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AUTOMATIC CONTINUITY OF HIGHER
DERIVATIONS ON JB*-ALGEBRAS

S. HEJAZIAN AND T. L. SHATERY

Communicated by Fereidoun Ghahramani

ABSTRACT. In this paper we study higher derivations from
JB*-algebras into Banach Jordan algebras. We show that every
higher derivation {d,} from a JB-algebra A into a JB*-algebra
B is continuous provided that do is a *-homomorphism. Also it
is proved that every Jordan higher derivation from a commutative
C™-algebra or from a C*-algebra which has minimal idempotents
and is the closure of its socle is continuous.

1. Introduction

Let A and B be algebras (associative or non-associative). By a higher
derivation of rank & (k might be co) we mean a family of linear mappings
{dm}k,_o from A into B such that

dm(ab) =Y dj(a)dm—j(b), (a,b€ A, m=0,1,2,... k).
j=0

It is clear that dy is a homomorphism. Higher derivations were intro-
duced by Hasse and Schmidt [8], and algebraists sometimes call them
Hasse-Schmidt derivations. The reader may find some of algebraic re-
sults concerning these mappings in [1, 4, 6, 14, 16, 17]. They are also
studied in other contexts. In [19] higher derivations are applied to study
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generic solving of higher differential equations.
A standard example of a higher derivation of rank %k is the family
a: k o, where D is an ordinary derivation of an algebra A.

If A and B are normed algebras then a higher derivation {d,,} is
said to be continuous, whenever every d,, is continuous. It is known
that every derivation on a semisimple Banach algebra is continuous [13].
Ringrose [15] proved that every derivation from a C*-algebra A into a
Banach A-module is continuous. In [9] derivations from JB*-algebras
into Banach Jordan modules were studied and continuity of these map-
pings were proved in certain cases. Loy in [12] proved that if A is
an (F)-algebra which is a subalgebra of a Banach algebra B of power
series, then every higher derivation {d,,} : A — B is automatically con-
tinuous. Jewell [11], showed that a higher derivation from a Banach
algebra onto a semisimple Banach algebra is continuous provided that
ker(dp) C ker(d,), for all m > 1. Villena [20] proved that every higher
derivation from a unital Banach algebra A into .A4/P, where P is a prim-
itive ideal of A with infinite codimension, is continuous. Also the range
problem of continuous higher derivations was studied in [14].

In this paper we study automatic continuity of higher derivations from
JB*-algebras. Section 2 is devoted to some concepts which are needed
in the sequel . In Section 3 we prove that a higher derivation from a
JB*-algebra into another JB*-algebra is continuous provided that dy
is a *-homomorphism. Also we will show that every (Jordan) higher
derivation from a commutative C*-algebra or from a C*-algebra which
has minimal idempotents and is the closure of its socle (e. g. K£(H)) into
a Banach Jordan algebra is continuous. These are in fact generalizations
of some results in [9].

2. Preliminaries

Let A be a Jordan algebra and let X be a vector space over the same
field as A. Then X is said to be a Jordan A-module if there is a pair of
bilinear mappings (called module operations), (a,x) — a.z, (a,z) — x.a,
from A x X — X such that for all a,b € A and all z € X the following
conditions hold:

(i) ax==zua;
(i) a.(a®.x) = a®.(a.z);
(i) 2((z.a).b).a + z.(a®.b) = 2(z.a)(a.b) + (z.b).a*.
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A linear subspace S of X is called a submodule if

AS:={a.x: a€e A,z € S} CS.

If A is a Banach Jordan algebra and X is a Banach space which
is a Jordan A-module then X is said to be a weak Jordan A-module
whenever the mapping * — a.x, from X — X is continuous, for all
a € A; and X is called a Banach Jordan A-module if the mapping
(a,x) — a.x, from A x X — X is continuous, or equivalently, if there
exists M > 0 such that || a.x |< M ||a |||z (a€ Az e X).

Example 2.1. (i) Every Banach Jordan algebra A is a Banach Jordan
A-module whenever we consider its own product as the module opera-
tion.

(ii) If A and B are Jordan algebras and 6 : A — B is a homomorphism,
then B can be considered as a Jordan A-module with module operation
a.b=0(a)b (ae A, be B).

In this case we will say that B is an A-module via the homomorphism
0. If A and B are Banach Jordan algebras then it is easy to see that B

is a weak Jordan .A-module.
(iii) The topological dual A* of A, with module operation (a, f) — a.f
defined by

(a.f)(0) = f(ab)  (a,b€ A, feAY),

is a Banach Jordan .A-module.

(iv) If A is a Banach algebra and X is a Banach (respectively weak)
A-module, then we may consider A as a Jordan algebra with Jordan
product (a,b) — ‘lerTba, Ax A A. Then X with the module operation
a.x = % is a Banach (respectively weak) Jordan A-module. Here
the mappings (a,z) +— ax and (a,z) — za, A x X — X, denote the
associative module operations of A on X.

Let X and Y be Jordan A-modules. Then a linear mapping 7' : X —
Y is said to be a module homomorphism if T'(a.z) = a.T(z) (a € A,z €
X). In Example 2.1 (ii), 6 is a module homomorphism.

Let A be a Jordan algebra and let X be a Jordan .A-module. Then
A @& X with product (a1 + x1)(a2 + z2) = ajaz + a;.x2 + az.x1, is a
Jordan algebra which is called the split null extension of A and X. In
fact a linear space X is a Jordan A-module if and only if this split null
extension is a Jordan algebra [10].
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Corresponding to (a,0) € A@ X with a € A, as in any Jordan algebra,
we define the linear operators R, and U, on A @ X as follows

Ro(u) = au, Uy(u) =2a(au) —a*u (ue A®X).

We feel free to use the notation R, and U, for the same operators on A.
For every z,y in a Jordan algebra, set [Ry, R,] := R, R, — RyR,. We
recall that each z,y, z in a Jordan algebra satisfy

[Ra;yy Rz] + [Rx27 Ry] + [Ry27 Ra:] - 0, (21)

which is the identity (O1) in Section 1.7 of [10]. For a submodules of X,
set
R(S):={a € A: Ry(z)=0 forall zeS},
Q(S)={a€c A Uy(zx) =0 forall zeS},
Z(S):={a € R(S): abe R(S) forall be A}.

Note that if S is a submodule, then it is an ideal of A® X, and Z(S) is
actually ann(S) in view of Zelmanov, which is an ideal by Lemma 3(b)
of [21]. Here we give the proof for the sake of convenience.

Lemma 2.2. Let A be a Jordan algebra and let X be a Jordan A-module.
If § is a submodule then

(1) Z(S) is the largest ideal of A contained in R(S);

(i) R(S)NQ(S) ={a € A: a®> € R(S)};

(iii) Z(S) CR(S) N Q(S).

Proof. (i) It is easy to see that each ideal of A contained in R(S) is a
subset of Z(S). We show that Z(S) is an ideal. Suppose that a € Z(S)
and b € A. Then by definition of Z(S), ab € R(S). Now to see that
ab € Z(8S) it is enough to show that (ab)c € R(S), for each ¢ € A. We
consider (2.1) in the Jordan algebra A @ X, for x = a,y = b, z € S
and take ¢ € A. Since S is a submodule and a € Z(S), it follows that
R.R.(c) = 0, or equivalently, (ab)c € R(S). Parts (ii) and (iii) are
easily verified. O

3. Automatic continuity of Higher derivations from
JB*-algebras

First of all we recall that a real Banach Jordan algebra A is a
J B-algebra whenever ||a?| = ||a]|? and ||a?| < ||a® + b?||, for all a,b €
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A. A complex Banach Jordan algebra A is said to be a JB*-algebra
whenever there is an algebra involution * on A such that ||a*|| = |la||
and ||Uq(a*)|| = ||a||?, for all @ € A. For a subset C of a .JB*-algebra A,
set Cp:={a € C: a =a*}. Then A, is a JB-algebra and A = A}, + iAj.
If a € Ap, then C*(a), the JB*-subalgebra of A generated by a (or by
a, 1 if Ais unital), is a C*-algebra. Clearly each C*-algebra with respect
to its Jordan product is a JB*-algebra. The reader is referred to [7] for
more details on JB-algebras and JB*-algebras. From now on through-
out this section we assume that A4 is a unital JB*-algebra, B is a Banach
Jordan algebra and {d,,} is a higher derivation of infinite rank from A
into B with continuous dy. For each m =0,1,2,..., set

Spi={beB:FHa,} CA s.t. a, — 0 and dp,(a,) — b},

which is called the separating space of d,,. This is a closed linear sub-
space of B ([5], Theorem 5.1.2) and by the closed graph theorem d,, is
continuous if and only if S;;, = {0}. Therefore {d,,} is continuous if and
only if S;;, = {0}, for all m > 0. If we consider B as a Jordan A-module
via the homomorphism dy as in Example 2.1 (ii), then d; would be a
derivation from A into B. With the assumption on dy we have Sp = {0}
and it is easy to see that &1 is a submodule of B. In general S, is
not a submodule for m > 2, but if d,,dy,...d,_1 are assumed to be
continuous, then d,, would be an intertwining map and hence S,, is a
submodule. Using the same notations as in Section 2, set R, := R(Sm),
Q= Q(Sy) and Z,,, := Z(Sp). If do, ... ,dm—1 are continuous then
we have
Rm={a € A: Rud,, is continuous }
={a € A: d,R, is continuous},
and
Qm ={a € A: Uyd,, 1is continuous }
={a € A: d,,U, is continuous}.

Before we prove the next lemma, we recall that a subalgebra C of a
Jordan algebra A is said to be strongly associative if [R,, Rp] = 0, for all
a,b € C. By Example 1.8.1 of [10], for each a € A, the subalgebra of A
generated by a, (or by a,1 if A is unital) is strongly associative and by
([10] Lemma 1.8.8), if a,b lie in a strongly associative subalgebra, then
Uap = UyUsp.

Lemma 3.1. Let A be a JB*-algebra. Suppose that X is a Banach
Jordan A-module, Y is a weak Jordan A-module and T : X — Y is
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a module homomorphism. If a € Ay, and {f,} C C*(a) is such that
fifi =0(i #j), then Uy 2T is continuous for all but a finite number of
n’s.

Proof. Suppose that U 7,21 is discontinuous for infinitely many n’s. By
considering a subsequence we may assume that U, 27" is discontinuous
for each n. Let M,, and K, be the norms of the bounded linear operators
z— U (2),X — X, and y — Uy, (y),Y — Y, respectively. Note
that M,, K, > 0 for each n; otherwise Up 2T = TU; 2 = 0 which is
continuous. Choose a sequence {z,} in X’ such that

[zl <277/ My,
|Uy, 2T () || > nkp.
Take z = Y72 Uy, (z,,). By strong associativity of C*(a) as a subal-

gebra of A® X and A @ Y, we have UpUy, = Uy,y, = 0 (i # j), on
A®d X and A@ Y. Since T is a module homomorphism, K, ||T(z)| >

Vs (TG = I1TUL () = IT(Uy,2(za) | = Uy, 2(Tn)l| = 0k,
Therefore || T(z)|| > n for each n, which is impossible. So the result
holds. O

Remark 3.2. Suppose that B is a Jordan algebra. Then B, =
Be&B®...d B is a Jordan algebra with the product defined by

m—+1

(1:07'1"17 o 7$m)(y07y17 LIRS 7ym) == ($0y07$0y1 + 1Yo, - - - 7Zmiym—i)7

for all (xo, 21, yZm)s (Yo, Y1, -+ ,Ym) € Bm. Clearly, this product is
commutative. Suppose that T = (2o, 1, ,Zm), ¥ = (Y0, Y1,--- ,Ym) €
B,.. Then the k' entries of Z(Z%y) and T2(Z7) are

k k—l J
21 (YD (@jwj—i)yr—j-1)s (3.1)
=0 j=01i=0
and
k1 k—
ZZZ (11-3) (@ jyr—j-1), (3.2)
=0 =0 j=0

respectively. By identities (02) and (O8) in Section 1.7 of [10], (3.1) and
(3.2) are equal, and hence B, is a Jordan algebra. Furthermore, let B be
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a Banach Jordan algebra. Define a norm on By, by ||(xo, z1,. .. ,2m)|, =
2ol Then ||.||, is a complete norm on By, and it is easy to see
that

||($0,ZL’1,. .. 7xm)(y0>y17 s aym)HO

< H(iU(),l'l,.-- 71:m)||0||(y07y13--' aym)Hoa

for all (xo,x1,...,2m), (Y0, Y1s--- sYm) € Bm. Therefore By, is a
Banach Jordan algebra.

Lemma 3.3. Suppose that A is a JB*-algebra and B is a Banach Jordan
algebra. Let {d,,} : A — B be a higher derivation with continuous dy.
Let a € Ay, and let {f,} C C*(a) be such that f;f; = 0(i # j). Then for
each m = 0,1,2,..., we have f2 € Q,, , for all but a finite number of
n’s.

Proof. Consider a fixed m, and let B,,, be as in Remark 3.2. We define
Op: A — B,
a— (do(a), di(a),... ,dn(a)).

Then 6,, is a homomorphism and B, is a weak Jordan A-module via
the homomorphism 6,,. Also as in Example 2.1 (ii), 0,, is a module
homomorphism. We have Uy, Uy, = Uy,;; =0 (i # j), on the split null
extension of A and B,,. Hence by Lemma 3.1, Ufnz 0., is continuous for

all but a finite number of n’s. Thus for such n’s, Uy2dy, ... ,Upzdy, are
continuous and it follows that fn2 € Q,,, for all but a finite number of
n’s. O

Theorem 3.4. Let A be a JB*-algebra and let B be a Jordan Banach
algebra. Suppose that {d,,} is a higher derivation from A into B with
continuous dg. Then the following assertions hold.

(i) If a € Ay, and A is the maximal ideal space of C*(a), then for every
m=1,2,..., the set F,, ={\ € A: \NQ,, NC*(a)) = {0}} is finite.
(i) If Z is a closed ideal of A containing Q,,, then every element in the
JB-algebra (%)h has finite spectrum.

(iii) Ifdy,. .. ,dm—1 are continuous and K is a closed ideal of A contained
in Qm, then d, |k is continuous.
(iv) If di,... ,dm—1 are continuous and L is an ideal of A such that

dpm |z is continuous, then L C T, C Q.
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Proof. (i) If F), is infinite, then we may find an infinite sequence
{\:} € A and a sequence {V}} of open subsets of A such that V; NV}, =
0(j #k), and \x € Vj, for each k. For every k € N, choose f € C*(a)
such that fi(A\g) # 0 and fi(A\Vx) = {0}. Then f,f; =0 (k # j), and
f# & Oy, which contradicts Lemma 3.3.

(ii) Let Z be a closed ideal in A such that Q,, C Z, forallm = 0,1,2,....
For each a € Ay, we have

AeA: AIN C*(a)={0}} C{AeA: XA(QnNC*(a)) ={0}}.

Hence by (i) the left hand side is a finite set and as in Theorem 12.2 of

[18], %()ar)ﬂ is finite dimensional, and since the closed *-subalgebra of

% generated by a and 1 is isomorphic to %, the result holds.

(iii) We show that d,, is bounded on bounded subsets of K. On the
contrary suppose that there is a sequence {a,} C Kj such that a,, — 0
and || dp(a,) |[— oo. We may assume that 3°°, | a, [|?< 1. Let
b = ( ;Ozla%)l/s. Then b > 0, || b ||[< 1 and a2 < % (n € N).
By [9] Lemma 1.7, for each n € N there exists u, € Kj such that
| wp [|[< 2 b4 ||< 2 and ap, = Uy(un). Hence dp(an) = dmUs(up).
Since K C Q,,, we have b € 9,, and so d,,Up is continuous. Now it
follows that || dm(an) ||<|| dmUp |||] un [|[< 2 || dnUs ||, which is a con-
tradiction.

(iv) Suppose that d,, | is continuous. Take a € S,,. Then there is a
sequence {a,} C A such that a,, — 0 and dp,(a,) — a. Let b € L. Since
di,...,dn—1 are continuous it follows that

Ay (bay) = do(b)dpm(an) + di (b)dm—1(an) + . . + dm(b)do(an) — ba.

Since ba,, € £ and d,, | is continuous, ba = 0. This means that b € R,
and hence £ C R,,. But Z,, is the largest ideal of A contained in R,
so we have £L C Z,, C Q. ]

Corollary 3.5. Let A be a JB*-algebra and let B be a Banach Jordan
algebra. Suppose that {d,,} is a higher derivation from A into B with
continuous dy. If K is a closed ideal of A contained in (\ Qu,, then dp, |k
is continuous for all m.

Proof. Similar to the proof of Theorem 3.4 (iii). O

Theorem 3.6. Let {d,,} be a higher derivation of a JB*-algebra A into
a Banach Jordan algebra B such that dy is continuous. Then {d,,} is
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continuous if and only if (Qm), :={a € Qm: a = a*} is a real linear
subspace of Ay, for all m € N.

Proof. If {d,} is continuous then Q,, = A, and so (Q,), is real
linear. Conversely let (Q,,), be real linear. Since d; is a derivation,
by ([9] Theorem 2.2), d; is continuous. Suppose by induction that each
d; (1 < m) is continuous. Then S,, is a submodule of B, and Uy, (Qm),,
C (Qm)y, hence (Qy,),, is an ideal of Aj. By Theorem 3.4 (iii), d,y, is
continuous on (Qy,), @ i(Qm),. Hence (Q1),® i(Qm),E ImC Qi and

50 Zn=(9Qm), ® 1(Qm),- Letm: A — % be the canonical quotient map.

A
I m

(%) p = (IATh)h is a semisimple real Banach Jordan algebra in which every

By Theorem 3.4 (ii) every element in (#) ,, has finite spectrum. But

element has non-empty finite spectrum and by [2] it is reduced, that is,
there exist idempotents 7(ey),... ,7(e,) € (%)h such that m(e;)m(e;) =
0,(i # j), Yisyw(e) = 1, and Uge,y(£), = Ra(e), (i = 1,... ,n).
Since each m(e;) is self-adjoint, m(e;*e;) = 7w(e;), (¢ = 1,...,n), and
so m(er*er), ... ,m(en*e,) are idempotents in (%)h with sum 1 such
that m(e;"e;)m(ej*ej) = 0, (i # j). Hence by replacing e; with e;*e;,
if necessary, we may assume that each e; is self-adjoint. Suppose that

{ap} € Aj, and ap, — 0. Then 7(ag) — 0, and for each i = 1,... ,n, and
each k € N, there exists Ajz € R such that
U7r(ei) (ﬂ-(ak)) = )\szr(e’L) (33)

Hence \jxm(e;) — 0 as k — oo, and so \jy — 0 as k — co. By (3.3) we
have

Uei(ak)—)\ikeiel'm, (iZI,... , N, kGN),

and by continuity of dp, |7,,, im0 dm (Ue, (ar) — Aige;) = 0. Since
limg 00 Aix = 0, we have limy_,o dUe, (ar) = 0. Therefore dp,U,, is

continuous for i = 1,... ,n, and ey, ... ,e, € (Qm)n. Soe1+...+e, €
T = (Qm)y, ® i(Qm),. Since m(er + ... + ey) is the identity of %,
A =17, and d,, is continuous on A. O

Lemma 3.7. Let A and B be JB*-algebras and let ¢ : A — B be a
x-homomorphism, that is ¢(a*) = (¢(a))* (a € A). Consider B as a
Banach Jordan A-module via the homomorphism ¢. If S is a submodule

of B, then Q(S) =Z(S).
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Proof. We show that (Q(S));, = (Z(S)),,- Consider the identities
(Ua(y?)’ = UsUyUy (@), (3.4)

(20)” = SyU(0) + {Ua6?) + 1V () (35)

which are valid in any Jordan algebra, see [10], p. 37 for the first one.
The second holds by the fact that any Jordan algebra generated by two
elements is special, see Shirsov-Cohen’s theorem, [7] Theorem 2.4.14 .
Now, if a € Q(S),, then by setting x = ¢(a) € By, in (3.4) and (3.5), we
have (¢(a)b)’ =0 (a € Q(S),beS). Thus ¢p(a)b =0 (a € Q(S),
b € S). Therefore a € R(S) and it follows that (Q(S)),C (R(S)),. So
(QS)), = (Q(S)),N (R(S)), = (Z(S)),, by (9], Theorem 1.4). O

Corollary 3.8. Let A and B be JB*-algebras, and let {d,,} : A — B
be a higher derivation for which dy is a *-homomorphism. Then {d,}
18 continuous.

Proof. Since dj is a *-homomorphism, it is automatically continuous.
Note that S; is a submodule of B, thus by Lemma 3.7, Q; is a linear
subspace of A and hence by ([9] Theorem 2.2), d; is continuous. Fix m,
suppose that each d;(i < m) is continuous. Therefore S, is a submodule
and again by Lemma 3.7, Q,, is a linear subspace of A, and hence by
Theorem 3.6, d,, is continuous. O
In the next few results, by a Jordan higher derivation from a C*-algebra
A we mean a higher derivation from A, with its Jordan product, into a
Banach Jordan algebra. Obviously each higher derivation (with respect
to the associative product) is also a Jordan derivation.

As a consequence of Corollary 3.8 each higher derivation, or each Jordan
higher derivation between C*-algebras, is continuous provided that dy
is a x-homomorphism. In the next results dy is not assumed to be a
x-homomorphism.

Theorem 3.9. Let A be a commutative C*-algebra, and let B be a
Banach Jordan algebra. If {d;,} : A — B is a Jordan higher derivation
such that dy is continuous, then {d,,} is continuous.

Proof. By ([9], Theorem 2.4) of , d; is continuous. Suppose that di, ...,
dpm—1 are continuous. Then S, is a submodule. We show that (Q,)n =
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(Zom)n. Let a € (Qn),. We have a*A = ada = Uy A C Q, and
hence a>A C Q,,. Since Z,, is the largest ideal of A contained in Q,,,
a’A C Z,,. Therefore a* € 7,, and since a = a*, we have a € Z,,. O
Before proving the next result, we recall that if A is an associative
algebra with associative product (a,b) — ab, and the Jordan product
(a,b) — 220 then U,(b) = aba (a,b € A).

Theorem 3.10. Let A be a C*-algebra with minimal idempotents, and
let {d,,} be a Jordan higher derivation from A to a Banach Jordan
algebra B. Ifdy,. .. ,dpm—1 are continuous on A, then {d,} is continuous

on soc(A).

Proof. By ([3], Theorem 30.10), soc(.A) exists. Let M denote the set
of all minimal idempotents of A. Then

soc(A) = Z eA = Z Ae, (3.6)

ecM eeM

where by Y we mean the algebraic sum. Since dy, ... ,d;_1 are contin-
uous, we have

Qm ={a€ A:Uyd,, is continuous} = {a € A : d,,U, is continuous}(3.7)

Suppose that a € soc(.A),,, then there exist by, ... ,b, € A,andey,... e, €
M such that a = e1b; +. . .+e,by, and hence a* = by *ej +...+b, "¢l = a.
So

Ua(b) = aba =Y ebibbiel (b€ A). (3.8)
i=1j=1

We know that the adjoint of a minimal idempotent is also a mini-
mal idempotent, hence by ([3], Theorem 31.6), dim(e;Ae;*) < 1, for
i,j = 1,...,n. By (3.8) we have, U,(A) C 377", >0 eiAe;*, thus
dim(U,(A)) < oo and d,, is continuous on U,(A). This shows that
dn U, is continuous on A, and hence by (3.7), a € Q,,. It follows that
soc(A), € Qm, and since Q,, is closed, (soc(A),) € Qm. By (3.6)
soc(A) is an x-ideal, hence (soc(A)), = (soc(A);,). Now the same argu-
ment as in Theorem 3.4 (iii) implies that d,, is continuous on soc(.A). [

Corollary 3.11. If A is a C*-algebra with minimal idempotents such
that soc(A) = A, then each Jordan higher derivation from A into a Ba-
nach Jordan algebra B with continuous dy is continuous. In particular,
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if A=IK(H)), the C*-algebra of all compact operators on a Hilbert space
H, then every Jordan higher derivation from A into a Banach Jordan
algebra B with continuous dy, is continuous.

Proof. By the hypothesis, dy is continuous on A. Suppose by induction
that dy, ... ,d;_1 are continuous on A. Then by Theorem 3.10, d,, is
continuous on soc(A) = A. The last assertion follows by the fact that
soc(C(H)) is F(H), the ideal of finite rank bounded operators on H,
which is dense in K(H). O
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