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Abstract. A generalization of matrix-valued multiresolution analysis
(MMRA) to matrix-valued frames, and the constructions of matrix-valued

frames are considered and characterized. A matrix-valued frame multires-
olution analysis is defined in this paper. We provide necessary and suffi-
cient conditions for constructing matrix-valued frames and Riesz bases of
translates, and give the calculation method of matrix-valued dual Riesz

basis. These conclusions are useful in providing theoretical basis for con-
structing matrix-valued frames and Riesz basis.
Keywords: matrix-valued wavelet, frame, wavelets, matrix-valued dual
Riesz basis.
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1. Introduction

The concept of matrix-valued wavelets was introduced [14, 15] by utilizing
the theory of paraunitary matrix filterbanks. Matrix-valued signals are often
encountered in applications, such as video images, multispectral images, and
color images. We see in [3, 14] that multiwavelets [6, 8] can be generated from
the component functions in matrix-valued wavelets and prefiltering does not
necessary for matrix-valued wavelet transforms. The matrix-based method also
is used for the construction of a non-trivial symmetric quaternion wavelet with
compact support [7]. Therefore, studies on matrix-valued wavelets are useful in
the theory of multiwavelets and in the representations of signals. Matrix-valued
wavelets have drawn much attention [1,3–5,7,9,11–15,18]. The construction of
orthonormal matrix-valued filters for multi-resolution analysis of matrix-valued
time-series is studied [13]. The concept of biorthogonal matrix-valued wavelets
bases [5,12] and orthogonal matrix-valued wavelet packets [4] are proposed. The
Riesz basis functions of matrix-valued wavelet series expansion are obtained
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The theory of matrix-valued multiresolution analysis frames 508

from wavelets of the matrix-valued Lemari-Meyer type and the power-spectral
density of the process [18].

Theory of scalar-valued multiresolution analysis frames [2, 10, 17] have be-
come a hot field in time-frequency analysis recently. Their applications almost
involve all areas in signal processing and communication theory. Many appli-
cation fields have benefited from the use of wavelet frames. This theory of
scalar-valued multiresolution analysis frames is extended to vector-valued sig-
nal space recently. The paper [11] is to give the construction of vector-valued
multivariate wavelet frame packets associated with arbitrary dilation matrix.
Minimum-energy vector-valued wavelet tight frames are introduced in [9]. How-
ever, the present research results about theory of matrix-valued multiresolution
analysis frames do not have according to our knowledge. That is our motivation
for writing this paper.

The main purpose of this paper is to give the theory of matrix-valued mul-
tiresolution analysis frames. This paper is organized as follows. In Section
2, we describe some concepts and notations for matrix-valued function spaces.
We will introduce a version of matrix-valued multiresolution analysis to frame.
In Section 3, a necessary and sufficient condition is provided for construct-
ing matrix-valued frames of translates. We derive the calculation method of
matrix-valued dual Riesz basis. Example of matrix-valued frames according to
our theory is constructed.

2. Preliminary

We proceed with a brief introduction on the notion of the matrix-valued
signal space. For a more detailed description see [14,15]. Let

CN×N = {A : A is an N ×N matrix with entries in the complex plane C},

and

L2(a, b;CN×N ) =
{
f (t) = (fk,l (t))N×N : fk,l (t) ∈ L2 (a, b) , 1 ≤ k, l ≤ N

}
.

The space L2(a, b;CN×N ) is called a matrix-valued signal space. When a =
−∞ and b = +∞, L2(a, b;CN×N ) is also denoted by L2(R;CN×N ).

For the matrix-valued function f ∈ L2(R;CN×N ), its integration
∫
f(t)dt is

defined as

∫
f(t)dt =


∫
f11 (t) dt

∫
f12 (t) dt · · ·

∫
f1N (t) dt∫

f21 (t) dt
∫
f22 (t) dt · · ·

∫
f2N (t) dt

· · ·∫
fN1 (t) dt

∫
fN2 (t) dt · · ·

∫
fNN (t) dt


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if

f (t) =


f11 (t) f12 (t) · · · f1N (t)
f21 (t) f22 (t) · · · f2N (t)

· · ·
fN1 (t) fN2 (t) · · · fNN (t)


and the differentiation is defined accordingly.

For two matrix-valued functions f, g ∈ L2(R;CN×N ), ⟨f ,g⟩ denotes the
integration of the matrix product f (t)g∗ (t)

(2.1) ⟨f ,g⟩ =
∫
R

f (t)g∗ (t) dt

where ∗ means the transpose and the complex conjugate. For convenience, we
still call the operation ⟨, ⟩ in Eq. (2.1) inner product.

For each t ∈ R and f ∈ L2(R;CN×N ), ∥f∥ denotes a norm for the matrix
f (t) as

(2.2) ∥f∥ =

 N∑
k,l=1

∫
R

|fkl (t)|2 dt

1/2

.

That is ∥f∥2 = trace ⟨f , f⟩.
The Fourier transform of the matrix-valued function f is defined by

f̂ (ω) =

∫
R

f (t) e−itωdt.

Then, the inverse Fourier transform is

f (t) =

∫
R

f̂ (ω) eitωdω.

Let

χD (t) =

{
I, t ∈ D
0, otherwise

where 0 is the zero matrix and I is an identity matrix.
Let

l2 (Z) =

{
C = {Ck}k∈Z :

∑
k∈Z

∥Ck∥2N×N < +∞

}
.

∥C∥2l2(Z) =
∑
k∈Z

∥Ck∥2N×N
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where the constant matrix Ck =


Ck

11 Ck
12 · · · Ck

1N

Ck
21 Ck

22 · · · Ck
2N

· · ·
Ck

N1 Ck
N2 · · · Ck

NN

, ∥Ck∥2N×N =

N∑
i,j=1

∣∣Ck
i,j

∣∣2.
A sequenceΦk ∈ L2(R;CN×N ), k ∈ Z is called an orthonormal set in L2(R;CN×N )

if

⟨Φk,Φl⟩ = δ (k − l) IN

where δ (j) = 1 when j =0 and δ (j) = 0 when j ̸= 0, and IN is the N × N
identity matrix. A sequence Φk ∈ L2(R;CN×N ), k ∈ Z, is called an orthonor-
mal basis for L2(R;CN×N ) if it satisfies ⟨Φk,Φl⟩ = δ (k − l) IN , and moreover
for any f ∈ L2(R;CN×N ) there exists a sequence of N ×N constant matrices
Fk such that

f (t) =
∑
k∈Z

FkΦk (t), for t ∈ R

where the multiplication FkΦk (t) for each fixed t is the N ×N matrix multi-
plication, and the convergence for the infinite summation is in the sense of the
norm ∥·∥ defined by Eq.(2.2) for the matrix-valued signal space.

A matrix–valued function F (ω) is called unitary if

F (ω)F∗ (ω) = IN .

An MMRA (matrix-valued multiresolution analysis) of the signal space
L2(R;CN×N ) is a nested sequence of closed subspacesVj , j ∈ Z of L2(R;CN×N )
such that
(i) Vj ⊂ Vj+1, j ∈ Z.
(ii) ∪j∈ZVj is dense in L2(R;CN×N ) and

∩j∈ZVj = {0} ,

where 0 is the zero matrix.
(iii) f (t) ∈ Vj if and only if f (2t) ∈ Vj+1, j ∈ Z.
(iv) There is a Φ ∈ V0 such that its integer translations Φk (t) = Φ (t− k),
k ∈ Z, form a frame for V0, i.e., two constants A and B exist, 0 < A ≤ B <
+∞, such that

A ∥f∥2 ≤
∑
k∈z

∥⟨f ,Φk⟩∥2 ≤ B ∥f∥2 , ∀f ∈ L2(R;CN×N ),

where A, B are frame bounds. A frame {Φk} is tight if A = B. A frame {Φk}
is exact if it ceases to be a frame when any one of its elements is removed.

In this case we call Φ (t) a matrix-valued scaling function for the MMRA
{Vj}. Since Φ (t) ∈ V0 ⊂ V1, by the above definition there exist constant
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N ×N matrices Hk, k ∈ Z (or H ′
k, k ∈ Z) such that

Φ (t) = 2
∑
k

Φ (2t− k)Hk,

or Φ (t) = 2
∑
k

H ′
kΦ (2t− k).

Let

H (ω) =
∑
k

Hke
−ikω,

or H′ (ω) =
∑
k

H ′
ke

−ikω.

Then

Φ̂ (ω) = Φ̂
(ω
2

)
H
(ω
2

)
= Φ̂ (0) · · ·H

(ω
4

)
H
(ω
2

)
,

or

Φ̂ (ω) = H′
(ω
2

)
Φ̂
(ω
2

)
= H′

(ω
2

)
H′
(ω
4

)
· · · Φ̂ (0) .

Similarly, one can also define a frame for a subspace of L2(R;CN×N ). If

{Φn} is a frame, it has a dual frame
{
Φ̃n

}
such that⟨

Φm, Φ̃n

⟩
= δ (m− n) IN,

and any matrix–valued function f (t) ∈ L2(R;CN×N ) can be expanded as

f (t) =
∑
k

⟨
f (t) , Φ̃k (t)

⟩
Φk (t) =

∑
k

⟨f (t) ,Φk (t)⟩ Φ̃k (t).

3. Main results

For Φ ∈ L2(R;CN×N ), we consider the 2π-periodic and symmetric matrix–
valued function,

EΦ(ω) =
∑
k

Φ̂ (ω + 2πk) Φ̂∗ (ω + 2πk).

It is clear that EΦ(ω) is self-adjoint and positive semidefinite matrix, and thus
has real nonnegative eigenvalues λk (ω) ≥ 0, k = 1, 2, . . . N .

Theorem 3.1. Let V0 ≡ span {Φk (t) : Φk (t) = Φ (t− k) , k ∈ Z} for some
Φ ∈ L2(R;CN×N ), and assume EΦ(ω) ∈ L2(0, 2π;CN×N ). The sequence
{Φk} is a frame for V0 with frame bounds A and B if and only if there are
positive constants A and B such that, for all matrix trigonometric polynomials

θ(ω) =
∑
k

Cke
−iωk
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defined on [0, 2π], the inequalities

(3.1) A · trace
2π∫
0

θ(ω)EΦ(ω)θ
∗(ω)dω ≤

trace

∫ 2π

0

θ(ω)EΦ(ω)EΦ(ω)θ
∗(ω)dω ≤ B · trace

2π∫
0

θ(ω)EΦ(ω)θ
∗(ω)dω < +∞

are hold.

Proof. Define f =
∑
k

CkΦ (t− k), by Parseval’s Identity and the shift property

of the Fourier transform we have

(3.2) ∥f∥2 = trace
1

2π

⟨∑
k

Cke
−iωkΦ̂ (ω) ,

∑
k′

Ck′e−iωk′
Φ̂ (ω)

⟩

= trace
1

2π

⟨
θ(ω)Φ̂ (ω) , θ(ω)Φ̂ (ω)

⟩

= trace
1

2π

+∞∫
−∞

θ(ω)Φ̂ (ω) Φ̂∗ (ω) θ∗(ω)dω

= trace
1

2π

2π∫
0

θ(ω)
∑
k

Φ̂ (ω + 2πk) Φ̂∗ (ω + 2πk)θ∗(ω)dω

= trace
1

2π

2π∫
0

θ(ω)EΦ(ω)θ
∗(ω)dω.

Again by Parseval’s Identity we have

(3.3)
K∑

k=−K

∥⟨f ,Φk⟩∥2 =
K∑

k−−K

trace ⟨f ,Φk⟩ ⟨f ,Φk⟩∗

= trace
∑
m

Cm
1

2π

∫ +∞

−∞
Φ̂ (ω) Φ̂∗ (ω)e−iωm·

(∑
n

∫ +∞

−∞
Φ̂ (ω′) Φ̂∗ (ω′)eiω

′n 1

2π

K∑
k=−K

eik(ω−ω′)dω′C∗
n

)
dω
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where K ∈ Z. We define the Dirichlet kernel

DK(ω) =
1

2π

K∑
k=−K

eikω.

Hence, (3.3) can be rewritten as

K∑
k=−K

∥⟨f ,Φk⟩∥2

= trace
∑
m

Cm
1

2π

∫ +∞

−∞
Φ̂ (ω) Φ̂∗ (ω)e−iωm·(∑

n

∫ +∞

−∞
Φ̂ (ω′) Φ̂∗ (ω′)eiω

′nDK(ω − ω′)dω′C∗
n

)
dω

= trace
∑
m

Cm
1

2π

∫ +∞

−∞
Φ̂ (ω) Φ̂∗ (ω)e−iωm·(∑

n

∫ 2π

0

EΦ(ω
′)eiω

′nDK(ω − ω′)dω′C∗
n

)
dω

= trace
∑
m

∑
n

Cm
1

2π

∫ 2π

0

EΦ(ω)e
−iωm·

(∫ 2π

0

EΦ(ω
′)eiω

′nDK(ω − ω′)dω′
)
C∗

ndω = trace
∑
m

∑
n

Cm
1

2π
·

[∫ 2π

0

EΦ(ω)e
−iωm

(∫ 2π

0

EΦ(ω
′)eiω

′nDK(ω − ω′)dω′
)
dω

]
C∗

n

where depending on the periodicity of DK(ω). Using properties of the Dirichlet
kernel to all components in the matrix and using the dominated convergence
theorem, we have

lim
K→+∞

∫ 2π

0

EΦ(ω)e
−iωm

(∫ 2π

0

EΦ(ω
′)eiω

′nDK(ω − ω′)dω′
)
dω

=

∫ 2π

0

EΦ(ω)EΦ(ω)e
−iω(m−n)dω.

Hence

(3.4) lim
K→+∞

K∑
k=−K

∥⟨f ,Φk⟩∥2
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= trace
∑
m

∑
n

Cm
1

2π

∫ 2π

0

EΦ(ω)EΦ(ω)e
−iω(m−n)dωC∗

n

= trace
1

2π

∫ 2π

0

∑
m

Cme−iωmEΦ(ω)EΦ(ω)

(∑
n

Cne
−iωn

)∗

dω

= trace
1

2π

∫ 2π

0

θ(ω)EΦ(ω)EΦ(ω)θ
∗(ω)dω

(3.1) is a consequence of combining (3.2) and (3.4). □

We give necessary and sufficient conditions for matrix-valued functions to
form a frame.

Theorem 3.2. Let V0 ≡ span {Φk (t) : Φk (t) = Φ (t− k) , k ∈ Z} be a closed
subspace of L2(R;CN×N ) for some Φ ∈ L2(R;CN×N ). Assume the real non-
negative eigenvalues of EΦ(ω) are λk (ω), k = 1, 2, · · ·N, and let α (ω) =
min
k

λk (ω), and β (ω) = max
k

λk (ω) on GΦ. The sequence {Φk} is a frame

for V0 with frame bounds A and B if and only if there are positive constants
A and B such that

(3.5) A ≤ α(ω) ≤ β (ω) ≤ B, a.e. on GΦ

where GΦ = {ω : EΦ(ω) ̸= 0, ω ∈ [0, 2π]}, and 0 is zero matrix. In this case,
A and B are frame bounds for {Φk (t)}.

Sufficiency: Assume (3.5) holds, and let

θ(ω) =
∑
k

Cke
−iωk

be a matrix trigonometric polynomial on [0, 2π]. We shall prove the inequalities
(3.1).

The EΦ(ω) is self-adjoint and a positive definite matrix on GΦ, and thus
has real eigenvalues λk (ω) > 0, k = 1, 2, . . . , N on GΦ, and has unitary matrix
U such that

EΦ(ω) = UΛ (ω)U∗, a.e. on GΦ

where Λ (ω) =


λ1 (ω) 0 · · · 0
0 λ2 (ω) · · · 0
· · · · · · · · · · · ·
0 0 · · · λN (ω)

.

For convenience of description, suppose
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X(ω) ≡ θ(ω)U =


x11 (ω) x12 (ω) · · · x1N (ω)
x21 (ω) x22 (ω) · · · x2N (ω)
· · · · · · · · · · · ·
xN1 (ω) xN2 (ω) · · · xNN (ω)


=
(
x1 (ω) x2 (ω) · · · xN (ω)

)
where xj (ω) =

(
x1j (ω) x2j (ω) · · · xNj (ω)

)T
, j = 1, 2, . . . , N , here T

means the matrix transpose.

A · trace
2π∫
0

θ(ω)EΦ(ω)θ
∗(ω)dω = A · trace

∫
GΦ

X(ω)Λ (ω)X∗(ω)dω

= A · {
∫

GΦ

λ1 (ω)x1 (ω)x
∗
1 (ω) dω +

∫
GΦ

λ2 (ω)x2 (ω)x
∗
2 (ω) dω

+ · · ·+
∫

GΦ

λN (ω)xN (ω)x∗
N (ω) dω}

≤ {
∫

GΦ

λ2
1 (ω)x1 (ω)x

∗
1 (ω) dω +

∫
GΦ

λ2
2 (ω)x2 (ω)x

∗
2 (ω) dω

+ · · ·+
∫

GΦ

λ2
N (ω)xN (ω)x∗

N (ω) dω}

= trace

∫
GΦ

X(ω)Λ (ω)Λ (ω)X∗(ω)dω = trace

∫ 2π

0

θ(ω)EΦ(ω)EΦ(ω)θ
∗(ω)dω

≤ B · {
∫

GΦ

λ1 (ω)x1 (ω)x
∗
1 (ω) dω +

∫
GΦ

λ2 (ω)x2 (ω)x
∗
2 (ω) dω

+ · · ·+
∫

GΦ

λN (ω)xN (ω)x∗
N (ω) dω}

= B · trace
∫
GΦ

X(ω)Λ (ω)X∗(ω)dω = B · trace
2π∫
0

θ(ω)EΦ(ω)θ
∗(ω)dω,

where the two inequalities follow from (3.5). So (3.1) holds with

A = min {α (ω) : ω ∈ GΦ} and B = max {β (ω) : ω ∈ GΦ} .

Necessity : Assume A > α(ω), for ω ∈ F ⊆ GΦ, where |F | > 0. |F |
denotes the Lebesque measure of F . Without loss of generality, suppose A >
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λ1(ω), for ω ∈ F ⊆ GΦ. Let

θ(ω) ≡ X(ω)U∗ =




e−iω 0 · · · 0
0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0

U∗, ω ∈ F

0, ω /∈ F

hence

A · trace
2π∫
0

θ(ω)EΦ(ω)θ
∗(ω)dω = A · trace

∫
GΦ

X(ω)Λ (ω)X∗(ω)dω

= A ·


∫
GΦ

λ1 (ω)x1 (ω)x
∗
1 (ω) dω

 >


∫
GΦ

λ2
1 (ω)x1 (ω)x

∗
1 (ω) dω


= trace

∫
GΦ

X(ω)Λ (ω)Λ (ω)X∗(ω)dω = trace

∫ 2π

0

θ(ω)EΦ(ω)EΦ(ω)θ
∗(ω)dω.

We obtain a contradiction to the first inequality of (3.1) which is valid for all
matrix trigonometric polynomials θ(ω). When we assume B < β(ω), for ω ∈
F ⊆ GΦ where |F | > 0, a similar contradiction arise to the second inequality
of (3.1). □

The sequence {Φk} is a Riesz basis if and only if the sequence {Φk} is an
exact frame [16]. The next result shows some necessary and sufficient conditions
for matrix-valued functions to form Riesz bases.

Theorem 3.3. Let V0 ≡ span {Φk (t) : Φk (t) = Φ (t− k) , k ∈ Z} be a closed
subspace of L2(R;CN×N ) for some Φ ∈ L2(R;CN×N ). Assume the real non-
negative eigenvalues of EΦ(ω) are λk (ω), k = 1, 2, · · ·N, and let α (ω) =
min
k

λk (ω), β (ω) = max
k

λk (ω). The sequence {Φk} is a Riesz basis for V0

if and only if there are positive constants A and B such that

A ≤ α(ω) ≤ β (ω) ≤ B, on [0, 2π] .

In particular, the sequence {Φk} is an orthonormal basis of V0 if and only if

EΦ(ω) = I, on [0, 2π]

where I is an identity matrix.

Proof. The sequence {Φk} is a Riesz basis for V0, the EΦ(ω) is self-adjoint
and positive definite matrix on [0, 2π], and thus has real eigenvalues λk (ω) > 0,
k = 1, 2, · · ·N on [0, 2π]. The results are easy to prove. □
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The following theorem introduces the dual Riesz basis {Φk} and
{
Φ̃k

}
.

Theorem 3.4. Let V0 ≡ span {Φk (t) : Φk (t) = Φ (t− k) , k ∈ Z} be a closed
subspace of L2(R;CN×N ) for some Φ ∈ L2(R;CN×N ). Suppose that the se-

quence {Φk} is a Riesz basis for V0. Let Φ̃ ∈ L2(R;CN×N ) be defined by

(3.6) Φ̃ (ω) ≡ E−1
Φ (ω)Φ (ω) .

for ω ∈ R. Then Φ̃ ∈ V0, and

(3.7)
∑
k

Φ̂ (ω + 2πk) ˆ̃Φ
∗
(ω + 2πk) = I.

Furthermore, ⟨
Φk, Φ̃l

⟩
= δ (k − l) IN ,

for all k, l ∈ Z.

Proof. Since the sequence {Φk} is a Riesz basis for V0, Theorem 3.3 shows
that the eigenvalues λ (ω) of EΦ(ω) satisfy

A ≤ λ (ω) ≤ B.

Therefore, the eigenvalues of E−1
Φ (ω) are bounded by 1/B and 1/A. It follows

from the self-adjointness of E−1
Φ (ω) that its coefficients are bounded and in

L2(R;CN×N ). Thus, E−1
Φ (ω) has a matrix Fourier series expansion of the

form

(3.8) E−1
Φ (ω) =

∑
k

Cke
−iωk,

where {Ck}k∈Z ∈ l2 (Z). From (3.6) and (3.8) we get

Φ̃ (t) =
∑
k

CkΦ (t− k),

which shows that Φ̃ ∈ V0. The identity (3.7) follows directly from (3.6) and
the fact that E−1

Φ (ω) is 2π-periodic. By Parseval’s Identity and (3.7) we have
that ⟨

Φk, Φ̃l

⟩
=

1

2π

∫
R

eiω(l−k)Φ̂ (ω) ˆ̃Φ
∗
(ω) dω

=
1

2π

∑
j∈Z

2π∫
0

eiω(l−k)Φ̂ (ω + 2πj) ˆ̃Φ
∗
(ω + 2πj) dω
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=
1

2π

2π∫
0

eiω(l−k)
∑
j∈Z

Φ̂ (ω + 2πj) ˆ̃Φ
∗
(ω + 2πj)dω

= δ (k − l) IN ,

for all k, l ∈ Z. □

We give an example that satisfies the conditions of matrix-valued frame and
calculate the dual Riesz basis .

Example 3.5. Let Φ̂ (ω) = ξ (ω)χ[−2πa,2πa) (ω), 0 < a < 1
2 , where ξ (ω) ∈

L2(R) is a non-vanishing function on [−2πa, 2πa). Then

EΦ(ω) = |ξ (ω)|2 χ[−2πa,2πa) (ω) on [−π, π) .

It is easy to verify that {Φk} is a frame for V0. By Theorem 3.3, {Φk} is not
a Riesz basis for a subspace V0 .

Note that if a ≥ 1
2 , then {Φk} is a Riesz basis for V0. The matrix-valued

dual Riesz basis Φ̃ (ω) is given by

Φ̃ (ω) ≡ E−1
Φ (ω)Φ (ω) =

ξ (ω)

|ξ (ω)|2
χ[−2πa,2πa) (ω) .

4. Summary

In this paper, matrix-valued wavelet frames are introduced. The necessary
and sufficient condition for matrix-valued functions to form a frame is stud-
ied. Some relationships and properties are derived about the relevant matrix-
valued functions and the calculation method of matrix-valued dual Riesz basis
is given. These conclusions are useful in providing theoretical basis for con-
structing matrix-valued frames.
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