Bulletin of the Iranian Mathematical Society Vol. 33 No. 1 (2007), pp 11-23.

AUTOMATIC CONTINUITY OF HIGHER DERIVATIONS ON JB*-ALGEBRAS

S. HEJAZIAN AND T. L. SHATERY

Communicated by Fereidoun Ghahramani

ABSTRACT. In this paper we study higher derivations from JB^* -algebras into Banach Jordan algebras. We show that every higher derivation $\{d_m\}$ from a JB^* -algebra \mathcal{A} into a JB^* -algebra \mathcal{B} is continuous provided that d_0 is a *-homomorphism. Also it is proved that every Jordan higher derivation from a commutative C^* -algebra or from a C^* -algebra which has minimal idempotents and is the closure of its socle is continuous.

1. Introduction

Let \mathcal{A} and \mathcal{B} be algebras (associative or non-associative). By a higher derivation of rank k (k might be ∞) we mean a family of linear mappings $\{d_m\}_{m=0}^k$ from \mathcal{A} into \mathcal{B} such that

$$d_m(ab) = \sum_{j=0}^m d_j(a) d_{m-j}(b), \quad (a, b \in \mathcal{A}, \quad m = 0, 1, 2, \dots, k).$$

It is clear that d_0 is a homomorphism. Higher derivations were introduced by Hasse and Schmidt [8], and algebraists sometimes call them Hasse-Schmidt derivations. The reader may find some of algebraic results concerning these mappings in [1, 4, 6, 14, 16, 17]. They are also studied in other contexts. In [19] higher derivations are applied to study

MSC(2000): Primary 46H40; Secondary 46L70, 46H70

Keywords: Derivation, Higher derivation, Jordan module, JB^* -algebra

Received: 25 March 2007, Accepted: 15 April 2007

^{© 2007} Iranian Mathematical Society.

¹¹

generic solving of higher differential equations.

A standard example of a higher derivation of rank k is the family $\{\frac{D^m}{m!}\}_{m=0}^k$, where D is an ordinary derivation of an algebra \mathcal{A} .

If \mathcal{A} and \mathcal{B} are normed algebras then a higher derivation $\{d_m\}$ is said to be continuous, whenever every d_m is continuous. It is known that every derivation on a semisimple Banach algebra is continuous [13]. Ringrose [15] proved that every derivation from a C^* -algebra \mathcal{A} into a Banach \mathcal{A} -module is continuous. In [9] derivations from JB^* -algebras into Banach Jordan modules were studied and continuity of these mappings were proved in certain cases. Loy in [12] proved that if \mathcal{A} is an (F)-algebra which is a subalgebra of a Banach algebra \mathcal{B} of power series, then every higher derivation $\{d_m\} : \mathcal{A} \to \mathcal{B}$ is automatically continuous. Jewell [11], showed that a higher derivation from a Banach algebra onto a semisimple Banach algebra is continuous provided that $\ker(d_0) \subseteq \ker(d_m)$, for all $m \geq 1$. Villena [20] proved that every higher derivation from a unital Banach algebra \mathcal{A} into \mathcal{A}/\mathcal{P} , where \mathcal{P} is a primitive ideal of \mathcal{A} with infinite codimension, is continuous. Also the range problem of continuous higher derivations was studied in [14].

In this paper we study automatic continuity of higher derivations from JB^* -algebras. Section 2 is devoted to some concepts which are needed in the sequel. In Section 3 we prove that a higher derivation from a JB^* -algebra into another JB^* -algebra is continuous provided that d_0 is a *-homomorphism. Also we will show that every (Jordan) higher derivation from a commutative C^* -algebra or from a C^* -algebra which has minimal idempotents and is the closure of its socle (e. g. $\mathcal{K}(\mathcal{H})$) into a Banach Jordan algebra is continuous. These are in fact generalizations of some results in [9].

2. Preliminaries

Let \mathcal{A} be a Jordan algebra and let \mathcal{X} be a vector space over the same field as \mathcal{A} . Then \mathcal{X} is said to be a Jordan \mathcal{A} -module if there is a pair of bilinear mappings (called module operations), $(a, x) \mapsto a.x, (a, x) \mapsto x.a$, from $\mathcal{A} \times \mathcal{X} \longrightarrow \mathcal{X}$ such that for all $a, b \in \mathcal{A}$ and all $x \in \mathcal{X}$ the following conditions hold:

(i)
$$a.x - x.a,$$

(ii) $a.(a^2.x) = a^2.(a.x);$
(iii) $2((x.a).b).a + x.(a^2.b) = 2(x.a)(a.b) + (x.b).a^2.$

A linear subspace \mathcal{S} of \mathcal{X} is called a submodule if

$$\mathcal{AS} := \{a.x: a \in \mathcal{A}, x \in \mathcal{S}\} \subseteq \mathcal{S}.$$

If \mathcal{A} is a Banach Jordan algebra and \mathcal{X} is a Banach space which is a Jordan \mathcal{A} -module then \mathcal{X} is said to be a weak Jordan \mathcal{A} -module whenever the mapping $x \mapsto a.x$, from $\mathcal{X} \longrightarrow \mathcal{X}$ is continuous, for all $a \in \mathcal{A}$; and \mathcal{X} is called a Banach Jordan \mathcal{A} -module if the mapping $(a, x) \mapsto a.x$, from $\mathcal{A} \times \mathcal{X} \longrightarrow \mathcal{X}$ is continuous, or equivalently, if there exists M > 0 such that $|| a.x || \leq M || a || || x || (a \in \mathcal{A}, x \in \mathcal{X})$.

Example 2.1. (i) Every Banach Jordan algebra \mathcal{A} is a Banach Jordan \mathcal{A} -module whenever we consider its own product as the module operation.

(ii) If \mathcal{A} and \mathcal{B} are Jordan algebras and $\theta : \mathcal{A} \longrightarrow \mathcal{B}$ is a homomorphism, then \mathcal{B} can be considered as a Jordan \mathcal{A} -module with module operation $a.b = \theta(a)b$ $(a \in \mathcal{A}, b \in \mathcal{B}).$

In this case we will say that \mathcal{B} is an \mathcal{A} -module via the homomorphism θ . If \mathcal{A} and \mathcal{B} are Banach Jordan algebras then it is easy to see that \mathcal{B} is a weak Jordan \mathcal{A} -module.

(iii) The topological dual \mathcal{A}^* of \mathcal{A} , with module operation $(a, f) \mapsto a.f$ defined by

$$(a.f)(b) = f(ab) \qquad (a, b \in \mathcal{A}, f \in \mathcal{A}^*),$$

is a Banach Jordan \mathcal{A} -module.

(iv) If \mathcal{A} is a Banach algebra and \mathcal{X} is a Banach (respectively weak) \mathcal{A} -module, then we may consider \mathcal{A} as a Jordan algebra with Jordan product $(a, b) \mapsto \frac{ab+ba}{2}, \mathcal{A} \times \mathcal{A} \mapsto \mathcal{A}$. Then \mathcal{X} with the module operation $a.x = \frac{ax+xa}{2}$ is a Banach (respectively weak) Jordan \mathcal{A} -module. Here the mappings $(a, x) \mapsto ax$ and $(a, x) \mapsto xa, \mathcal{A} \times \mathcal{X} \to \mathcal{X}$, denote the associative module operations of \mathcal{A} on \mathcal{X} .

Let \mathcal{X} and \mathcal{Y} be Jordan \mathcal{A} -modules. Then a linear mapping $T : \mathcal{X} \longrightarrow \mathcal{Y}$ is said to be a module homomorphism if T(a.x) = a.T(x) ($a \in \mathcal{A}, x \in \mathcal{X}$). In Example 2.1 (ii), θ is a module homomorphism.

Let \mathcal{A} be a Jordan algebra and let \mathcal{X} be a Jordan \mathcal{A} -module. Then $\mathcal{A} \oplus \mathcal{X}$ with product $(a_1 + x_1)(a_2 + x_2) = a_1a_2 + a_1.x_2 + a_2.x_1$, is a Jordan algebra which is called the split null extension of \mathcal{A} and \mathcal{X} . In fact a linear space \mathcal{X} is a Jordan \mathcal{A} -module if and only if this split null extension is a Jordan algebra [10].

Corresponding to $(a, 0) \in \mathcal{A} \oplus \mathcal{X}$ with $a \in \mathcal{A}$, as in any Jordan algebra, we define the linear operators R_a and U_a on $\mathcal{A} \oplus \mathcal{X}$ as follows

 $R_a(u) = au, \quad U_a(u) = 2a(au) - a^2u \quad (u \in \mathcal{A} \oplus \mathcal{X}).$

We feel free to use the notation R_a and U_a for the same operators on \mathcal{A} . For every x, y in a Jordan algebra, set $[R_x, R_y] := R_x R_y - R_y R_x$. We recall that each x, y, z in a Jordan algebra satisfy

$$[R_{xy}, R_z] + [R_{xz}, R_y] + [R_{yz}, R_x] = 0, (2.1)$$

which is the identity (O1) in Section 1.7 of [10]. For a submodules of \mathcal{X} , set

$$\mathcal{R}(\mathcal{S}) := \{ a \in \mathcal{A} : R_a(x) = 0 \quad \text{for all} \quad x \in \mathcal{S} \}, \\ \mathcal{Q}(\mathcal{S}) := \{ a \in \mathcal{A} : U_a(x) = 0 \quad \text{for all} \quad x \in \mathcal{S} \}, \\ \mathcal{I}(\mathcal{S}) := \{ a \in \mathcal{R}(\mathcal{S}) : ab \in \mathcal{R}(\mathcal{S}) \quad \text{for all} \quad b \in \mathcal{A} \}.$$

Note that if S is a submodule, then it is an ideal of $\mathcal{A} \oplus \mathcal{X}$, and $\mathcal{I}(S)$ is actually ann(S) in view of Zelmanov, which is an ideal by Lemma 3(b) of [21]. Here we give the proof for the sake of convenience.

Lemma 2.2. Let \mathcal{A} be a Jordan algebra and let \mathcal{X} be a Jordan \mathcal{A} -module. If \mathcal{S} is a submodule then (i) $\mathcal{I}(\mathcal{S})$ is the largest ideal of \mathcal{A} contained in $\mathcal{R}(\mathcal{S})$; (ii) $\mathcal{R}(\mathcal{S}) \cap \mathcal{Q}(\mathcal{S}) = \{a \in \mathcal{A}: a^2 \in \mathcal{R}(\mathcal{S})\};$ (iii) $\mathcal{I}(\mathcal{S}) \subseteq \mathcal{R}(\mathcal{S}) \cap \mathcal{Q}(\mathcal{S}).$

Proof. (i) It is easy to see that each ideal of \mathcal{A} contained in $\mathcal{R}(\mathcal{S})$ is a subset of $\mathcal{I}(\mathcal{S})$. We show that $\mathcal{I}(\mathcal{S})$ is an ideal. Suppose that $a \in \mathcal{I}(\mathcal{S})$ and $b \in \mathcal{A}$. Then by definition of $\mathcal{I}(\mathcal{S})$, $ab \in \mathcal{R}(\mathcal{S})$. Now to see that $ab \in \mathcal{I}(\mathcal{S})$ it is enough to show that $(ab)c \in \mathcal{R}(\mathcal{S})$, for each $c \in \mathcal{A}$. We consider (2.1) in the Jordan algebra $\mathcal{A} \oplus \mathcal{X}$, for $x = a, y = b, z \in \mathcal{S}$ and take $c \in \mathcal{A}$. Since \mathcal{S} is a submodule and $a \in \mathcal{I}(\mathcal{S})$, it follows that $R_z R_{ab}(c) = 0$, or equivalently, $(ab)c \in \mathcal{R}(\mathcal{S})$. Parts (ii) and (iii) are easily verified.

3. Automatic continuity of Higher derivations from JB^* -algebras

First of all we recall that a real Banach Jordan algebra \mathcal{A} is a JB-algebra whenever $||a^2|| = ||a||^2$ and $||a^2|| \leq ||a^2 + b^2||$, for all $a, b \in$

 \mathcal{A} . A complex Banach Jordan algebra \mathcal{A} is said to be a JB^* -algebra whenever there is an algebra involution * on \mathcal{A} such that $||a^*|| = ||a||$ and $||U_a(a^*)|| = ||a||^3$, for all $a \in \mathcal{A}$. For a subset \mathcal{C} of a JB^* -algebra \mathcal{A} , set $\mathcal{C}_h := \{a \in \mathcal{C}: a = a^*\}$. Then \mathcal{A}_h is a JB-algebra and $\mathcal{A} = \mathcal{A}_h + i\mathcal{A}_h$. If $a \in \mathcal{A}_h$ then $C^*(a)$, the JB^* -subalgebra of \mathcal{A} generated by a (or by a, 1 if \mathcal{A} is unital), is a C^* -algebra. Clearly each C^* -algebra with respect to its Jordan product is a JB^* -algebra. The reader is referred to [7] for more details on JB-algebras and JB^* -algebras. From now on throughout this section we assume that \mathcal{A} is a unital JB^* -algebra, \mathcal{B} is a Banach Jordan algebra and $\{d_m\}$ is a higher derivation of infinite rank from \mathcal{A} into \mathcal{B} with continuous d_0 . For each $m = 0, 1, 2, \ldots$, set

$$\mathcal{S}_m := \{ b \in \mathcal{B} : \exists \{a_n\} \subseteq \mathcal{A} \text{ s.t. } a_n \to 0 \text{ and } d_m(a_n) \to b \},\$$

which is called the separating space of d_m . This is a closed linear subspace of \mathcal{B} ([5], Theorem 5.1.2) and by the closed graph theorem d_m is continuous if and only if $\mathcal{S}_m = \{0\}$. Therefore $\{d_m\}$ is continuous if and only if $\mathcal{S}_m = \{0\}$, for all $m \geq 0$. If we consider \mathcal{B} as a Jordan \mathcal{A} -module via the homomorphism d_0 as in Example 2.1 (ii), then d_1 would be a derivation from \mathcal{A} into \mathcal{B} . With the assumption on d_0 we have $\mathcal{S}_0 = \{0\}$ and it is easy to see that \mathcal{S}_1 is a submodule of \mathcal{B} . In general \mathcal{S}_m is not a submodule for $m \geq 2$, but if $d_o, d_1, \ldots, d_{m-1}$ are assumed to be continuous, then d_m would be an intertwining map and hence \mathcal{S}_m is a submodule. Using the same notations as in Section 2, set $\mathcal{R}_m := \mathcal{R}(\mathcal{S}_m)$, $\mathcal{Q}_m := \mathcal{Q}(\mathcal{S}_m)$ and $\mathcal{I}_m := \mathcal{I}(\mathcal{S}_m)$. If d_0, \ldots, d_{m-1} are continuous then we have

$$\mathcal{R}_m = \{ a \in \mathcal{A}: R_a d_m \quad \text{is continuous} \}$$

= $\{ a \in \mathcal{A}: d_m R_a \quad \text{is continuous} \},$

and

$$\mathcal{Q}_m = \{ a \in \mathcal{A} : U_a d_m \quad \text{is continuous} \} \\= \{ a \in \mathcal{A} : d_m U_a \quad \text{is continuous} \}.$$

Before we prove the next lemma, we recall that a subalgebra \mathcal{C} of a Jordan algebra \mathcal{A} is said to be strongly associative if $[R_a, R_b] = 0$, for all $a, b \in \mathcal{C}$. By Example 1.8.1 of [10], for each $a \in \mathcal{A}$, the subalgebra of \mathcal{A} generated by a, (or by a, 1 if \mathcal{A} is unital) is strongly associative and by ([10] Lemma 1.8.8), if a, b lie in a strongly associative subalgebra, then $U_{ab} = U_a U_b$.

Lemma 3.1. Let \mathcal{A} be a JB^* -algebra. Suppose that \mathcal{X} is a Banach Jordan \mathcal{A} -module, \mathcal{Y} is a weak Jordan \mathcal{A} -module and $T : \mathcal{X} \longrightarrow \mathcal{Y}$ is

a module homomorphism. If $a \in \mathcal{A}_h$, and $\{f_n\} \subseteq C^*(a)$ is such that $f_i f_j = 0 \ (i \neq j)$, then $U_{f_n^2}T$ is continuous for all but a finite number of n's.

Proof. Suppose that $U_{f_n}{}^2T$ is discontinuous for infinitely many *n*'s. By considering a subsequence we may assume that $U_{f_n}{}^2T$ is discontinuous for each *n*. Let M_n and K_n be the norms of the bounded linear operators $x \mapsto U_{f_n}(x), \mathcal{X} \longrightarrow \mathcal{X}$, and $y \mapsto U_{f_n}(y), \mathcal{Y} \longrightarrow \mathcal{Y}$, respectively. Note that $M_n, K_n > 0$ for each n; otherwise $U_{f_n}{}^2T = TU_{f_n}{}^2 = 0$ which is continuous. Choose a sequence $\{x_n\}$ in \mathcal{X} such that

$$||x_n|| \le 2^{-n}/M_n,$$

 $||U_{f_n^2}T(x_n)|| \ge nK_n.$

Take $z = \sum_{n=1}^{\infty} U_{f_n}(x_n)$. By strong associativity of $C^*(a)$ as a subalgebra of $\mathcal{A} \oplus \mathcal{X}$ and $\mathcal{A} \oplus \mathcal{Y}$, we have $U_{f_i}U_{f_j} = U_{f_if_j} = 0$ $(i \neq j)$, on $\mathcal{A} \oplus \mathcal{X}$ and $\mathcal{A} \oplus \mathcal{Y}$. Since T is a module homomorphism, $K_n ||T(z)|| \geq ||U_{f_n}(T(z))|| = ||TU_{f_n}(z)|| = ||T(U_{f_n^2}(x_n))|| = ||U_{f_n^2}(Tx_n)|| \geq nK_n$. Therefore $||T(z)|| \geq n$ for each n, which is impossible. So the result holds.

Remark 3.2. Suppose that \mathcal{B} is a Jordan algebra. Then $\mathcal{B}_m := \underbrace{\mathcal{B} \oplus \mathcal{B} \oplus \ldots \oplus \mathcal{B}}_{m+1}$ is a Jordan algebra with the product defined by

$$(x_0, x_1, \dots, x_m)(y_0, y_1, \dots, y_m) = (x_0 y_0, x_0 y_1 + x_1 y_0, \dots, \sum_{i=0}^m x_i y_{m-i}),$$

for all $(x_0, x_1, \ldots, x_m), (y_0, y_1, \ldots, y_m) \in \mathcal{B}_m$. Clearly, this product is commutative. Suppose that $\bar{x} = (x_0, x_1, \ldots, x_m), \bar{y} = (y_0, y_1, \ldots, y_m) \in \mathcal{B}_m$. Then the k^{th} entries of $\bar{x}(\bar{x}^2\bar{y})$ and $\bar{x}^2(\bar{x}\bar{y})$ are

$$\sum_{l=0}^{k} x_l \Big(\sum_{j=0}^{k-l} \sum_{i=0}^{j} (x_j x_{j-i}) y_{k-j-l} \Big),$$
(3.1)

and

$$\sum_{l=0}^{k} \sum_{i=0}^{l} \sum_{j=0}^{k-l} (x_l x_{l-i}) (x_j y_{k-j-l}), \qquad (3.2)$$

respectively. By identities (O2) and (O3) in Section 1.7 of [10], (3.1) and (3.2) are equal, and hence \mathcal{B}_m is a Jordan algebra. Furthermore, let \mathcal{B} be

a Banach Jordan algebra. Define a norm on \mathcal{B}_m by $\|(x_0, x_1, \ldots, x_m)\|_0 = \sum_{i=0}^m \|x_i\|$. Then $\|.\|_0$ is a complete norm on \mathcal{B}_m and it is easy to see that

$$\|(x_0, x_1, \dots, x_m)(y_0, y_1, \dots, y_m)\|_0$$

$$\leq \|(x_0, x_1, \dots, x_m)\|_0 \|(y_0, y_1, \dots, y_m)\|_0,$$

for all $(x_0, x_1, \ldots, x_m), (y_0, y_1, \ldots, y_m) \in \mathcal{B}_m$. Therefore \mathcal{B}_m is a Banach Jordan algebra.

Lemma 3.3. Suppose that \mathcal{A} is a JB^* -algebra and \mathcal{B} is a Banach Jordan algebra. Let $\{d_m\} : \mathcal{A} \longrightarrow \mathcal{B}$ be a higher derivation with continuous d_0 . Let $a \in \mathcal{A}_h$ and let $\{f_n\} \subseteq C^*(a)$ be such that $f_i f_j = 0 \ (i \neq j)$. Then for each $m = 0, 1, 2, \ldots$, we have $f_n^2 \in \mathcal{Q}_m$, for all but a finite number of n's.

Proof. Consider a fixed m, and let \mathcal{B}_m be as in Remark 3.2. We define $\theta_m \colon \mathcal{A} \longrightarrow \mathcal{B}_m$,

$$a \mapsto (d_0(a), d_1(a), \ldots, d_m(a)).$$

Then θ_m is a homomorphism and \mathcal{B}_m is a weak Jordan \mathcal{A} -module via the homomorphism θ_m . Also as in Example 2.1 (ii), θ_m is a module homomorphism. We have $U_{f_i}U_{f_j} = U_{f_if_j} = 0$ $(i \neq j)$, on the split null extension of \mathcal{A} and \mathcal{B}_m . Hence by Lemma 3.1, $U_{f_n^2}\theta_m$ is continuous for all but a finite number of *n*'s. Thus for such *n*'s, $U_{f_n^2}d_1, \ldots, U_{f_n^2}d_m$ are continuous and it follows that $f_n^2 \in \mathcal{Q}_m$, for all but a finite number of *n*'s.

Theorem 3.4. Let \mathcal{A} be a JB^* -algebra and let \mathcal{B} be a Jordan Banach algebra. Suppose that $\{d_m\}$ is a higher derivation from \mathcal{A} into \mathcal{B} with continuous d_0 . Then the following assertions hold.

(i) If $a \in \mathcal{A}_h$ and Δ is the maximal ideal space of $C^*(a)$, then for every $m = 1, 2, \ldots$, the set $F_m = \{\lambda \in \Delta : \lambda(\mathcal{Q}_m \cap C^*(a)) = \{0\}\}$ is finite.

(ii) If \mathcal{I} is a closed ideal of \mathcal{A} containing \mathcal{Q}_m , then every element in the JB-algebra $\left(\frac{\mathcal{A}}{\mathcal{I}}\right)_h$ has finite spectrum.

(iii) If d_1, \ldots, d_{m-1} are continuous and \mathcal{K} is a closed ideal of \mathcal{A} contained in \mathcal{Q}_m , then $d_m \mid_{\mathcal{K}}$ is continuous.

(iv) If d_1, \ldots, d_{m-1} are continuous and \mathcal{L} is an ideal of \mathcal{A} such that $d_m \mid_{\mathcal{L}}$ is continuous, then $\mathcal{L} \subseteq \mathcal{I}_m \subseteq \mathcal{Q}_m$.

Proof. (i) If F_m is infinite, then we may find an infinite sequence $\{\lambda_k\} \subseteq \Delta$ and a sequence $\{V_k\}$ of open subsets of Δ such that $V_j \cap V_k = \emptyset$ $(j \neq k)$, and $\lambda_k \in V_k$, for each k. For every $k \in \mathbb{N}$, choose $f_k \in C^*(a)$ such that $f_k(\lambda_k) \neq 0$ and $f_k(\Delta \setminus V_k) = \{0\}$. Then $f_k f_j = 0$ $(k \neq j)$, and $f_k^2 \notin \mathcal{Q}_m$ which contradicts Lemma 3.3.

(ii) Let \mathcal{I} be a closed ideal in \mathcal{A} such that $\mathcal{Q}_m \subseteq \mathcal{I}$, for all $m = 0, 1, 2, \ldots$. For each $a \in \mathcal{A}_h$, we have

 $\{\lambda \in \Delta : \lambda (I \cap C^*(a)) = \{0\}\} \subseteq \{\lambda \in \Delta : \lambda (\mathcal{Q}_m \cap C^*(a)) = \{0\}\}.$ Hence by (i) the left hand side is a finite set and as in Theorem 12.2 of [18], $\frac{C^*(a)}{C^*(a) \cap \mathcal{I}}$ is finite dimensional, and since the closed *-subalgebra of $\frac{\mathcal{A}}{\mathcal{I}}$ generated by a and 1 is isomorphic to $\frac{C^*(a)}{C^*(a) \cap \mathcal{I}}$, the result holds.

(iii) We show that d_m is bounded on bounded subsets of \mathcal{K}_h . On the contrary suppose that there is a sequence $\{a_n\} \subseteq \mathcal{K}_h$ such that $a_n \to 0$ and $\parallel d_m(a_n) \parallel \to \infty$. We may assume that $\sum_{n=1}^{\infty} \parallel a_n \parallel^2 \leq 1$. Let $b = (\sum_{n=1}^{\infty} a_n^2)^{1/8}$. Then $b \geq 0$, $\parallel b \parallel \leq 1$ and $a_n^2 \leq b^8$ $(n \in \mathbb{N})$. By [9] Lemma 1.7, for each $n \in \mathbb{N}$ there exists $u_n \in \mathcal{K}_h$ such that $\parallel u_n \parallel \leq 2 \parallel b^{1/4} \parallel \leq 2$ and $a_n = U_b(u_n)$. Hence $d_m(a_n) = d_m U_b(u_n)$. Since $\mathcal{K} \subseteq \mathcal{Q}_m$, we have $b \in \mathcal{Q}_m$ and so $d_m U_b$ is continuous. Now it follows that $\parallel d_m(a_n) \parallel \leq \parallel d_m U_b \parallel \parallel u_n \parallel \leq 2 \parallel d_m U_b \parallel$, which is a contradiction.

(iv) Suppose that $d_m \mid_{\mathcal{L}}$ is continuous. Take $a \in \mathcal{S}_m$. Then there is a sequence $\{a_n\} \subseteq \mathcal{A}$ such that $a_n \to 0$ and $d_m(a_n) \to a$. Let $b \in \mathcal{L}$. Since d_1, \ldots, d_{m-1} are continuous it follows that

$$d_m(ba_n) = d_0(b)d_m(a_n) + d_1(b)d_{m-1}(a_n) + \ldots + d_m(b)d_0(a_n) \to ba.$$

Since $ba_n \in \mathcal{L}$ and $d_m \mid_{\mathcal{L}}$ is continuous, ba = 0. This means that $b \in \mathcal{R}_m$ and hence $\mathcal{L} \subseteq \mathcal{R}_m$. But \mathcal{I}_m is the largest ideal of \mathcal{A} contained in \mathcal{R}_m , so we have $\mathcal{L} \subseteq \mathcal{I}_m \subseteq \mathcal{Q}_m$.

Corollary 3.5. Let \mathcal{A} be a JB^* -algebra and let \mathcal{B} be a Banach Jordan algebra. Suppose that $\{d_m\}$ is a higher derivation from \mathcal{A} into \mathcal{B} with continuous d_0 . If \mathcal{K} is a closed ideal of \mathcal{A} contained in $\bigcap \mathcal{Q}_m$, then $d_m \mid_{\mathcal{K}}$ is continuous for all m.

Proof. Similar to the proof of Theorem 3.4 (iii).

Theorem 3.6. Let $\{d_m\}$ be a higher derivation of a JB^* -algebra \mathcal{A} into a Banach Jordan algebra \mathcal{B} such that d_0 is continuous. Then $\{d_m\}$ is

continuous if and only if $(\mathcal{Q}_m)_h := \{a \in \mathcal{Q}_m : a = a^*\}$ is a real linear subspace of \mathcal{A}_h , for all $m \in \mathbb{N}$.

Proof. If $\{d_m\}$ is continuous then $\mathcal{Q}_m = \mathcal{A}$, and so $(\mathcal{Q}_m)_h$ is real linear. Conversely let $(\mathcal{Q}_m)_h$ be real linear. Since d_1 is a derivation, by ([9] Theorem 2.2), d_1 is continuous. Suppose by induction that each $d_i (i < m)$ is continuous. Then \mathcal{S}_m is a submodule of \mathcal{B} , and $U_{\mathcal{A}_h} (\mathcal{Q}_m)_h$ $\subseteq (\mathcal{Q}_m)_h$, hence $(\mathcal{Q}_m)_h$ is an ideal of \mathcal{A}_h . By Theorem 3.4 (iii), d_m is continuous on $(\mathcal{Q}_m)_h \oplus i(\mathcal{Q}_m)_h$. Hence $(\mathcal{Q}_m)_h \oplus i(\mathcal{Q}_m)_h \subseteq \mathcal{I}_m \subseteq \mathcal{Q}_m$ and so $\mathcal{I}_m = (\mathcal{Q}_m)_h \oplus i(\mathcal{Q}_m)_h$. Let $\pi : \mathcal{A} \to \frac{\mathcal{A}}{\mathcal{I}_m}$ be the canonical quotient map. By Theorem 3.4 (ii) every element in $\left(\frac{A}{I_m}\right)_h$ has finite spectrum. But $\left(\frac{A}{I_{\rm m}}\right)_h = \frac{A_{\rm h}}{(I_{\rm m})_{\rm h}}$ is a semisimple real Banach Jordan algebra in which every element has non-empty finite spectrum and by [2] it is reduced, that is, there exist idempotents $\pi(e_1), \ldots, \pi(e_n) \in \left(\frac{\mathcal{A}}{\mathcal{I}_m}\right)_h$ such that $\pi(e_i)\pi(e_j) =$ $0, (i \neq j), \sum_{i=1}^{n} \pi(e_i) = 1$, and $U_{\pi(e_i)} \left(\frac{\mathcal{A}}{\mathcal{I}_m}\right)_h^m = \mathbb{R}\pi(e_i), (i = 1, \dots, n)$. Since each $\pi(e_i)$ is self-adjoint, $\pi(e_i^*e_i) = \pi(e_i), (i = 1, \dots, n)$, and so $\pi(e_1^*e_1), \ldots, \pi(e_n^*e_n)$ are idempotents in $\left(\frac{\mathcal{A}}{\mathcal{I}_m}\right)_h$ with sum 1 such that $\pi(e_i^*e_i)\pi(e_j^*e_j) = 0$, $(i \neq j)$. Hence by replacing e_i with $e_i^*e_i$, if necessary, we may assume that each e_i is self-adjoint. Suppose that $\{a_k\} \subseteq \mathcal{A}_h \text{ and } a_k \to 0.$ Then $\pi(a_k) \to 0$, and for each $i = 1, \ldots, n$, and each $k \in \mathbb{N}$, there exists $\lambda_{ik} \in \mathbb{R}$ such that

$$U_{\pi(e_i)}(\pi(a_k)) = \lambda_{ik}\pi(e_i). \tag{3.3}$$

Hence $\lambda_{ik}\pi(e_i) \to 0$ as $k \to \infty$, and so $\lambda_{ik} \to 0$ as $k \to \infty$. By (3.3) we have

$$U_{e_i}(a_k) - \lambda_{ik} e_i \in \mathcal{I}_m, \qquad (i = 1, \dots, n, \ k \in \mathbb{N}),$$

and by continuity of $d_m \mid_{\mathcal{I}_m}$, $\lim_{k\to\infty} d_m (U_{e_i}(a_k) - \lambda_{ik}e_i) = 0$. Since $\lim_{k\to\infty} \lambda_{ik} = 0$, we have $\lim_{k\to\infty} d_m U_{e_i}(a_k) = 0$. Therefore $d_m U_{e_i}$ is continuous for $i = 1, \ldots, n$, and $e_1, \ldots, e_n \in (\mathcal{Q}_m)_h$. So $e_1 + \ldots + e_n \in \mathcal{I}_m = (\mathcal{Q}_m)_h \oplus i(\mathcal{Q}_m)_h$. Since $\pi(e_1 + \ldots + e_n)$ is the identity of $\frac{\mathcal{A}}{\mathcal{I}_m}$, $\mathcal{A} = \mathcal{I}_m$ and d_m is continuous on \mathcal{A} .

Lemma 3.7. Let \mathcal{A} and \mathcal{B} be JB^* -algebras and let $\phi : \mathcal{A} \longrightarrow \mathcal{B}$ be a *-homomorphism, that is $\phi(a^*) = (\phi(a))^*$ $(a \in \mathcal{A})$. Consider \mathcal{B} as a Banach Jordan \mathcal{A} -module via the homomorphism ϕ . If \mathcal{S} is a submodule of \mathcal{B} , then $\mathcal{Q}(\mathcal{S}) = \mathcal{I}(\mathcal{S})$.

Proof. We show that $(\mathcal{Q}(\mathcal{S}))_h = (\mathcal{I}(\mathcal{S}))_h$. Consider the identities

$$(U_x(y^2))^2 = U_x U_y U_y(x^2), (3.4)$$

$$(xy)^{2} = \frac{1}{2}yU_{x}(y) + \frac{1}{4}U_{x}(y^{2}) + \frac{1}{4}U_{y}(x^{2}), \qquad (3.5)$$

which are valid in any Jordan algebra, see [10], p. 37 for the first one. The second holds by the fact that any Jordan algebra generated by two elements is special, see Shirsov-Cohen's theorem, [7] Theorem 2.4.14. Now, if $a \in \mathcal{Q}(S)_h$ then by setting $x = \phi(a) \in \mathcal{B}_h$ in (3.4) and (3.5), we have $(\phi(a)b)^2 = 0$ ($a \in \mathcal{Q}(S)$, $b \in S$). Thus $\phi(a)b = 0$ ($a \in \mathcal{Q}(S)$, $b \in S$). Therefore $a \in \mathcal{R}(S)$ and it follows that $(\mathcal{Q}(S))_h \subseteq (\mathcal{R}(S))_h$. So $(\mathcal{Q}(S))_h = (\mathcal{Q}(S))_h \cap (\mathcal{R}(S))_h = (\mathcal{I}(S))_h$, by ([9], Theorem 1.4).

Corollary 3.8. Let \mathcal{A} and \mathcal{B} be JB^* -algebras, and let $\{d_m\} : \mathcal{A} \longrightarrow \mathcal{B}$ be a higher derivation for which d_0 is a *-homomorphism. Then $\{d_m\}$ is continuous.

Proof. Since d_0 is a *-homomorphism, it is automatically continuous. Note that S_1 is a submodule of \mathcal{B} , thus by Lemma 3.7, \mathcal{Q}_1 is a linear subspace of \mathcal{A} and hence by ([9] Theorem 2.2), d_1 is continuous. Fix m, suppose that each $d_i(i < m)$ is continuous. Therefore S_m is a submodule and again by Lemma 3.7, \mathcal{Q}_m is a linear subspace of \mathcal{A} , and hence by Theorem 3.6, d_m is continuous.

In the next few results, by a Jordan higher derivation from a C^* -algebra \mathcal{A} we mean a higher derivation from \mathcal{A} , with its Jordan product, into a Banach Jordan algebra. Obviously each higher derivation (with respect to the associative product) is also a Jordan derivation.

As a consequence of Corollary 3.8 each higher derivation, or each Jordan higher derivation between C^* -algebras, is continuous provided that d_0 is a *-homomorphism. In the next results d_0 is not assumed to be a *-homomorphism.

Theorem 3.9. Let \mathcal{A} be a commutative C^* -algebra, and let \mathcal{B} be a Banach Jordan algebra. If $\{d_m\} : \mathcal{A} \to \mathcal{B}$ is a Jordan higher derivation such that d_0 is continuous, then $\{d_m\}$ is continuous.

Proof. By ([9], Theorem 2.4) of , d_1 is continuous. Suppose that d_1, \ldots, d_{m-1} are continuous. Then S_m is a submodule. We show that $(Q_m)_h =$

20

 $(\mathcal{I}_m)_h$. Let $a \in (\mathcal{Q}_m)_h$. We have $a^2\mathcal{A} = a\mathcal{A}a = U_a\mathcal{A} \subseteq \mathcal{Q}_m$, and hence $a^2\mathcal{A} \subseteq \mathcal{Q}_m$. Since \mathcal{I}_m is the largest ideal of \mathcal{A} contained in \mathcal{Q}_m , $a^2\mathcal{A} \subseteq \mathcal{I}_m$. Therefore $a^4 \in \mathcal{I}_m$ and since $a = a^*$, we have $a \in \mathcal{I}_m$. \Box Before proving the next result, we recall that if \mathcal{A} is an associative algebra with associative product $(a, b) \mapsto ab$, and the Jordan product $(a, b) \mapsto \frac{ab+ba}{2}$, then $U_a(b) = aba \quad (a, b \in \mathcal{A})$.

Theorem 3.10. Let \mathcal{A} be a C^* -algebra with minimal idempotents, and let $\{d_m\}$ be a Jordan higher derivation from \mathcal{A} to a Banach Jordan algebra \mathcal{B} . If d_0, \ldots, d_{m-1} are continuous on \mathcal{A} , then $\{d_m\}$ is continuous on $\overline{\operatorname{soc}(\mathcal{A})}$.

Proof. By ([3], Theorem 30.10), $\operatorname{soc}(\mathcal{A})$ exists. Let M denote the set of all minimal idempotents of \mathcal{A} . Then

$$\operatorname{soc}(\mathcal{A}) = \sum_{e \in M} e\mathcal{A} = \sum_{e \in M} \mathcal{A}e,$$
(3.6)

where by \sum we mean the algebraic sum. Since d_0, \ldots, d_{m-1} are continuous, we have

 $\mathcal{Q}_m = \{a \in \mathcal{A} : U_a d_m \text{ is continuous}\} = \{a \in \mathcal{A} : d_m U_a \text{ is continuous}\}(3.7)$ Suppose that $a \in \text{soc}(\mathcal{A})_h$, then there exist $b_1, \ldots, b_n \in \mathcal{A}$, and $e_1, \ldots, e_n \in \mathcal{M}$ such that $a = e_1 b_1 + \ldots + e_n b_n$, and hence $a^* = b_1^* e_1^* + \ldots + b_n^* e_n^* = a$. So

$$U_a(b) = aba = \sum_{i=1}^n \sum_{j=1}^n e_i b_i b b_j^* e_j^* \qquad (b \in \mathcal{A}).$$
(3.8)

We know that the adjoint of a minimal idempotent is also a minimal idempotent, hence by ([3], Theorem 31.6), $\dim(e_i\mathcal{A}e_j^*) \leq 1$, for $i, j = 1, \ldots, n$. By (3.8) we have, $U_a(\mathcal{A}) \subseteq \sum_{i=1}^n \sum_{j=1}^n e_i\mathcal{A}e_j^*$, thus $\dim(U_a(\mathcal{A})) < \infty$ and d_m is continuous on $U_a(\mathcal{A})$. This shows that d_mU_a is continuous on \mathcal{A} , and hence by (3.7), $a \in \mathcal{Q}_m$. It follows that $\operatorname{soc}(\mathcal{A})_h \subseteq \mathcal{Q}_m$, and since \mathcal{Q}_m is closed, $(\operatorname{soc}(\mathcal{A})_h) \subseteq \mathcal{Q}_m$. By (3.6) $\operatorname{soc}(\mathcal{A})$ is an *-ideal, hence $(\operatorname{soc}(\mathcal{A}))_h = (\operatorname{soc}(\mathcal{A})_h)$. Now the same argument as in Theorem 3.4 (iii) implies that d_m is continuous on $\operatorname{soc}(\mathcal{A})$. \Box

Corollary 3.11. If \mathcal{A} is a C^* -algebra with minimal idempotents such that $\overline{\operatorname{soc}(\mathcal{A})} = \mathcal{A}$, then each Jordan higher derivation from \mathcal{A} into a Banach Jordan algebra \mathcal{B} with continuous d_0 is continuous. In particular,

if $\mathcal{A} = \mathcal{K}(\mathcal{H})$), the C^{*}-algebra of all compact operators on a Hilbert space \mathcal{H} , then every Jordan higher derivation from \mathcal{A} into a Banach Jordan algebra \mathcal{B} with continuous d_0 , is continuous.

Proof. By the hypothesis, d_0 is continuous on \mathcal{A} . Suppose by induction that d_0, \ldots, d_{m-1} are continuous on \mathcal{A} . Then by Theorem 3.10, d_m is continuous on $\operatorname{soc}(\mathcal{A}) = \mathcal{A}$. The last assertion follows by the fact that $\operatorname{soc}(\mathcal{K}(\mathcal{H}))$ is $\mathcal{F}(\mathcal{H})$, the ideal of finite rank bounded operators on \mathcal{H} , which is dense in $\mathcal{K}(\mathcal{H})$.

Acknowledgment

The authors sincerely thank the referee for valuable comments and suggestions.

References

- P. E. Bland, Higher derivations on rings and modules, Int. J. Math. Math. Sci. 15 (2005), 2373-2387.
- [2] M. Benslimane and A. Kaidi, Structure des algebras de Jordan Banach noncommutatives complexes reguliers ou semi-simple a spectre fini, J. Algebra 113 (1988), 201-206.
- [3] F. Bonsall and J. Duncan, Complete Normed Algebras, Springer Verlag, Berlin, 1973.
- [4] W. Cortes and C. Haetinger, On Jordan generalized higher derivations in rings, *Turk. J. Math.* 29 (2005), 1-10.
- [5] H. G. Dales, Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000.
- [6] C. Haetinger, Higher derivations on Lie ideals, Tendencias em Matematica Aplicada e Computacional 3 (2002), 141-145.
- [7] H. Hanche-Olsen and E. Stormer, Jordan Operator Algebras, Pitman, Boston, 1984.
- [8] H. Hasse and F. K. Schmidt, Noch eine Begrüdung der theorie der höheren Differential quotienten in einem algebraischen Funtionenkörper einer Unbestimmeten, J. Reine Angew. Math. 177 (1937), 215-237.
- [9] S. Hejazian and A. Niknam, Modules, annihilators and module derivations of JB*-algebras, Indian J. Pure Appl. Math. 27 (2) (1996), 129-140.
- [10] N. Jacobson, Structure and Representation of Jordan Algebras, Amer. Math. Soc. Colloq. Publ. 39, Providence, Rhode Island, 1968.
- [11] N. P. Jewell, Continuity of module and higher derivations, *Pacific J. Math.* 68 (1977), 91-98.
- [12] R. J. Loy, Continuity of higher derivations, Proc. Amer. Math. Soc. 37 (1973), 505-510.
- [13] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067–1073.

- [14] K. W. Jun and Y. W. Lee, The image of a continuous strong higher derivation is contained in the radical, Bull. Korean Math. Soc. 33 (1996), 229-232.
- [15] J. R. Ringrose, Automatic continuity of derivations of operator algebras, J. London Math. Soc. 5 (1972), 432-438.
- [16] A. Roy and R. Sridharan, Higher derivations and central simple algebras, Nagoya Math. J. 32 (1968), 21-30.
- [17] S. Satô, On rings with a higher derivation, Proc. Amer. Math. Soc. 30 (1971), 21-30.
- [18] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Notes Series 21, Cambridge University Press, Cambridge, 1976.
- [19] Y. Uchino and T. Satoh, Function field modular forms and higher derivations, Math. Ann. 311 (1998), 439-466.
- [20] A. R. Villena, Lie derivations on Banach algebras, J. Algebra 226 (2000), 390-409.
- [21] E. I. Zelmanov, Jordan algebras with finitness conditions, Algebra i Logika 17 (1978), 693-704.

Shirin Hejazian

Department of Mathematics Ferdowsi University P. O. Box 1159 Mashhad 91775, Iran and Banach Mathematical Research Group (BMRG) Mashhad, Iran e-mail: hejazian@ferdowsi.um.ac.ir

Taiebe Lal Shatery

Department of Mathematics Ferdowsi University P. O. Box 1159 Mashhad 91775, Iran e-mail: ta_sh@stu-mail.um.ac.ir