{a_{1j}} < x_j < 1$ if $a_{1j} > 0$, and $x_j < \frac{1-x_1}{a_{1j}}$ if $a_{1j} < 0$. Define $X \in \mathbf{M}_{n,m}$ such that its first row is $(x_1 \dots x_1)$, its j^{th} row is $(x_j \dots x_j)$, and all its other rows are zero, $Y = J_{n,m}$, and $R \in \mathbf{M}_n$ such that its first row is $(x_1 \ 0 \dots 0)$, its j^{th} row is $(0 \dots 0 \ x_j \ 0 \dots 0)$ where x_j is j^{th} entry, and all its other rows are zero. We have X = RY. As $R \in \mathcal{RS}_n^{gut}$, we deduce that $X \prec_{sgut} Y$. If $TX \prec_{sgut} TY$, then there exists some $H \in \mathcal{RS}_n^{gut}$ such that TX = HTY. This implies that $x_1 + a_{1j}x_j \leq 1$, which is a contradiction. Therefore, $a_{12} = a_{13} = \cdots = a_{1n} = 0$.

Lemma 3.7. Let $T : M_{n,m} \to M_{n,m}$ satisfy TX = AXR for some invertible matrices $R \in M_m$ and $A \in \mathcal{R}_n^{gut}$. Suppose that T strongly preserves \prec_{sgut} . If $S : M_{n-1,m} \to M_{n-1,m}$ satisfies SX = A(1)XR, then S is a strong linear preserver of \prec_{sgut} on $M_{n-1,m}$.

Proof. It can be assumed without loss of generality that $R = I_m$. Lemma 3.6 ensure that $A = \begin{pmatrix} 1 & 0 \\ 0 & A(1) \end{pmatrix}$. Let $X', Y' \in \mathbf{M}_{n-1,m}$ such that $X' \prec_{sgut} Y'$. Then there is some $R' \in \mathcal{RS}_{n-1}^{gut}$ such that X' = R'Y'. Set $X = \begin{pmatrix} 0 \\ X' \end{pmatrix} \in \mathbf{M}_{n,m}$ and $Y = \begin{pmatrix} 0 \\ Y' \end{pmatrix} \in \mathbf{M}_{n,m}$. We see that X = RY, where $R = \begin{pmatrix} 0 & 0 \\ 0 & R' \end{pmatrix} \in \mathcal{RS}_n^{gut}$, and then $X \prec_{sgut} Y$. Since T preserves \prec_{sgut} on $\mathbf{M}_{n,m}$, we conclude that $TX \prec_{sgut} TY$. Hence there exists some $H \in \mathcal{RS}_n^{gut}$ such that TX = HTY. Partition $H = \begin{pmatrix} H_1 & H_2 \\ 0 & H_3 \end{pmatrix}$, where $H_3 \in \mathbf{M}_{n-1}$. This implies that A(1)X' = $H_3A(1)Y'$. That is, $SX' = H_3SY'$. As $H_3 \in \mathcal{RS}_{n-1}^{gut}$, we have $SX' \prec_{sgut} SY'$. Now, suppose that $X', Y' \in \mathbf{M}_{n-1,m}$ such that $SX' \prec_{sgut} SY'$. So there is some $R' \in \mathcal{RS}_{n-1}^{gut}$ such that SX' = R'SY'. Define $X = \begin{pmatrix} 0 \\ X' \end{pmatrix} \in \mathbf{M}_{n,m}$ and $Y = \begin{pmatrix} 0 \\ Y' \end{pmatrix} \in \mathbf{M}_{n,m}$. Set $R = \begin{pmatrix} 0 & 0 \\ 0 & R' \end{pmatrix}$. We have $R \in \mathcal{RS}_n^{gut}$ and TX = RTY. Thus $TX \prec_{sgut} TY$, and so $X \prec_{sgut} Y$. Then there exists some $H \in \mathcal{RS}_n^{gut}$ such that X = HY. Partition $H = \begin{pmatrix} H_1 & H_2 \\ 0 & H_3 \end{pmatrix}$, where $H_3 \in \mathbf{M}_{n-1}$. This concludes that $X' = H_3Y'$, and then $X' \prec_{sgut} Y'$. Therefore, S strongly preserves \prec_{sgut} .

In the next theorem the structure of linear functions $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ strongly preserving sgut-majorization will be characterized.

Theorem 3.8. Let $T : \mathbf{M}_{n,m} \to \mathbf{M}_{n,m}$ be a linear function. Then T strongly preserves \prec_{squt} if and only if TX = XR for some invertible matrix $R \in \mathbf{M}_m$.

Proof. As the sufficiency of the condition is easy to see, we just prove the necessity of the condition. Assume that *T* strongly preserves \prec_{sgut} . Theorem **3.5** ensures that TX = AXR for some invertible matrices $R \in \mathbf{M}_m$ and $A \in \mathcal{R}_n^{gut}$. Let $A = [a_{ij}]$. From Lemma **3.6**, we see that $a_{11} = 1$ and $a_{12} = a_{13} = \dots = a_{1n} = 0$. Now, we claim that $A = I_n$. We proceed by induction on *n*. There is nothing to prove for n = 1. Suppose that $n \ge 2$ and the assertion has been established for all strong linear preservers of \prec_{sgut} on $\mathbf{M}_{n-1,m}$. Lemma **3.6** ensures that $A = \begin{pmatrix} 1 & 0 \\ 0 & A(1) \end{pmatrix}$. Let $S : \mathbf{M}_{n-1,m} \to \mathbf{M}_{n-1,m}$ be the linear function by SX = A(1)XR. Lemma **3.7** implies that S strongly preserves \prec_{sgut} . Since $A(1) \in \mathcal{R}_{n-1}^{gut}$ is an invertible matrix, the induction hypothesis insures that $A(1) = I_{n-1}$. Therefore, $A = I_n$. □

References

- T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, *Linear Algebra Appl.* 118 (1989) 163–248.
- [2] A. Armandnejad, Right gw-majorization on $\mathbf{M}_{n,m}$, Bull. Iranian math. Soc. **35** (2009), no. 2, 69–76.
- [3] A. Armandnejad and H. Heydari, Linear preserving gd-majorization functions from $\mathbf{M}_{n,m}$ to $\mathbf{M}_{n,k}$, Bull. Iranian math. Soc. **37** (2011), no. 1, 215–224.
- [4] A. Armandnejad and A. Ilkhanizadeh Manesh, Gut-majorization and its linear preservers, *Electron. J. Linear Algebra* 23 (2012) 646–654.
- [5] A. Armandnejad and A. Salemi, On linear preservers of lgw-majorization on M_{n,m}, Bull. Malays. Math. Soc. (2) 35 (2012), no. 3, 755–764.
- [6] A. Armandnejad and A. Salemi, The structure of linear preservers of gs- majorization, Bull. Iranian Math. Soc. 32 (2006), no. 2, 31–42.
- [7] H. Chiang and C. K. Li, Generalized doubly stochastic matrices and linear preservers, Linear Multilinear Algebra 53 (2005), no. 1, 1–11.

- [8] A. M. Hasani and M. Radjabalipour, On linear preservers of (right) matrix majorization, *Linear Algebra Appl.* 423 (2007), no. 2-3, 255–261.
- [9] A. M. Hasani and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, *Electron. J. Linear Algebra* 15 (2006) 260–268.
- [10] A. Ilkhanizadeh Manesh, Linear functions preserving sut-majorization on \mathbb{R}^n , Iran. J. Math. Sci. Inform., (submission).
- [11] A. Ilkhanizadeh Manesh, Right gut-majorization on $\mathbf{M}_{n,m}$, Electron. J. Linear Algebra, Accepted.
- [12] A. Ilkhanizadeh Manesh and A. Armandnejad, Ut-majorization on Rⁿ and its Linear Preservers, Operator theory, operator algebras and applications, 253–259, Oper. Theory Adv. Appl., 242, Birkhäuser-Springer, Basel, 2014.
- [13] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of majorization and its applications, Springer, New York, 2011.
- [14] B. Y. Wang, Foundations of Majorization Inequalities, Beijing Normal Univ. Press, Beijing, 1990.

(Asma Ilkhanizadeh Manesh) DEPARTMENT OF MATHEMATICS, VALI-E-ASR UNIVERSITY OF RAFSANJAN, P.O. BOX 7713936417, RAFSANJAN, IRAN.

E-mail address: a.ilkhani@vru.ac.ir, ailkhanizade@gmail.com

481