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Abstract. Let Mn,m be the set of n-by-m matrices with entries in the
field of real numbers. A matrix R in Mn = Mn,n is a generalized row
substochastic matrix (g-row substochastic, for short) if Re ≤ e, where

e = (1, 1, . . . , 1)t. For X, Y ∈ Mn,m, X is said to be sgut-majorized
by Y (denoted by X ≺sgut Y ) if there exists an n-by-n upper triangular
g-row substochastic matrix R such that X = RY . This paper character-
izes all linear preservers and strong linear preservers of ≺sgut on Rn and

Mn,m respectively.
Keywords: Linear preserver, strong linear preserver, g-row substochas-
tic matrices, sgut-majorization.
MSC(2010): Primary: 15A03, 15A04; Secondary: 15A51.

1. Introduction

Vector majorization is a much studied concept in linear algebra and its ap-
plications. The reader can find that majorization has been connected with
combinatorics, analytic inequalities, numerical analysis, matrix theory, prob-
ability and statistics in a book written by Marshall, Olkin, and Arnold [13].
Several generalization of this concept have also been introduced. For more in-
formation we refer the reder to [2–12] . The purpose of this paper is introducing
and studying a new type of generalized majorization. For more information on
the type of majorization and linear preservers of majorization see [1] and [14].

Let V be a linear space of matrices, T be a linear function on V, and R be
a relation on V. The linear function T is said to preserve R, if R(T X , T Y)
whenever R(X ,Y). Also, T is said to strongly preserve R, if

R(T X , T Y) ⇔ R(X ,Y).
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Throughout this paper, let Mn,m be the set of all n-by-m real matrices,
Rn be the set of all n-by-1 real column vectors, {e1, . . . , en} be the standard
basis of Rn, A(n1, . . . , nl|m1, . . . ,mk) be the submatrix of A obtained from
A by deleting rows n1, . . . , nl and columns m1, . . . ,mk, A(n1, . . . , nl) be the
abbreviation of A(n1, . . . , nl|n1, . . . , nl), Nk be the set {1, . . . , k} ⊂ N, Jn,m
be the n × m matrix with all of the entries equal to one, E be the n-by-n
matrix with all of the entries of the last column equal to one and the other
entries equal to zero, At be the transpose of a given matrix A ∈ Mn,m, card(S)
be the cardinal number of a set S, where S is a finite set, [T ] be the matrix
representation of a linear function T : Rn → Rn with respect to the standard
basis, diag(a1, . . . , an) be the matrix A = [aij ] ∈ Mn such that aii = ai for
each i = 1, . . . , n and aij = 0 if i ̸= j, ri be the sum of entries on the ith row of
[T ], and A(S) be the set {

∑m
i=1 λiai | m ∈ N,

∑m
i=1 λi ≤ 1, ai ∈ S, ∀i ∈ Nm},

where S ⊆ Rn, aff(S) be the set
{
∑m

i=1 λiai | m ∈ N,
∑m

i=1 λi = 1, ai ∈ S, λi ∈ R, ∀i ∈ Nm}, where S ⊆ Rn.
A real matrix R is called g-row stochastic provided that each its row sums is

equal to one. For X, Y ∈ Mn,m, X is said to be gut-majorized by Y , and write
X ≺gut Y , if there exists an n-by-n upper triangular g-row stochastic matrix
R such that X = RY . In [4], the authors, obtained the structure of linear
preservers and strong linear preservers of ≺gut on Rn and Mn,m respectively.
In fact, they proved the following theorems:

Theorem 1.1. Let T : Rn → Rn be a linear function. Then T preserves ≺gut

if and only if one of the following assertions hold:
(i) Te1 = · · · = Ten−1 = 0. In other words

[T ] =


0 . . . 0 a1n

0 . . . 0 a2n

...
...

...
...

0 . . . 0 ann

 .

(ii) There exist t ∈ Nn−1 and 1 ≤ i1 < · · · < im ≤ n − 1 such that
ai1t, ai2t+1, . . . , aimn−1 ̸= 0,

[T ] =



0 ∗
ai1t ∗
. . .

ai2t+1

. . .

0 aimn−1

0 ∗


,

and rik ∈ aff{rik+1, . . . , rn} for all k ∈ Nm.
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Let Rgut
n be the collection of all n-by-n upper triangular g-row stochastic

matrices.

Theorem 1.2. Let T : Mn,m → Mn,m be a linear function. Then T strongly
preserves ≺gut if and only if TX = AXR + EXS for some R,S ∈ Mm and
invertible matrix A ∈ Rgut

n , such that R(R+ S) is invertible.

In this work, we focus on the upper triangular g-row substochastic matrices
and introduce a new type of majorization.

Definition 1.3. A matrix R ∈ Mn is called g-row substochastic if all its row
sums is less than or equal to one.

Let RSgut
n be the collection of all n-by-n upper triangular g-row substochas-

tic matrices.

Definition 1.4. Let X,Y ∈ Mn,m. We say that X is sgut-majorized by Y

(denoted by X ≺sgut Y ) if X = RY , for some R ∈ RSgut
n .

This paper is organized as follows. In section 2, we state a necessary and
sufficient condition for x ≺sgut y and some properties of sgut-majorization on
Rn. Then we characterize all (strong) linear preservers of sgut-majorization on
Rn. The last section of this paper studies some facts of this concept that are
necessary for studying the strong linear preservers of ≺sgut on Mn,m. Also,
the strong linear preservers of ≺sgut on Mn,m are obtained.

2. Sgut-majorization on Rn

In this section we state some properties of sgut-majorization on Rn. Also,
we characterize all (strong) linear preservers of sgut-majorization on Rn.
The following proposition can be easily obtained from the definition of sgut-
majorization.

Proposition 2.1. Let x = (x1, . . . , xn)
t, y = (y1, . . . , yn)

t ∈ Rn. Then x ≺sgut

y if and only if xi ∈ A{yi, . . . , yn}, for all i ∈ Nn.

Now, we state some lemmas, which are necessary to prove the main results.

Lemma 2.2. Suppose that T : Rn → Rn is a linear preserver of ≺sgut and
let S : Rn−k → Rn−k be the linear function with [S] = [T ](1, . . . , k). Then S
preserves ≺sgut on Rn−k.

Proof. Consider x′ = (xk+1, . . . , xn)
t, y′ = (yk+1, . . . , yn)

t ∈ Rn−k such that
x′ ≺sgut y′. Proposition 2.1 ensures that x := (0, . . . , 0, xk+1, . . . , xn)

t ≺sgut

y := (0, . . . , 0, yk+1, . . . , yn)
t, where x, y ∈ Rn, and so Tx ≺sgut Ty. This

implies that Sx′ ≺sgut Sy
′. Therefore, S preserves ≺sgut on Rn−k, as desired.

□
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Lemma 2.3. If T : Rn → Rn is a linear preserver of ≺sgut, then [T ] is upper
triangular.

Proof. Assume that [T ] = [aij ]. If n = 1; Then A = [a11] and the result is
trivial. We proceed by induction on n. Suppose that n ≥ 2 and that the
assertion has been established for all linear preservers of ≺sgut on Rn−1. Let
S : Rn−1 → Rn−1 be the linear function with [S] = [T ](1). Lemma 2.2 ensures
that S preserves ≺sgut on Rn−1. According to the induction hypothesis [S]
is an n − 1-by-n − 1 upper triangular matrix. So it is enough to show that
a21 = · · · = an1 = 0. As e1 ≺sgut e2, we observe that Te1 ≺sgut Te2 and hence
(a11, . . . , an1)

t ≺sgut (a12, a22, 0, . . . , 0)
t. This shows that a31 = · · · = an1 = 0.

So it remains to prove that a21 = 0. Assume, if possible, that a21 ̸= 0. By
setting x = e1 and y = (−a22

a21
, 1, 0, . . . , 0)t, we observe that x ≺sgut y, and

then Tx ≺sgut Ty. This ensures that a21 = 0, which is a contradiction. Hence
a21 = 0 and the proof is complete. □

Lemma 2.4. Let T : Rn → Rn be a linear preserver of ≺sgut, and let [T ] =
[aij ]. If there exist some k, t ∈ Nn−1 such that akt ̸= 0, and ak+1t = ak+2t =
· · · = ant = 0, then for each j (t+ 1 ≤ j ≤ n) there is some l (k + 1 ≤ l ≤ n)
such that alj ̸= 0.

Proof. Since T preserves ≺sgut if and only if αT preserves ≺sgut, for all α ∈
R \ {0}, we can assume without loss of generality that akt = 1. Suppose that
there exists some j (t + 1 ≤ j ≤ n) such that ak+1j = ak+2j = · · · = anj = 0.
Let x = et and y = −akjet + ej . Then x ≺sgut y, but Tx ̸≺sgut Ty. This
contradiction shows that for each j (t + 1 ≤ j ≤ n) alj ̸= 0, for some l
(k + 1 ≤ l ≤ n). □

In the following theorem we characterize the structure of linear functions
T : Rn → Rn preserving sgut-majorization.

Theorem 2.5. Let T : Rn → Rn be a linear function, and let [T ] = [aij ].
Then T preserves ≺sgut if and only if one of the following conditions hold:
(a) Te1 = · · · = Ten−1 = 0. In other words

[T ] =


0 . . . 0 a1n
0 . . . 0 a2n
...

...
...

...
0 . . . 0 ann

 .
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(b) There exist t ∈ Nn−1 and 1 ≤ i1 < · · · < im ≤ n such that
ai1t, ai2t+1, . . . , aimn ̸= 0,

[T ] =



0 ∗
ai1t ∗
. . .

ai2t+1

. . .

0 aim−1n−1

. . .

aimn

∗


,

and one of the following statement happens.
(i) card(hm) ≥ 2, where hm = {rim−1+1, . . . , rn}.
(ii) there exists k ∈ Nm−1 such that card(hk) ≥ 2, rik = rik+1 = · · · = rn,
and for each i ≥ ik, and for each j ∈ Nn, aij ≥ 0 or aij ≤ 0, where h1 =
{r1, r2, . . . , ri1−1, rn}, and hj = {rij−1+1, . . . , rij−1, rn} for each j (2 ≤ j ≤
m− 1).
(iii) r1 = r2 = · · · = rn, and for each i, j ∈ Nn aij ≥ 0 or aij ≤ 0.

Proof. First, assume that (a) or (b) holds. Let x = (x1, . . . , xn)
t, y = (y1, . . . , yn)

t

∈ Rn and let x ≺sgut y. We should prove Tx ≺sgut Ty. If (a) holds; It is easy
to see that Tx ≺sgut Ty. If (b) holds; Then n ≥ 2. By induction on n we
prove the statement. Let n = 2; Proof, which is easy, is omitted for the sake
of brevity. Assume that n ≥ 3 and that the assertion has been established
for the case n − 1. Let x = (x1, . . . , xn)

t, y = (y1, . . . , yn)
t ∈ Rn and let

x ≺sgut y. Let S : Rn−1 → Rn−1 be the linear function with [S] = [T ](1).
Since x′ = (x2, . . . , xn)

t, y′ = (y2, . . . , yn)
t ∈ Rn−1 and x′ ≺sgut y′, by the

induction hypothesis, Sx′ ≺sgut Sy
′. So for proving Tx ≺sgut Ty it suffices to

show that (Tx)1 ∈ A{(Ty)1, . . . , (Ty)n}. If card{(Ty)1, . . . , (Ty)n} ≥ 2, then
it holds. Otherwise, (Ty)1 = . . . = (Ty)n.
If (i) occurs; There is some j (im−1 + 1 ≤ j ≤ n − 1) such that ajn ̸= ann.
As (Ty)j = (Ty)n, so yn = 0. (Ty)i1 = . . . = (Ty)im−1 = (Ty)n and
ai1t, . . . , aim−1n−1 ̸= 0 show that yt = · · · = yn = 0, and hence xt = · · · =
xn = 0. This means that (Tx)1 ∈ A{(Ty)1, . . . , (Ty)n}.
As a similar fashion, the cases (ii) and (iii) can be proved.

Next, suppose that T preserves ≺sgut, [T ] = [aij ], and (a) dose not hold.
We show that (b) holds. Use induction on n. For n = 2, the proof is easy. Now
assume that n ≥ 3 and the statement holds for all linear preservers of ≺sgut on
Rn−1. From Lemma 2.3, we observe that [T ] is upper triangular. Let S : Rn−1

→ Rn−1 be the linear function with [S] = [T ](1). Lemma 2.2 ensures that S
preserves ≺sgut on Rn−1. Apply induction hypothesis for S. So the proof will
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be divided into two steps.
Step 1. If [S] satisfies (a); Lemma 2.4 ensures then that the first nonzero
column of [T ] should be its (n − 1)st column. If card(hm) ≥ 2, then (b) − (i)
occurs. Otherwise, r2 = · · · = rn. Without loss of generality, assume that
a1n−1 = 1. We should prove r1 = rn, a1n, ann ≥ 0, and ann ̸= 0. Lemma 2.4
ensures that ann ̸= 0. If r1 ̸= rn; Let xn−1 ∈ R. Choose x = xn−1en−1 and
y = (ann − a1n)en−1 + en. We observe that x ≺sgut y, and thus Tx ≺sgut Ty.
This follows that xn−1 ∈ A{ann}, a contradiction. So r1 = rn. If ann < 0;
Since en ≺sgut (en−1 + en), we obtain a contradiction. This contradiction
implies that ann > 0. Since en−1 ≺sgut (en−1 + en), we conclude that a1n ≥ 0.
Thus (iii) holds for [T ].
Step 2. If [S] satisfies (b); Let the first nonzero column of [S] be the tth column
of [T ]. We have two cases.
Case 1. The first nonzero column of [T ] is its tth column. We see that i1 > 1.
If for [S] one of the forms of (i) or (ii) happens, then there is no thing to
prove. Otherwise, (iii) occurs for [S]. That is, r2 = · · · = rn and for each
i, j (2 ≤ i, j ≤ n) aij ≥ 0 or aij ≤ 0. If r1 ̸= rn, then (ii) occurs for [T ]
with k = 1. If not; Then r1 = rn. Without loss of generality assume that for
each i, j (2 ≤ i, j ≤ n) aij ≥ 0. We should just prove a1t, . . . , a1n ≥ 0. Define
J1 = {j : t ≤ j ≤ n, a1j ≥ 0} and J2 = {j : t ≤ j ≤ n, a1j < 0}. It is
enough to show that J2 = ∅. If J2 ̸= ∅, then r1 ≥ 0. If J1 = ∅, we conclude
that r1 < 0, a contradiction. This contradiction shows that J1 ̸= ∅. Set
x =

∑
j∈J1

ej and y =
∑n

j=t ej . We see that x ≺sgut y, and then Tx ≺sgut Ty.

This shows that
∑

j∈J1
a1j ∈ A{r1}. So

∑
j∈J1

a1j ≤ r1, and then
∑

j∈J1
a1j ≤∑

j∈J1
a1j +

∑
j∈J2

a1j . This means that
∑

j∈J2
a1j ≥ 0. Contradiction. So

J2 = ∅. We see that (iii) holds for [T ].
With an argument almost identical to that of the above, the following theme
can be proved.
Case 2. The first nonzero column of [T ] is not its tth column. Lemma 2.4
ensures then that the first nonzero column of [T ] is its t− 1th column. □

Lemma 2.6. Let T : Rn → Rn be an invertible linear preserver of ≺sgut, and
let [T ] = [aij ]. Then [T ] is upper triangular,

∏n
i=1 aii ̸= 0, r1 = r2 = · · · = rn,

and for each i, j ∈ Nn aij ≥ 0 or aij ≤ 0.

Proof. By Lemma 2.3, [T ] is an upper triangular matrix. Since [T ] is upper
triangular and invertible, we observe that

∏n
i=1 aii ̸= 0. Theorem 2.5 ensures

that r1 = r2 = · · · = rn and for each i, j ∈ Nn aij ≥ 0 or aij ≤ 0.. □

Lemma 2.7. Let T : Mn,m → Mn,m be a linear function that strongly pre-
serves sgut-majorization. Then T is invertible.

Proof. Suppose that T (A) = 0, where A ∈ Mn,m. Notice that since T is linear,
we have T (0) = 0 = T (A). Then it is obvious that T (A) ≺sgut T (0). Therefore,
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A ≺sgut 0, because T strongly preserves sgut-majorization. Then A = R0, for

some R ∈ RSgut
n . So A = 0, and hence T is invertible. □

Theorem 2.8. Let T : Rn → Rn be a linear function. Then T strongly
preserves ≺sgut if and only if [T ] = αIn for some α ∈ R \ {0}.

Proof. As the sufficiency part is clear, we prove the necessity part. Suppose
that T strongly preserves ≺sgut and [T ] = [aij ]. Lemma 2.7 ensures that
T is invertible. From Lemma 2.6, we have [T ] is an upper triangular matrix,∏n

i=1 aii ̸= 0, r1 = · · · = rn, and for each i, j ∈ Nn aij ≥ 0 or aij ≤ 0. We prove
the statement by induction. The result is trivial for n = 1. Assume that our
claim has been proved for all strong linear preservers of ≺sgut on Rn−1. Let S :
Rn−1 → Rn−1 be the linear function with [S] = [T ](1). Conclude from Lemma
2.2 that S preserves ≺sgut on Rn−1. We claim that S strongly preserves ≺sgut

on Rn−1. Let x′ = (x2, . . . , xn)
t, y′ = (y2, . . . , yn)

t ∈ Rn−1, and let Sx′ ≺sgut

Sy′. Set x = (0, x′)t, y = (0, y′)t ∈ Rn. Observe that Tx = (
∑n

i=2 a1ixi, Sx
′)t

and Ty = (
∑n

i=2 a1iyi, Sy
′)t. For proving Tx ≺sgut Ty it suffices to show that

(Tx)1 ∈ A{(Ty)1, . . . , (Ty)n}. If card{(Ty)1, . . . , (Ty)n} ≥ 2, then (Tx)1 ∈
A{(Ty)1, . . . , (Ty)n}. Otherwise, (Ty)2 = · · · = (Ty)n. Then y2 = · · · = yn,
because

∏n
i=2 aii ̸= 0 and r2 = · · · = rn. Since (Ty)1 = (Ty)n, if yn ̸= 0

occurs, then a11 = 0, which is a contradiction. So y2 = · · · = yn = 0, and then
x2 = · · · = xn = 0. Thus (Tx)1 ∈ A{(Ty)1, . . . , (Ty)n}. It is obvious that
Tx ≺sgut Ty, and then, since T strongly preserves ≺sgut on Rn, x ≺sgut y.
This implies that x′ ≺sgut y

′. Therefore, S strongly preserves ≺sgut on Rn−1.
The induction hypothesis ensures that there exists some α ∈ R \ {0} such that
[S] = αIn−1. If we prove that a12 = · · · = a1n = 0, since r1 = · · · = rn, we
deduce that [T ] = αIn. By a simple calculation, one may show that

[T−1] =



1
a11

−a12

a11α
−a13

a11α
. . . 0 0 −a1n

a11α

0 1
α 0 . . . 0 0 0

0 0 1
α . . . 0 0 0

...
...

... . . .
...

...
...

0 0 0 . . . 0 1
α 0

0 0 0 . . . 0 0 1
α



.

Since T strongly preserves ≺sgut, the operator T−1 is a linear preserver of
≺sgut, and hence, from Theorem 2.5, all entries of [T−1] have the same sign. As
all entries of [T ] have the same sign too, it follows that a12 = · · · = a1n = 0. □
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3. Sgut-majorization on Mn,m

In this section we discuss some properties of sgut-majorization on Mn,m,
and we find the structure of strong linear preservers of ≺sgut on Mn,m. First,
we state some lemmas.

Lemma 3.1. The following statements about a given matrix A ∈ Mn are
equivalent.

(a) For all D ∈ RSgut
n , AD = DA.

(b) For some α ∈ R, A = αI.
(c) For all D ∈ RSgut

n and all x, y ∈ Rn, (Dx+ADy) ≺sgut (x+Ay).

Proof. To verify that (a) implies (b), suppose that D := diag(1, 1
2 , . . . ,

1
n ).

Since D ∈ RSgut
n , observe that aij = 0 for each i, j ∈ Nn, i ̸= j. Also, for

D = E ∈ RSgut
n , this follows that a11 = · · · = ann. Thus (b) holds. Clearly, (b)

implies (c). For each y ∈ Rn, let x = −Ay. Put x, y in the relation (c). It is
easy to see that DAy = ADy. Then AD = DA, and so (c) implies (a). □

Remark 3.2. Let T : Mn,m →Mn,m be a linear function. For every i, j ∈ Nm,
consider the embedding Ej : Rn → Mn,m and the projection Ei : Mn,m → Rn

which are defined by Ej(x) = xetj and Ei(A) = Aei respectively. Put T j
i =

EiTE
j , for all i, j ∈ Nm. Then TX = T [x1 | . . . | xm] = [

∑m
j=1 T

j
1xj | . . . |∑m

j=1 T
j
mxj ]. Moreover, if T preserves ≺sgut, then T j

i preserves ≺sgut for all
i, j ∈ Nm too.

Lemma 3.3. Let T : Mn,m → Mn,m preserve ≺sgut. If for any i ∈ Nm there

exists k ∈ Nm such that T k
i is invertible, then

∑m
j=1 A

j
ixj = Ak

i

∑m
j=1 α

j
ixj, for

some αj
i ∈ R, where Aj

i = [T j
i ].

Proof. We may assume without loss of generality that i, k = 1 and j = 2.
We prove that there exists α2

1 ∈ R such that A2
1 = α2

1A
1
1. Let D ∈ RSgut

n

and x, y ∈ Rn. So D[x|y|0| . . . |0] ≺sgut [x|y|0| . . . |0]. This implies that
T [Dx|Dy|0| . . . |0] ≺sgut T [x|y|0| . . . |0], and then [A1

1Dx + A2
1Dy | ∗ | ∗] ≺sgut

[A1
1x + A2

1y | ∗ | ∗]. This ensures that A1
1Dx + A2

1Dy ≺sgut A1
1x + A2

1y, and
Lemma 3.1 ensures then that there exists α2

1 ∈ R such that A2
1 = α2

1A
1
1. □

Lemma 3.4. Suppose that T : Mn,m → Mn,m is a strong linear preserver of

≺sgut. Then for each i ∈ Nm there exists j ∈ Nm such that T j
i is invertible.

Proof. Define I = {i ∈ Nm | T j
i e1 = 0, ∀j ∈ Nm}. We prove that I is empty.

We may assume that I is not empty. Assume without loss of generality that I =
{1, 2, . . . , k}, where k ∈ Nm. If k = m, we choose X = [e1 | 0 | . . . | 0] ∈ Mn,m.
We see that X ̸= 0, but TX = 0. It follows that T is not invertible, while T
strongly preserves ≺sgut. This contradiction determines k < m. Lemma 3.3
ensures for each i (k+1 ≤ i ≤ m) and j ∈ Nm, there exist invertible matrices Ai
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and αj
i ∈ R such that

∑m
j=1 A

j
ixj = Ai

∑m
j=1 α

j
ixj . So there exist γ1, . . . , γm ∈

R, not all zero, such that γ1(α
1
k+1, . . . , α

1
m)t + · · · + γm(αm

k+1, . . . , α
m
m)t = 0.

Define xj = γje1 for each j ∈ Nm, and let X = [x1 | . . . | xm] ∈ Mn,m. It is
obvious that X ̸= 0 and TX = 0, which would be a contradiction. We conclude
that for each i ∈ Nm, there exists j ∈ Nm such that T j

i e1 ̸= 0, and hence T j
i is

invertible. □
Theorem 3.5. Let T : Mn,m → Mn,m strongly preserve ≺sgut. Then TX =
AXR for some invertible matrices R ∈ Mm and A ∈ Rgut

n .

Proof. Theorem 2.8 ensures that the case m = 1. So assume that m > 1.
Lemma 3.4 ensures then that, since T is invertible, for each i ∈ Nm there
exists j ∈ Nm such that T j

i is invertible. Now, by Lemma 3.3, there exist
invertible matrices A1, . . . , Am ∈ Mn and vectors a1, . . . , am ∈ Rm such that
TX = [A1Xa1 | . . . | AmXam].

We claim that dim(span{a1, . . . , am}) ≥ 2. If not; then {a1, . . . , am} ⊆
span{a}, for some a ∈ Rm. Since m > 1, we can choose 0 ̸= b ∈ (span{a})⊥.
Define X ∈ Mn,m such that the first row is bt and the other rows are zero.
We see that X ̸= 0 and TX = 0, which would be a contradiction, because of
Lemma 2.7. Thus rank{a1, . . . , am} ≥ 2.

Without loss of generality, assume that {a1, a2} is a linearly independent set.
Let X ∈ Mn,m and D ∈ RSgut

n . So DX ≺sgut X, and hence TDX ≺sgut TX.
Thus [A1DXa1 | . . . | AmDXam] ≺sgut [A1Xa1 | . . . | AmXam], and so
A1DXa1 +A2DXa2 ≺sgut A1Xa1 +A2Xa2, and then

DXa1+A−1
1 A2DXa2≺sgut Xa1+A−1

1 A2Xa2, for all X∈ Mn,m, D ∈ RSgut
n . (1)

Since {a1, a2} is linearly independent, for every x, y ∈ Rn, there exists Bx,y ∈
Mn,m such that Bx,ya1 = x and Bx,ya2 = y. Set X = Bx,y in (1). So we have

Dx + A−1
1 A2Dy ≺sgut x + A−1

1 A2y, for all D ∈ RSgut
n , x, y ∈ Rn. Lemma 3.1

ensures that A−1
1 A2 = αI, for some α ∈ R, and hence A2 = αA1. For every

i ≥ 3 if ai = 0, choose Ai = A1, and if ai ̸= 0, then {a1, ai} or {a2, ai} is
linearly independent. Then, in a similar fashion, one shows that Ai = γiA1, for
some γi ∈ R, or Ai = λiA2, for some λi ∈ R. Consider A = A1. So for every
i ≥ 2, Ai = riA, for some ri ∈ R and hence TX = [AXa1 | AX(r2a2) | . . . |
AX(rmam)] = AXR, where R = [a1 | r2a2 | rmam]. As T and A are invertible,
we conclude that R is invertible too. Since A is the matrix representation of
an invertible linear preserver of ≺sgut, then there is some nonzero multiple of
it belongs to Rgut

n . □
Lemma 3.6. Suppose that T : Mn,m → Mn,m satisfies TX = AXR for some
invertible matrices R ∈ Mm and A ∈ Rgut

n . Let A = [aij ]. If T strongly
preserves ≺sgut, then a11 = 1 and a12 = a13 = · · · = a1n = 0.

Proof. Without loss of generality assume that R = Im. First, we prove that
a11 = 1. Clearly, a11 ̸= 0. The proof is first divided into two steps.
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Step 1. If a11 < 0 or 1 < a11. If a11 < 0, choose α such that α < 1
a11

, and if

1 < a11, select α such that 1
a11

< α ≤ 1. Define X ∈ Mn,m such that its first

row is (α α . . . α) and all its other rows are zero, Y = Jn,m, and R ∈ Mn such
that its first row is (α 0 . . . 0) and all its other rows are zero. We observe that
X = RY . As R ∈ Rgut

n , then X ≺sgut Y . If TX ≺sgut TY , then there exists

some H ∈ RSgut
n such that TX = HTY . This follows that αa11 ≤ 1, which is

a contradiction. So TX ̸≺sgut TY . Thus T does not strongly preserve ≺sgut.
Step 2. If 0 < a11 < 1. Set X ∈ Mn,m such that its first row is ( 1

a11

1
a11

. . . 1
a11

)
and all its other rows are zero, and Y = Jn,m. We see that TX = RTY , where
R ∈ Mn is the matrix that its first row is (a11 0 . . . 0) and all its other rows
are zero. Hence TX ≺sgut TY . But if X ≺sgut Y , then there exists some

H ∈ RSgut
n such that X = HY . This shows that 1

a11
≤ 1, which would be a

contradiction. So X ̸≺sgut Y , and thus T does not strongly preserve ≺sgut.
Therefore, a11 = 1.

Now, we claim that a12 = a13 = · · · = a1n = 0. Assume, if possible, that
a1j ̸= 0, for some 2 ≤ j ≤ n. Choose x1 such that 0 ≤ 1 − x1 < a1j if
a1j > 0, and 0 ≤ 1 − x1 if a1j < 0. Select xj such that 1−x1

a1j
< xj < 1 if

a1j > 0, and xj <
1−x1

a1j
if a1j < 0. Define X ∈ Mn,m such that its first row is

(x1 . . . x1), its j
th row is (xj . . . xj), and all its other rows are zero, Y = Jn,m,

and R ∈ Mn such that its first row is (x1 0 . . . 0), its jth row is (0 . . . 0 xj

0 . . . 0) where xj is j
th entry, and all its other rows are zero. We have X = RY .

As R ∈ RSgut
n , we deduce that X ≺sgut Y . If TX ≺sgut TY , then there exists

some H ∈ RSgut
n such that TX = HTY . This implies that x1 + a1jxj ≤ 1,

which is a contradiction. Therefore, a12 = a13 = · · · = a1n = 0. □

Lemma 3.7. Let T : Mn,m → Mn,m satisfy TX = AXR for some invertible
matrices R ∈ Mm and A ∈ Rgut

n . Suppose that T strongly preserves ≺sgut.
If S : Mn−1,m → Mn−1,m satisfies SX = A(1)XR, then S is a strong linear
preserver of ≺sgut on Mn−1,m.

Proof. It can be assumed without loss of generality that R = Im. Lemma 3.6

ensure that A =

(
1 0
0 A(1)

)
. Let X ′, Y ′ ∈ Mn−1,m such that X ′ ≺sgut Y ′.

Then there is some R′ ∈ RSgut
n−1 such that X ′ = R′Y ′. Set X =

(
0
X ′

)
∈ Mn,m

and Y =

(
0
Y ′

)
∈ Mn,m. We see that X = RY , where R =

(
0 0
0 R′

)
∈ RSgut

n ,

and then X ≺sgut Y . Since T preserves ≺sgut on Mn,m, we conclude that

TX ≺sgut TY . Hence there exists some H ∈ RSgut
n such that TX = HTY .

Partition H =

(
H1 H2

0 H3

)
, where H3 ∈ Mn−1. This implies that A(1)X ′ =

H3A(1)Y ′. That is, SX ′ = H3SY
′. As H3 ∈ RSgut

n−1, we have SX ′ ≺sgut SY
′.
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Now, suppose that X ′, Y ′ ∈ Mn−1,m such that SX ′ ≺sgut SY ′. So there is

some R′ ∈ RSgut
n−1 such that SX ′ = R′SY ′. Define X =

(
0
X ′

)
∈ Mn,m and

Y =

(
0
Y ′

)
∈ Mn,m. Set R =

(
0 0
0 R′

)
. We have R ∈ RSgut

n and TX = RTY.

Thus TX ≺sgut TY , and so X ≺sgut Y . Then there exists some H ∈ RSgut
n

such that X = HY . Partition H =

(
H1 H2

0 H3

)
, where H3 ∈ Mn−1. This

concludes that X ′ = H3Y
′, and then X ′ ≺sgut Y ′. Therefore, S strongly

preserves ≺sgut. □

In the next theorem the structure of linear functions T : Mn,m → Mn,m

strongly preserving sgut-majorization will be characterized.

Theorem 3.8. Let T : Mn,m → Mn,m be a linear function. Then T strongly
preserves ≺sgut if and only if TX = XR for some invertible matrix R ∈ Mm.

Proof. As the sufficiency of the condition is easy to see, we just prove the
necessity of the condition. Assume that T strongly preserves ≺sgut. Theorem
3.5 ensures that TX = AXR for some invertible matrices R ∈ Mm and A ∈
Rgut

n . Let A = [aij ]. From Lemma 3.6, we see that a11 = 1 and a12 = a13 =
. . . = a1n = 0. Now, we claim that A = In. We proceed by induction on n.
There is nothing to prove for n = 1. Suppose that n ≥ 2 and the assertion has
been established for all strong linear preservers of ≺sgut on Mn−1,m. Lemma

3.6 ensures that A =

(
1 0
0 A(1)

)
. Let S : Mn−1,m → Mn−1,m be the linear

function by SX = A(1)XR. Lemma 3.7 implies that S strongly preserves

≺sgut. Since A(1) ∈ Rgut
n−1 is an invertible matrix, the induction hypothesis

insures that A(1) = In−1. Therefore, A = In. □
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