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AUTOMATIC CONTINUITY OF HIGHER
DERIVATIONS ON JB∗-ALGEBRAS

S. HEJAZIAN AND T. L. SHATERY

Communicated by Fereidoun Ghahramani

Abstract. In this paper we study higher derivations from
JB∗-algebras into Banach Jordan algebras. We show that every
higher derivation {dm} from a JB∗-algebra A into a JB∗-algebra
B is continuous provided that d0 is a ∗-homomorphism. Also it
is proved that every Jordan higher derivation from a commutative
C∗-algebra or from a C∗-algebra which has minimal idempotents
and is the closure of its socle is continuous.

1. Introduction

Let A and B be algebras (associative or non-associative). By a higher
derivation of rank k (k might be∞) we mean a family of linear mappings
{dm}k

m=0 from A into B such that

dm(ab) =
m∑

j=0

dj(a)dm−j(b), (a, b ∈ A, m = 0, 1, 2, . . . , k).

It is clear that d0 is a homomorphism. Higher derivations were intro-
duced by Hasse and Schmidt [8], and algebraists sometimes call them
Hasse-Schmidt derivations. The reader may find some of algebraic re-
sults concerning these mappings in [1, 4, 6, 14, 16, 17]. They are also
studied in other contexts. In [19] higher derivations are applied to study
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generic solving of higher differential equations.
A standard example of a higher derivation of rank k is the family
{Dm

m! }
k
m=0, where D is an ordinary derivation of an algebra A.

If A and B are normed algebras then a higher derivation {dm} is
said to be continuous, whenever every dm is continuous. It is known
that every derivation on a semisimple Banach algebra is continuous [13].
Ringrose [15] proved that every derivation from a C∗-algebra A into a
Banach A-module is continuous. In [9] derivations from JB∗-algebras
into Banach Jordan modules were studied and continuity of these map-
pings were proved in certain cases. Loy in [12] proved that if A is
an (F )-algebra which is a subalgebra of a Banach algebra B of power
series, then every higher derivation {dm} : A → B is automatically con-
tinuous. Jewell [11], showed that a higher derivation from a Banach
algebra onto a semisimple Banach algebra is continuous provided that
ker(d0) ⊆ ker(dm), for all m ≥ 1. Villena [20] proved that every higher
derivation from a unital Banach algebra A into A/P, where P is a prim-
itive ideal of A with infinite codimension, is continuous. Also the range
problem of continuous higher derivations was studied in [14].

In this paper we study automatic continuity of higher derivations from
JB∗-algebras. Section 2 is devoted to some concepts which are needed
in the sequel . In Section 3 we prove that a higher derivation from a
JB∗-algebra into another JB∗-algebra is continuous provided that d0

is a ∗-homomorphism. Also we will show that every (Jordan) higher
derivation from a commutative C∗-algebra or from a C∗-algebra which
has minimal idempotents and is the closure of its socle (e. g. K(H)) into
a Banach Jordan algebra is continuous. These are in fact generalizations
of some results in [9].

2. Preliminaries

Let A be a Jordan algebra and let X be a vector space over the same
field as A. Then X is said to be a Jordan A-module if there is a pair of
bilinear mappings (called module operations), (a, x) 7→ a.x, (a, x) 7→ x.a,
from A×X −→ X such that for all a, b ∈ A and all x ∈ X the following
conditions hold:
(i) a.x = x.a;
(ii) a.(a2.x) = a2.(a.x);
(iii) 2

(
(x.a).b

)
.a + x.(a2.b) = 2(x.a)(a.b) + (x.b).a2.
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A linear subspace S of X is called a submodule if

AS:= {a.x: a ∈ A, x ∈ S} ⊆ S.
If A is a Banach Jordan algebra and X is a Banach space which

is a Jordan A-module then X is said to be a weak Jordan A-module
whenever the mapping x 7→ a.x, from X −→ X is continuous, for all
a ∈ A; and X is called a Banach Jordan A-module if the mapping
(a, x) 7→ a.x, from A× X −→ X is continuous, or equivalently, if there
exists M > 0 such that ‖ a.x ‖≤ M ‖ a ‖‖ x ‖ (a ∈ A, x ∈ X ).

Example 2.1. (i) Every Banach Jordan algebra A is a Banach Jordan
A-module whenever we consider its own product as the module opera-
tion.
(ii) If A and B are Jordan algebras and θ : A −→ B is a homomorphism,
then B can be considered as a Jordan A-module with module operation

a.b = θ(a)b (a ∈ A, b ∈ B).
In this case we will say that B is an A-module via the homomorphism
θ. If A and B are Banach Jordan algebras then it is easy to see that B
is a weak Jordan A-module.
(iii) The topological dual A∗ of A, with module operation (a, f) 7→ a.f
defined by

(a.f)(b) = f(ab) (a, b ∈ A, f ∈ A∗),

is a Banach Jordan A-module.
(iv) If A is a Banach algebra and X is a Banach (respectively weak)
A-module, then we may consider A as a Jordan algebra with Jordan
product (a, b) 7→ ab+ba

2 , A×A 7→ A. Then X with the module operation
a.x = ax+xa

2 is a Banach (respectively weak) Jordan A-module. Here
the mappings (a, x) 7→ ax and (a, x) 7→ xa, A × X → X , denote the
associative module operations of A on X .

Let X and Y be Jordan A-modules. Then a linear mapping T : X −→
Y is said to be a module homomorphism if T (a.x) = a.T (x) (a ∈ A, x ∈
X ). In Example 2.1 (ii), θ is a module homomorphism.

Let A be a Jordan algebra and let X be a Jordan A-module. Then
A ⊕ X with product (a1 + x1)(a2 + x2) = a1a2 + a1.x2 + a2.x1, is a
Jordan algebra which is called the split null extension of A and X . In
fact a linear space X is a Jordan A-module if and only if this split null
extension is a Jordan algebra [10].
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Corresponding to (a, 0) ∈ A⊕ X with a ∈ A, as in any Jordan algebra,
we define the linear operators Ra and Ua on A⊕X as follows

Ra(u) = au, Ua(u) = 2a(au)− a2u (u ∈ A⊕ X ).

We feel free to use the notation Ra and Ua for the same operators on A.
For every x, y in a Jordan algebra, set [Rx, Ry] := RxRy − RyRx. We
recall that each x, y, z in a Jordan algebra satisfy

[Rxy, Rz] + [Rxz, Ry] + [Ryz, Rx] = 0, (2.1)

which is the identity (O1) in Section 1.7 of [10]. For a submodules of X ,
set

R(S):={a ∈ A: Ra(x) = 0 for all x ∈ S},
Q(S):= {a ∈ A: Ua(x) = 0 for all x ∈ S},

I(S):= {a ∈ R(S): ab ∈ R(S) for all b ∈ A}.

Note that if S is a submodule, then it is an ideal of A⊕X , and I(S) is
actually ann(S) in view of Zelmanov, which is an ideal by Lemma 3(b)
of [21]. Here we give the proof for the sake of convenience.

Lemma 2.2. Let A be a Jordan algebra and let X be a Jordan A-module.
If S is a submodule then
(i) I(S) is the largest ideal of A contained in R(S);
(ii) R(S) ∩Q(S) = {a ∈ A: a2 ∈ R(S)};
(iii) I(S) ⊆ R(S) ∩Q(S).

Proof. (i) It is easy to see that each ideal of A contained in R(S) is a
subset of I(S). We show that I(S) is an ideal. Suppose that a ∈ I(S)
and b ∈ A. Then by definition of I(S), ab ∈ R(S). Now to see that
ab ∈ I(S) it is enough to show that (ab)c ∈ R(S), for each c ∈ A. We
consider (2.1) in the Jordan algebra A ⊕ X , for x = a, y = b, z ∈ S
and take c ∈ A. Since S is a submodule and a ∈ I(S), it follows that
RzRab(c) = 0, or equivalently, (ab)c ∈ R(S). Parts (ii) and (iii) are
easily verified. �

3. Automatic continuity of Higher derivations from
JB∗-algebras

First of all we recall that a real Banach Jordan algebra A is a
JB-algebra whenever ‖a2‖ = ‖a‖2 and ‖a2‖ ≤ ‖a2 + b2‖, for all a, b ∈
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A. A complex Banach Jordan algebra A is said to be a JB∗-algebra
whenever there is an algebra involution ∗ on A such that ‖a∗‖ = ‖a‖
and ‖Ua(a∗)‖ = ‖a‖3, for all a ∈ A. For a subset C of a JB∗-algebra A,
set Ch:={a ∈ C: a = a∗}. Then Ah is a JB-algebra and A = Ah + iAh.
If a ∈ Ah then C∗(a), the JB∗-subalgebra of A generated by a (or by
a, 1 if A is unital), is a C∗-algebra. Clearly each C∗-algebra with respect
to its Jordan product is a JB∗-algebra. The reader is referred to [7] for
more details on JB-algebras and JB∗-algebras. From now on through-
out this section we assume that A is a unital JB∗-algebra, B is a Banach
Jordan algebra and {dm} is a higher derivation of infinite rank from A
into B with continuous d0. For each m = 0, 1, 2, . . . , set

Sm := {b ∈ B : ∃{an} ⊆ A s.t. an → 0 and dm(an) → b},
which is called the separating space of dm. This is a closed linear sub-
space of B ([5], Theorem 5.1.2) and by the closed graph theorem dm is
continuous if and only if Sm = {0}. Therefore {dm} is continuous if and
only if Sm = {0}, for all m ≥ 0. If we consider B as a Jordan A-module
via the homomorphism d0 as in Example 2.1 (ii), then d1 would be a
derivation from A into B. With the assumption on d0 we have S0 = {0}
and it is easy to see that S1 is a submodule of B. In general Sm is
not a submodule for m ≥ 2, but if do, d1, . . . dm−1 are assumed to be
continuous, then dm would be an intertwining map and hence Sm is a
submodule. Using the same notations as in Section 2, set Rm := R(Sm),
Qm := Q(Sm) and Im := I(Sm). If d0, . . . , dm−1 are continuous then
we have

Rm={a ∈ A: Radm is continuous }
= {a ∈ A: dmRa is continuous},

and
Qm ={a ∈ A: Uadm is continuous }

= {a ∈ A: dmUa is continuous}.
Before we prove the next lemma, we recall that a subalgebra C of a

Jordan algebra A is said to be strongly associative if [Ra, Rb] = 0, for all
a, b ∈ C. By Example 1.8.1 of [10], for each a ∈ A, the subalgebra of A
generated by a, (or by a, 1 if A is unital) is strongly associative and by
([10] Lemma 1.8.8), if a, b lie in a strongly associative subalgebra, then
Uab = UaUb.

Lemma 3.1. Let A be a JB∗-algebra. Suppose that X is a Banach
Jordan A-module, Y is a weak Jordan A-module and T : X −→ Y is
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a module homomorphism. If a ∈ Ah, and {fn} ⊆ C∗(a) is such that
fifj = 0 (i 6= j), then Ufn

2T is continuous for all but a finite number of
n’s.

Proof. Suppose that Ufn
2T is discontinuous for infinitely many n’s. By

considering a subsequence we may assume that Ufn
2T is discontinuous

for each n. Let Mn and Kn be the norms of the bounded linear operators
x 7→ Ufn(x),X −→ X , and y 7→ Ufn(y),Y −→ Y, respectively. Note
that Mn,Kn > 0 for each n; otherwise Ufn

2T = TUfn
2 = 0 which is

continuous. Choose a sequence {xn} in X such that

‖xn‖ ≤ 2−n/Mn,

‖Ufn
2T (xn)‖ ≥ nKn.

Take z =
∑∞

n=1 Ufn(xn). By strong associativity of C∗(a) as a subal-
gebra of A ⊕ X and A ⊕ Y, we have Ufi

Ufj
= Ufifj

= 0 (i 6= j), on
A ⊕ X and A ⊕ Y. Since T is a module homomorphism, Kn‖T (z)‖ ≥
‖Ufn

(
T (z)

)
‖ = ‖TUfn(z)‖ = ‖T

(
Ufn

2(xn)
)
‖ = ‖Ufn

2(Txn)‖ ≥ nKn.
Therefore ‖T (z)‖ ≥ n for each n, which is impossible. So the result
holds. �

Remark 3.2. Suppose that B is a Jordan algebra. Then Bm :=
B ⊕ B ⊕ . . .⊕ B︸ ︷︷ ︸

m+1

is a Jordan algebra with the product defined by

(x0, x1, . . . , xm)(y0, y1, . . . , ym) = (x0y0, x0y1 + x1y0, . . . ,
m∑

i=0

xiym−i),

for all (x0, x1, . . . , xm), (y0, y1, . . . , ym) ∈ Bm. Clearly, this product is
commutative. Suppose that x̄ = (x0, x1, . . . , xm), ȳ = (y0, y1, . . . , ym) ∈
Bm. Then the kth entries of x̄(x̄2ȳ) and x̄2(x̄ȳ) are

k∑
l=0

xl

( k−l∑
j=0

j∑
i=0

(xjxj−i)yk−j−l

)
, (3.1)

and
k∑

l=0

l∑
i=0

k−l∑
j=0

(xlxl−i)(xjyk−j−l), (3.2)

respectively. By identities (O2) and (O3) in Section 1.7 of [10], (3.1) and
(3.2) are equal, and hence Bm is a Jordan algebra. Furthermore, let B be
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a Banach Jordan algebra. Define a norm on Bm by ‖(x0, x1, . . . , xm)‖0 =∑m
i=0 ‖xi‖. Then ‖.‖0 is a complete norm on Bm and it is easy to see

that

‖(x0, x1, . . . , xm)(y0, y1, . . . , ym)‖0

≤ ‖(x0, x1, . . . , xm)‖0‖(y0, y1, . . . , ym)‖0 ,

for all (x0, x1, . . . , xm), (y0, y1, . . . , ym) ∈ Bm. Therefore Bm is a
Banach Jordan algebra.

Lemma 3.3. Suppose that A is a JB∗-algebra and B is a Banach Jordan
algebra. Let {dm} : A −→ B be a higher derivation with continuous d0.
Let a ∈ Ah and let {fn} ⊆ C∗(a) be such that fifj = 0 (i 6= j). Then for
each m = 0, 1, 2, . . . , we have f2

n ∈ Qm , for all but a finite number of
n’s.

Proof. Consider a fixed m, and let Bm be as in Remark 3.2. We define
θm: A −→ Bm,

a 7→
(
d0(a), d1(a), . . . , dm(a)

)
.

Then θm is a homomorphism and Bm is a weak Jordan A-module via
the homomorphism θm. Also as in Example 2.1 (ii), θm is a module
homomorphism. We have Ufi

Ufj
= Ufifj

= 0 (i 6= j), on the split null
extension of A and Bm. Hence by Lemma 3.1, Ufn

2θm is continuous for
all but a finite number of n’s. Thus for such n’s, Uf2

n
d1, . . . , Uf2

n
dm are

continuous and it follows that f2
n ∈ Qm, for all but a finite number of

n’s. �

Theorem 3.4. Let A be a JB∗-algebra and let B be a Jordan Banach
algebra. Suppose that {dm} is a higher derivation from A into B with
continuous d0. Then the following assertions hold.
(i) If a ∈ Ah and ∆ is the maximal ideal space of C∗(a), then for every
m = 1, 2, . . . , the set Fm = {λ ∈ ∆ : λ(Qm

⋂
C∗(a)) = {0}} is finite.

(ii) If I is a closed ideal of A containing Qm, then every element in the
JB-algebra

(A
I

)
h

has finite spectrum.
(iii) If d1, . . . , dm−1 are continuous and K is a closed ideal of A contained
in Qm, then dm |K is continuous.
(iv) If d1, . . . , dm−1 are continuous and L is an ideal of A such that
dm |L is continuous, then L ⊆ Im ⊆ Qm.
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Proof. (i) If Fm is infinite, then we may find an infinite sequence
{λk} ⊆ ∆ and a sequence {Vk} of open subsets of ∆ such that Vj

⋂
Vk =

∅ (j 6= k), and λk ∈ Vk, for each k. For every k ∈ N, choose fk ∈ C∗(a)
such that fk(λk) 6= 0 and fk(∆\Vk) = {0}. Then fkfj = 0 (k 6= j), and
f2

k /∈ Qm which contradicts Lemma 3.3.
(ii) Let I be a closed ideal in A such that Qm ⊆ I, for all m = 0, 1, 2, . . . .
For each a ∈ Ah, we have
{λ ∈ ∆ : λ (I

⋂
C∗(a)

)
= {0}} ⊆ {λ ∈ ∆ : λ

(
Qm

⋂
C∗(a)

)
= {0}}.

Hence by (i) the left hand side is a finite set and as in Theorem 12.2 of
[18], C∗(a)

C∗(a)∩I is finite dimensional, and since the closed ∗-subalgebra of
A
I generated by a and 1 is isomorphic to C∗(a)

C∗(a)∩I , the result holds.
(iii) We show that dm is bounded on bounded subsets of Kh. On the
contrary suppose that there is a sequence {an} ⊆ Kh such that an → 0
and ‖ dm(an) ‖→ ∞. We may assume that

∑∞
n=1 ‖ an ‖2≤ 1. Let

b =
(∑∞

n=1 a2
n

)1/8. Then b ≥ 0, ‖ b ‖≤ 1 and a2
n ≤ b8 (n ∈ N).

By [9] Lemma 1.7, for each n ∈ N there exists un ∈ Kh such that
‖ un ‖≤ 2 ‖ b1/4 ‖≤ 2 and an = Ub(un). Hence dm(an) = dmUb(un).
Since K ⊆ Qm, we have b ∈ Qm and so dmUb is continuous. Now it
follows that ‖ dm(an) ‖≤‖ dmUb ‖‖ un ‖≤ 2 ‖ dmUb ‖, which is a con-
tradiction.
(iv) Suppose that dm |L is continuous. Take a ∈ Sm. Then there is a
sequence {an} ⊆ A such that an → 0 and dm(an) → a. Let b ∈ L. Since
d1, . . . , dm−1 are continuous it follows that

dm(ban) = d0(b)dm(an) + d1(b)dm−1(an) + . . . + dm(b)d0(an) → ba.

Since ban ∈ L and dm |L is continuous, ba = 0. This means that b ∈ Rm

and hence L ⊆ Rm. But Im is the largest ideal of A contained in Rm,
so we have L ⊆ Im ⊆ Qm. �

Corollary 3.5. Let A be a JB∗-algebra and let B be a Banach Jordan
algebra. Suppose that {dm} is a higher derivation from A into B with
continuous d0. If K is a closed ideal of A contained in

⋂
Qm, then dm |K

is continuous for all m.

Proof. Similar to the proof of Theorem 3.4 (iii). �

Theorem 3.6. Let {dm} be a higher derivation of a JB∗-algebra A into
a Banach Jordan algebra B such that d0 is continuous. Then {dm} is
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continuous if and only if (Qm)h :={a ∈ Qm: a = a∗} is a real linear
subspace of Ah, for all m ∈ N.

Proof. If {dm} is continuous then Qm = A, and so (Qm)h is real
linear. Conversely let (Qm)h be real linear. Since d1 is a derivation,
by ([9] Theorem 2.2), d1 is continuous. Suppose by induction that each
di (i < m) is continuous. Then Sm is a submodule of B, and UAh

(Qm)h
⊆ (Qm)h, hence (Qm)h is an ideal of Ah. By Theorem 3.4 (iii), dm is
continuous on (Qm)h ⊕ i(Qm)h. Hence (Qm)h⊕ i(Qm)h⊆ Im⊆ Qm and
so Im=(Qm)h ⊕ i(Qm)h. Let π : A → A

Im be the canonical quotient map.
By Theorem 3.4 (ii) every element in

( A
Im

)
h

has finite spectrum. But( A
Im

)
h

= Ah
(Im)h

is a semisimple real Banach Jordan algebra in which every
element has non-empty finite spectrum and by [2] it is reduced, that is,
there exist idempotents π(e1), . . . , π(en) ∈

( A
Im

)
h

such that π(ei)π(ej) =
0, (i 6= j),

∑n
i=1 π(ei) = 1, and Uπ(ei)

( A
Im

)
h

= Rπ(ei), (i = 1, . . . , n).
Since each π(ei) is self-adjoint, π(ei

∗ei) = π(ei), (i = 1, . . . , n), and
so π(e1

∗e1), . . . , π(en
∗en) are idempotents in

( A
Im

)
h

with sum 1 such
that π(ei

∗ei)π(ej
∗ej) = 0, (i 6= j). Hence by replacing ei with ei

∗ei,
if necessary, we may assume that each ei is self-adjoint. Suppose that
{ak} ⊆ Ah and ak → 0. Then π(ak) → 0, and for each i = 1, . . . , n, and
each k ∈ N, there exists λik ∈ R such that

Uπ(ei)

(
π(ak)

)
= λikπ(ei). (3.3)

Hence λikπ(ei) → 0 as k → ∞, and so λik → 0 as k → ∞. By (3.3) we
have

Uei(ak)− λikei ∈ Im, (i = 1, . . . , n, k ∈ N),

and by continuity of dm |Im , limk→∞ dm
(
Uei(ak) − λikei

)
= 0. Since

limk→∞ λik = 0, we have limk→∞ dmUei(ak) = 0. Therefore dmUei is
continuous for i = 1, . . . , n, and e1, . . . , en ∈ (Qm)h. So e1 + . . . + en ∈
Im = (Qm)h ⊕ i(Qm)h. Since π(e1 + . . . + en) is the identity of A

Im ,
A = Im and dm is continuous on A. �

Lemma 3.7. Let A and B be JB∗-algebras and let φ : A −→ B be a
∗-homomorphism, that is φ(a∗) = (φ(a))∗ (a ∈ A). Consider B as a
Banach Jordan A-module via the homomorphism φ. If S is a submodule
of B, then Q(S) = I(S).
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Proof. We show that (Q(S))h = (I(S))h. Consider the identities(
Ux(y2)

)2 = UxUyUy(x2), (3.4)

(xy)2 =
1
2
yUx(y) +

1
4
Ux(y2) +

1
4
Uy(x2), (3.5)

which are valid in any Jordan algebra, see [10], p. 37 for the first one.
The second holds by the fact that any Jordan algebra generated by two
elements is special, see Shirsov-Cohen’s theorem, [7] Theorem 2.4.14 .
Now, if a ∈ Q(S)h then by setting x = φ(a) ∈ Bh in (3.4) and (3.5), we
have

(
φ(a)b

)2 = 0 (a ∈ Q(S), b ∈ S). Thus φ(a)b = 0 (a ∈ Q(S),
b ∈ S). Therefore a ∈ R(S) and it follows that (Q(S))h⊆ (R(S))h. So
(Q(S))h = (Q(S))h∩ (R(S))h = (I(S))h, by ([9], Theorem 1.4). �

Corollary 3.8. Let A and B be JB∗-algebras, and let {dm} : A −→ B
be a higher derivation for which d0 is a ∗-homomorphism. Then {dm}
is continuous.

Proof. Since d0 is a ∗-homomorphism, it is automatically continuous.
Note that S1 is a submodule of B, thus by Lemma 3.7, Q1 is a linear
subspace of A and hence by ([9] Theorem 2.2), d1 is continuous. Fix m,
suppose that each di(i < m) is continuous. Therefore Sm is a submodule
and again by Lemma 3.7, Qm is a linear subspace of A, and hence by
Theorem 3.6, dm is continuous. �
In the next few results, by a Jordan higher derivation from a C∗-algebra
A we mean a higher derivation from A, with its Jordan product, into a
Banach Jordan algebra. Obviously each higher derivation (with respect
to the associative product) is also a Jordan derivation.
As a consequence of Corollary 3.8 each higher derivation, or each Jordan
higher derivation between C∗-algebras, is continuous provided that d0

is a ∗-homomorphism. In the next results d0 is not assumed to be a
∗-homomorphism.

Theorem 3.9. Let A be a commutative C∗-algebra, and let B be a
Banach Jordan algebra. If {dm} : A → B is a Jordan higher derivation
such that d0 is continuous, then {dm} is continuous.

Proof. By ([9], Theorem 2.4) of , d1 is continuous. Suppose that d1, . . . ,
dm−1 are continuous. Then Sm is a submodule. We show that (Qm)h =
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(Im)h. Let a ∈ (Qm)h. We have a2A = aAa = UaA ⊆ Qm, and
hence a2A ⊆ Qm. Since Im is the largest ideal of A contained in Qm,
a2A ⊆ Im. Therefore a4 ∈ Im and since a = a∗, we have a ∈ Im. �
Before proving the next result, we recall that if A is an associative
algebra with associative product (a, b) 7→ ab, and the Jordan product
(a, b) 7→ ab+ba

2 , then Ua(b) = aba (a, b ∈ A).

Theorem 3.10. Let A be a C∗-algebra with minimal idempotents, and
let {dm} be a Jordan higher derivation from A to a Banach Jordan
algebra B. If d0, . . . , dm−1 are continuous on A, then {dm} is continuous
on soc(A).

Proof. By ([3], Theorem 30.10), soc(A) exists. Let M denote the set
of all minimal idempotents of A. Then

soc(A) =
∑
e∈M

eA =
∑
e∈M

Ae, (3.6)

where by
∑

we mean the algebraic sum. Since d0, . . . , dm−1 are contin-
uous, we have

Qm = {a ∈ A : Uadm is continuous} = {a ∈ A : dmUa is continuous}.(3.7)

Suppose that a ∈ soc(A)h, then there exist b1, . . . , bn ∈ A, and e1, . . . , en ∈
M such that a = e1b1+. . .+enbn, and hence a∗ = b1

∗e∗1+. . .+bn
∗e∗n = a.

So

Ua(b) = aba =
n∑

i=1

n∑
j=1

eibibb
∗
je
∗
j (b ∈ A). (3.8)

We know that the adjoint of a minimal idempotent is also a mini-
mal idempotent, hence by ([3], Theorem 31.6), dim(eiAej

∗) ≤ 1, for
i, j = 1, . . . , n. By (3.8) we have, Ua(A) ⊆

∑n
i=1

∑n
j=1 eiAej

∗, thus
dim(Ua(A)) < ∞ and dm is continuous on Ua(A). This shows that
dmUa is continuous on A, and hence by (3.7), a ∈ Qm. It follows that
soc(A)h ⊆ Qm , and since Qm is closed, (soc(A)h) ⊆ Qm. By (3.6)
soc(A) is an ∗-ideal, hence (soc(A))h = (soc(A)h). Now the same argu-
ment as in Theorem 3.4 (iii) implies that dm is continuous on soc(A). �

Corollary 3.11. If A is a C∗-algebra with minimal idempotents such
that soc(A) = A , then each Jordan higher derivation from A into a Ba-
nach Jordan algebra B with continuous d0 is continuous. In particular,
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if A = K(H)), the C∗-algebra of all compact operators on a Hilbert space
H, then every Jordan higher derivation from A into a Banach Jordan
algebra B with continuous d0, is continuous.

Proof. By the hypothesis, d0 is continuous on A. Suppose by induction
that d0, . . . , dm−1 are continuous on A. Then by Theorem 3.10, dm is
continuous on soc(A) = A. The last assertion follows by the fact that
soc(K(H)) is F(H), the ideal of finite rank bounded operators on H,
which is dense in K(H). �
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