Title:

On radical formula and Prüfer domains

Author(s):

F. Mirzaei and R. Nekooei
ON RADICAL FORMULA AND PRÜFER DOMAINS

F. MIRZAEI AND R. NEKOOEI*

(Communicated by Jost-Hinrich Eschenburg)

Abstract. In this paper we characterize the radical of an arbitrary submodule N of a finitely generated free module F over a commutative ring R with identity. Also we study submodules of F which satisfy the radical formula. Finally we derive necessary and sufficient conditions for R to be a Prüfer domain, in terms of the radical of a cyclic submodule in $R \oplus R$.

Keywords: Prime submodules, Radical of a submodule, Radical formula, Prüfer domains, Dedekind domains.

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. A proper submodule P of an R-module M is called a p-prime submodule, if $rm \in P$ for $r \in R$ and $m \in M$ implies $m \in P$ or $r \in p = (P : M)$, where $(P : M) = \{r \in R \mid rM \subseteq P\}$. Let I be an ideal of R. The radical, \sqrt{I}, is defined to be the intersection of all prime ideals of R containing I. We denote the radical of I by \sqrt{I}. Let X be a subset of an R-module M. We denote the submodule of M that X generates, by $< X >$ or RX. The prime radical, $\text{Rad}_M T$, of a submodule T in an R-module M is defined to be the intersection of all prime submodules of M containing T. If there is no prime submodule containing T, then $\text{Rad}_M T = M$. In particular $\text{Rad}_M M = M$. We use the notation $R^{(n)}$ for $R \oplus \cdots \oplus R$ and $I^{(n)}$ for $I \oplus \cdots \oplus I$, where I is an ideal of R.

Let M be an R-module and T be a submodule of M. The envelope of T in M is defined to be the set

$$E_M(T) = \{rm \mid r \in R, m \in M; r^n m \in T, \text{ for some } n \in \mathbb{Z}^+\}.$$
We say that the submodule T of an R-module M satisfies the radical formula in M (T s.t.r.f. in M) if $\text{Rad}_M T = \langle E_M(T) \rangle$. An R-module M s.t.r.f. if for every submodule T of M, the prime radical of T is the submodule generated by its envelope, i.e. $\text{Rad}_M T = \langle E_M(T) \rangle$. A ring R s.t.r.f. provided that for every R module M, M s.t.r.f. The question of what kind of rings and modules s.t.r.f. has studied by many authors, see [1,3,6,7,10].

In [1], Azizi has shown that every arithmetical ring with $\dim R \leq 1$ satisfies the radical formula. In [9], Parkash proved that every arithmetical ring satisfies the radical formula and Buyruk and Pusat Yilmaz in [2], proved that if R is a Prüfer domain, then the free R-module $R^{(2)}$ satisfies the radical formula.

In [11] Pusat-Yilmaz and Smith have described $\text{Rad}_F(T)$, where T is a finitely generated submodule of a free R-module $F = R^{(n)}$. In this paper we generalize this characterization for an arbitrary submodule N of F and we characterize some submodules of F satisfying the radical formula. Finally we apply this characterization on the radical of a cyclic submodule of $R^{(2)}$ to give necessary and sufficient conditions for an integral domain R to be a Prüfer domain.

2. Radical of a submodule and radical formula

Let $X_i = (x_{i1}, \ldots, x_{in}) \in F = R^{(n)}$, for some $x_{ij} \in R$, $1 \leq i \leq m$, $1 \leq j \leq n$, $m \leq n$. We put

$$B_{m \times n} = [X_1 \ldots X_m] = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \vdots \\ x_{m1} & x_{m2} & \cdots & x_{mn} \end{pmatrix} \in M_{m \times n}(R).$$

Thus the jth row of the matrix $[X_1 \ldots X_m]$ consists of the components of element X_j in F. We use $B(j_1, \ldots, j_k) \in M_{m \times k}(R)$ to denote the submatrix of B consisting of the columns $j_1, \ldots, j_k \in \{1, \ldots, n\}$ and

$$[X_1 \ldots X_m]_{m} = \sum_{j_1, \ldots, j_m \in \{1, \ldots, n\}} \text{Rdet}(B(j_1, \ldots, j_m))$$

the ideal generated by $\{\det B(j_1, \ldots, j_m) \mid j_1, \ldots, j_m \in \{1, \ldots, n\}\}$. We use N to be a non-zero submodule of F generated by the set $\Psi = \{X_i = (x_{i1}, \ldots, x_{in}) \in F \mid i \in \Omega\}$. We put $\mathcal{R}_t = \sum_{i_1, \ldots, i_t \in \Omega} R[X_{i_1} \ldots X_{i_t}], 1 \leq t \leq n$. Note that $\mathcal{R}_1 \supseteq \mathcal{R}_2 \supseteq \cdots \supseteq \mathcal{R}_n = \mathcal{R}$.

We first state two useful results.

Lemma 2.1. Let F be the free R-module $R^{(n)}$. Then $\mathcal{R} \subseteq (N : F) \subseteq \sqrt{\mathcal{R}}$.

Proof. [8], Lemma 1.1.

\[\square\]
The following lemma is proved in [8], Lemma 1.5. But we give the proof of part (ii) of this lemma, because we use this proof in Proposition 2.5.

Lemma 2.2. Let \(F \) be the free \(R \)-module \(R^{(n)} \), \(p \) be a prime ideal of \(R \) and \(B = [X_1 \ldots X_k] \in M_{k \times n}(R) \) for some \(X_i \in F, \ 1 \leq i \leq k \) and positive integer \(k < n \). Let

\[
T_p(B) = \{X = (x_1, \ldots, x_n) \in F \mid \det \beta(i_1, \ldots, i_{k+1}) \in p, \text{ for every } i_1, \ldots, i_{k+1} \in \{1, \ldots, n\}\}, \text{ where } \beta = [X X_1 \ldots X_k] \in M_{k+1 \times n}(R). \text{ Then}
\]

i) \(T_p(B) \) is a submodule of \(F \).

ii) If \(X = (x_1, \ldots, x_n) \in T_p(B) \), then \(\det(B(i_1, \ldots, i_k))X \in pF + \langle B \rangle \) for all submatrices \(B(i_1, \ldots, i_k) \) of \(B \), where \(\langle B \rangle \) is the \(R \)-submodule of \(F \) generated by the rows of \(B \). (Note that in this part, the ideal \(p \) is not necessarily prime.)

iii) If the determinant of every submatrix \(k \times k \) of \(B \) is in \(p \), then \(T_p(B) = F \).

Proof. ii) Let \(X = (x_1, \ldots, x_n) \in T_p(B) \) and \(B(j_1, \ldots, j_k) \in M_{k \times k}(R) \) be a submatrix of \(B \). Without loss of generality, assume that \(j_1 < j_2 < \ldots < j_k \). Since \(\det\beta(i_1, \ldots, i_{k+1}) \in p \) for every \(i_1, \ldots, i_{k+1} \in \{1, \ldots, n\} \), there exists \(p_t \in p \) such that \(x_idet(B(j_1, \ldots, j_k)) = p_t + \sum_{t=1}^{k} (-1)^{i+t} x_{j_t} det(B(t, j_1, \ldots, j_{t-1}, j_{t+1}, \ldots, j_k)) \)

for every \(1 \leq t \leq n, t \neq j_t, 1 \leq i \leq k \). It follows that

\[
det(B(j_1, \ldots, j_k))(x_1, \ldots, x_n) = X_p + \sum_{i=1}^{k} \sum_{t=1}^{n} Y_{ijt}, \text{ for some } X_p \in p^{(n)} \text{ and } Y_{ijt} = (y_{i1}, \ldots, y_{in}) \in F, \ 1 \leq i \leq k.
\]

We fix \(1 \leq i \leq k \). Then \(y_{it} = (-1)^{i+t} x_{j_t} det(B(t, j_1, \ldots, j_{t-1}, j_{t+1}, \ldots, j_k)) \), \(1 \leq t \leq n, t \neq j_1, \ldots, j_k \) and \(y_{ijt} = x_{j_t} det(B(j_1, \ldots, j_k)) \) and \(y_{ijt} = 0, 1 \leq s \leq k, s \neq i \). Therefore

\[
y_{it} = \sum_{m=1}^{n} (-1)^{m+t} x_{mt} x_{j_t} det(B(t, j_1, \ldots, j_{t-1}, j_{t+1}, \ldots, j_k))_{m1}, 1 \leq t \leq n, t \neq j_1, \ldots, j_k \text{ and } y_{ijt} = \sum_{m=1}^{k} (-1)^{m+i} x_{mj} x_{j_t} det(B(j_1, \ldots, j_k))_{mi}.
\]

Also \(y_{ijt} = \sum_{m=1}^{k} (-1)^{m+i} x_{mj} x_{j_t} det(B(j_1, \ldots, j_{t-1}, j_s, j_{t+1}, \ldots, j_k))_{mi} = 0, 1 \leq s \leq k, s \neq i \). So \(Y_{i} = \sum_{m=1}^{n} x_{jm_i} (-1)^{m+i} det(B(j_1, \ldots, j_k))_{mi} X_m \) and hence \(Y_{i} \in \langle B \rangle, 1 \leq i \leq k \). Thus \(det(B(j_1, \ldots, j_k))(x_1, \ldots, x_n) \in pF + \langle B \rangle \). \(\square \)

Let \(M \) be an \(R \)-module, \(p \) be a prime ideal of \(R \) and \(T \) be a submodule of \(M \). In [11] Pusat-Yilmaz and Smith defined the submodule \(K(T, p) = \{m \in M \mid cm \in T + pM, \text{ for } c \in R \backslash \{p\} \} \). They showed that this is the smallest \(p \)-prime submodule of \(M \) containing \(T \) and so \(Rad_M T = \cap \{K(T, p) : p \text{ is a prime ideal of } R \} \).
Lemma 2.3. Let \(F \) be the free \(R \)-module \(R^{(n)} \) and \(p \) be a prime ideal of \(R \). Then

i) If \((N : F) \not\subseteq p\), then \(K(N, p) = F \).

ii) If \(R_k \subseteq p \), then \(K(N, p) = p^{(n)} \).

iii) If \(R_k \not\subseteq p \), there exists a positive integer \(k < n \) and a matrix \(B_{k \times n} = [X_1 \ldots X_k] \in M_{k \times n}(R) \), \(X_i \in \Psi \), \(1 \leq i \leq k \) such that \(K(N, p) = T_p(B) \), where \(T_p(B) \) is the \(p \)-prime submodule in Lemma 2.2.

Proof. i) Let \(p \) be a prime ideal of \(R \). Assume \((N : F) \) is not contained in \(p \) and \(c \in (N : F) \) \(\setminus p \). Then \(cF \subseteq N \) and so \(F \subseteq K(N, p) \).

ii) Let \(R_k \subseteq p \). Then \(pF \) contains \(N \) and since \(pF \) is a \(p \)-prime submodule of \(F \), we get that \(K(N, p) = p^{(n)} \).

iii) Let \(R_k \) is not contained in \(p \). Suppose that \(\xi \) is the set of all positive integers \(m \) such that there exists a matrix \(B_{m \times n} = [X_1 \ldots X_m] \in M_{m \times n}(R) \), for some \(X_i \in \Psi \) \((1 \leq i \leq m) \) and a submatrix \(B(j_1, \ldots, j_m) \) such that \(\text{det} B(j_1, \ldots, j_m) \not\subseteq p \), for some \(j_1, \ldots, j_m \in \{1, \ldots, n\} \). Since \(\Psi \not\subseteq p^{(n)} \), hence \(1 \in \xi \not\subseteq \emptyset \). Let \(k = \text{max}(\xi) \), by Lemma 2.1, we have \(k < n \).

Let \(B_{k \times n} = [X_1 \ldots X_k] \in M_{k \times n}(R) \) such that \(\text{det} B(j_1, \ldots, j_k) \not\subseteq p \), for some \(j_1, \ldots, j_k \in \{1, \ldots, n\} \). Then by Lemma 2.2(iv), we have \(T_p(B) \) is a \(p \)-prime submodule of \(F \). It is clear that \(N \subseteq T_p(B) \) and by Lemma 2.2(ii), \(T_p(B) \subseteq K(N, p) \).

The Theorem 2.4, is a generalization of Theorem 1.5 in [11].

Theorem 2.4. Let \(F \) be the free \(R \)-module \(R^{(n)} \) and \(N = (\Psi) \). Then \(\text{Rad}_F N = \{X = (x_1, \ldots, x_n) \in \sqrt{R_1 F} \mid [X X_{i_1} \ldots X_{i_{k-1}}]_k \subseteq \sqrt{R_k}, \text{ for every } i_1, \ldots, i_{k-1} \in \Omega, 2 \leq k \leq n \} \), where \(R_k = \sum_{i_1, \ldots, i_k \in \Omega} R[X_{i_1} \ldots X_{i_k}] \) and \([X X_{i_1} \ldots X_{i_{k-1}}]_k = \sum_{j_1, \ldots, j_k \in \{1, \ldots, n\}} \text{Rad}_B(j_1, \ldots, j_k) \) with \(B = [X X_{i_1} \ldots X_{i_{k-1}}] \).

Proof. Let \(\xi \) be the set of prime ideals of \(R \) containing \((N : F) \). Then by Lemma 2.3 (ii), \(\sqrt{R_1 F} = \bigcap_{p \in \xi} K(N, p) \) and so we get \(\text{Rad}_F N = \bigcap_{p \in \xi} K(N, p) = \sqrt{R_1 F} \cap \bigcap_{p \in \xi} K(N, p) \).

Let \(\Delta = \{X = (x_1, \ldots, x_n) \in \sqrt{R_1 F} \mid [X X_{i_1} \ldots X_{i_{k-1}}]_k \subseteq \sqrt{R_k}, \text{ for every } i_1, \ldots, i_{k-1} \in \Omega, 2 \leq k \leq n \} \). We show that \(\text{Rad}_F N = \Delta \). Suppose that \(X = (x_1, \ldots, x_n) \in \text{Rad}_F N \) where \(x_i \in R, 1 \leq i \leq n \). Then \(X \in \sqrt{R_1 F} \cap \bigcap_{p \in \xi} K(N, p) \). Let \(p \) be any prime ideal of \(R \) containing \(R_k \) \((2 \leq k \leq n) \). If
Proposition 2.5. Let $F = R^{(n)}$ be a free R-module and $N = \langle \Omega \rangle$. If there exist $1 \leq j \leq n - 1$ and $B = [X_1 \ldots X_j] \in M_{j \times n}(R)$, for some $X_1, \ldots, X_j \in \Psi$ such that B contains an $j \times j$ submatrix whose determinant is a unit in R and $\sqrt{R_{j+1}} = \sqrt{(N : F)}$, then N s.t.r.f in F.

Proof. Suppose there exists a matrix $B = [X_1 \ldots X_j] \in M_{j \times n}(R)$, for some $X_1, \ldots, X_j \in \Psi$ with a submatrix $B(i_1, \ldots, i_j) \in M_{j \times j}(R)$, for some $i_1, \ldots, i_j \in \{1, \ldots, n\}$ such that $detB(i_1, \ldots, i_j)$ is unit. Let $X \in Rad_F N$. Then $[X X_1 \ldots X_j]_{j+1} \subseteq \sqrt{R_{j+1}} = \sqrt{(N : F)}$. If we replace the ideal p in Lemma 2.2(ii) with $\sqrt{(N : F)}$, then $detB(i_1, \ldots, i_j)X \in \sqrt{(N : F)}F + N$. It follows that $X \in \sqrt{(N : F)}F + N$ and hence $Rad_F N = \sqrt{(N : F)}F + N = \langle E_F(N) \rangle$.

Corollary 2.6. Let (R, m) be a local ring with m as maximal ideal, let F be the free R-module $R^{(n)}$ and $N = \langle \Omega \rangle$. If $R_j = R$ and $\sqrt{R_{j+1}} = \sqrt{(N : F)}$, for some $1 \leq j \leq n - 1$, then N s.t.r.f in F.

Proof. Let $\mathfrak{R}_j = \sum_{i_1, \ldots, i_j \in \Omega} R[X_{i_1} \ldots X_{i_j}] = R$, for some $1 \leq j \leq n - 1$ and $\sqrt{R_{j+1}} = \sqrt{(N : F)}$. Since R is a local ring, then there exists a matrix $B = [X_1 \ldots X_j] \in M_{j \times n}(R)$, for some $X_1, \ldots, X_j \in \Psi$ with a submatrix $B(i_1, \ldots, i_j) \in M_{j \times j}(R)$, for some $i_1, \ldots, i_j \in \{1, \ldots, n\}$ such that $detB(i_1, \ldots, i_j)$ is unit. Then by Proposition 2.5, N s.t.r.f in F.

Proposition 2.7. Let R be a commutative ring with identity, let F be the free R-module $R^{(n)}$ and $N = \langle \Omega \rangle$. If $\sqrt{R_1} = \sqrt{R_2} = \cdots = \sqrt{R_{n-1}} = \sqrt{(N : F)}$, then $Rad_F N = \sqrt{(N : F)}F = \langle E_F(N) \rangle$.

Proof. Let N be a submodule of F such that $\sqrt{R_1} = \sqrt{R_2} = \cdots = \sqrt{R_{n-1}} = \sqrt{(N : F)}$. Then by Theorem 2.4, $Rad_F N = \{X = (x_1, \ldots, x_n) \in \sqrt{(N : F)}F$.
Let F be an integrally closed domain. If $a \in F$, then $a \in \sqrt{(N:F)}$, for every $i, j \in \Omega$.

Since $X_i \in \sqrt{(N:F)}$, for every $X_i \in \Psi$, we get that $\text{Rad}_F N = \sqrt{(N:F)}F = \langle E_F(N) \rangle$.

Theorem 2.8 is a generalization of Theorem 1.9 in [11].

Theorem 2.8. Let $F = R^{(n)}$ be a free R-module and $N = \langle \Psi \rangle$, where $\Psi = \{X_i = (x_{i1}, \ldots, x_{in}) \in F \mid i \in \Omega \}$.

Let I be an ideal of R and $T = N + IF$. Then $\text{Rad}_F T = \{X = (x_1, \ldots, x_n) \in \sqrt{\mathfrak{N}_1 + IF} \mid [X X_i \ldots X_{i-1}]_k \subseteq \sqrt{\mathfrak{N}_k + I}, \text{ for every } i_1, \ldots, i_k-1 \in \Omega, 2 \leq k \leq n\}$, where $\mathfrak{N}_k = \sum_{i_1, \ldots, i_k \in \Omega} R[X_{i_1} \ldots X_{i_k}]$, $1 \leq k \leq n$.

Proof. Let $\Psi' = \{Y_i = (y_{i1}, \ldots, y_{in}) \in IF \mid i \in \Omega'\}$ be a subset of IF such that $IF = \langle \Psi' \rangle$. Then $T = \langle \Psi' \cup \Psi \rangle$, and so by Theorem 2.4, $\text{Rad}_F T \subseteq \{X = (x_1, \ldots, x_n) \in \sqrt{\mathfrak{N}_1 + IF} \mid [X Z_{i_1} \ldots Z_{i_k-1}]_k \subseteq \sqrt{\mathfrak{N}_k + I}, Z_1, \ldots, Z_{i_k-1} \in \Psi \cup \Psi'\}$, for every $i_1, \ldots, i_k-1 \in \Omega \cup \Omega'$, $2 \leq k \leq n$, where $\mathfrak{N}_k = \sum_{i_1, \ldots, i_k \in \Omega \cup \Omega'} R[Z_{i_1} \ldots Z_{i_k}]$, $1 \leq k \leq n$. But it is easy to see that $\sqrt{\mathfrak{N}_i} = \sqrt{\mathfrak{N}_0 + I}$, $1 \leq i \leq n$. Also if $X \in F$ then $[X Z_{i_1} \ldots Z_{i_k-1}]_k \subseteq \sqrt{\mathfrak{N}_k + I}$, for every $i_1, \ldots, i_k-1 \in \Omega \cup \Omega'$ if and only if $[X X_{i_1} \ldots X_{i_k-1}]_k \subseteq \sqrt{\mathfrak{N}_k + I}$, for every $i_1, \ldots, i_k-1 \in \Omega$.

3. Prüfer domains

There are many equivalent conditions for an integral domain R to be a Prüfer domain [5], Theorem 24.3. In what follows we give another equivalent condition in terms of radical of a cyclic submodules of $R^{(2)}$.

Let R be an integral domain and K its field of fractions. R is said to be integrally closed if for every $a \in K$, $f(a) = 0$ for some monic polynomial $f \in R[x]$, then $a \in R$. Furthermore, R is integrally closed if and only if $(I : K I) = R$, for every finitely generated ideal I of R [4], Theorem 3.7.1, where $(I : K I) = \{x \in K \mid xI \subseteq I\}$.

In Theorem 3.1 we give necessary and sufficient condition for an integral domain to be integrally closed, by radical of a cyclic submodules in $R^{(n)}$.

Theorem 3.1. Let R be an integral domain with quotient field K and let F be the free R-module $R^{(n)}$. Then R is integrally closed if and only if $\text{Rad}_F(R(a_1, \ldots, a_n)) \cap (I_n)^{(n)} = R(a_1, \ldots, a_n)$, for every $(a_1, \ldots, a_n) \in F$ and $n \geq 1$, where $I_n = \langle a_1, \ldots, a_n \rangle$ is a finitely generated ideal of R.

Proof. Let R be an integrally closed domain. If $n = 1$, then the proof is clear. Let $n \geq 2$ and $(x_1, \ldots, x_n) \in \text{Rad}_F(R(a_1, \ldots, a_n)) \cap (I_n)^{(n)}$, for some $(x_1, \ldots, x_n), (a_1, \ldots, a_n) \in F$. We can assume that there exists $1 \leq t \leq n$, such that $a_t \neq 0$. Since $R(a_1, \ldots, a_n)$ is a cyclic submodule of F and $n \geq 2$
then by [8], Proposition 1.2, \((R(a_1, \ldots, a_n) : F) = \langle 0 \rangle\). Since \((x_1, \ldots, x_n) \in \text{Rad}_F(R(a_1, \ldots, a_n))\) and \((R(a_1, \ldots, a_n) : F) = \langle 0 \rangle\), by Theorem 2.4, \(x_ia_i = a_ix_i\) for all \(i; 1 \leq i \leq n; i \neq t\), and hence \(a_i(x_1, \ldots, x_n) = x_i(a_1, \ldots, a_n)\). It follows that \(\frac{x_i}{a_i} \in (I_n : K I_n)\). Since \(R\) is integrally closed then \(x_i = ra_i\), for some \(r \in R\) and hence \((x_1, \ldots, x_n) = (a_1, \ldots, a_n)\). Conversely, let \(I_n = \langle a_1, \ldots, a_n \rangle (n \geq 1)\) be a finitely generated ideal of \(R\) and \(\frac{f}{s} \in (I_n : K I_n)\) for some \(0 \neq s, f \in R\). Then there exist \(x_i \in I_n, 1 \leq i \leq n\), such that \(f_{ai} = s_{xi}\). By Theorem 2.4, \((x_1, \ldots, x_n) \in \text{Rad}_R(R(a_1, \ldots, a_n)) \cap (I_n)^{(n)}\), Then \((x_1, \ldots, x_n) = ra_i(a_1, \ldots, a_n)\), for some \(r \in R\). Since \(s(x_1, \ldots, x_n) = f(a_1, \ldots, a_n)\), \(f = rs\) and so \(\frac{f}{s} \in R\) \(\Box\).

Theorem 3.2. Let \(R\) be an integral domain. Then \(R\) is a Prüfer domain if and only if for all \(a, b \in R\), \((aR + bR)^2 = a^2R + b^2R\) and \(I^{(2)} \cap \text{Rad}_F(R(a, b)) = R(a, b)\), where \(I = \langle a, b \rangle\).

Proof. Let \(R\) be a Prüfer domain. Then \(R\) is integrally closed and by [5], Theorem 24.3, \((aR + bR)^2 = a^2R + b^2R\) for all \(a, b \in R\). Hence by Theorem 3.1, \(I^{(2)} \cap \text{Rad}_R(R(a, b)) = R(a, b)\) and \((aR + bR)^2 = a^2R + b^2R\) for all \(a, b \in R\). Conversely, let \(m\) be a maximal ideal of \(R\). It is enough to show that \(R_m\) is a valuation ring. We assume \(\frac{a}{s_1}, \frac{b}{s_2} \in R_m\), for some \(a, b \in R, s_1, s_2 \in R - m\). If \(a \notin m\) or \(b \notin m\) then \(bR_m \subseteq aR_m\) or \(aR_m \subseteq bR_m\). Now let \(a, b\) be a non-zero element of \(m\). Since \((aR + bR)^2 = a^2R + b^2R\), hence \(ab = ra^2 + sb^2\) for some \(r, s \in R\) and so \(a(b - ra) = sb^2\). Therefore by Theorem 2.4, \((sb, b - ra) \in \text{Rad}_R(R(a, b)) \cap I^{(2)}\). It follows that \((sb, b - ra) = t(a, b)\) for some \(t \in R\). Then \(sb = ta\) and \((1 - t)b = ra\) and so we have \(aR_m \subseteq bR_m\) or \(bR_m \subseteq aR_m\). \(\Box\)

A Noetherian valuation domain is called a discrete rank one valuation. Furthermore, a domain \(R\) is said to be almost Dedekind provided that, for each maximal ideal \(m\) of \(R\), the localization \(R_m\) is a discrete rank one valuation [4], page 119. It is clear that every almost Dedekind domain is a Prüfer domain. In [4], Theorem 7.1, Chapter III, it is proved that a domain \(R\) which is not a field, is an almost Dedekind domain if and only if \(R\) is a Prüfer domain of Krull dimension one and \(\{0\}\) is the only idempotent prime ideal of \(R\). In Theorem 3.4, we give a necessary and sufficient condition for a one dimensional domain \(R\) with \(\{0\}\) as only idempotent prime ideal to be an almost Dedekind domain.

Lemma 3.3. Let \(R\) be a one dimensional local domain with maximal ideal \(m\) such that \(\bigcap_{n=1}^\infty m^n = 0\). Then \(R\) is a valuation ring if and only if \(\text{Rad}_{R^{(2)}}(R(a, b)) = E_{R^{(2)}}(R(a, b))\) and \((aR + bR)^2 = a^2R + b^2R\), for all \(a, b \in R\).
Proof. Let \(R \) be a valuation ring. It is clear that \((aR + bR)^2 = a^2R + b^2R\), for all \(a, b \in R \). Now let \((a, b)\) be a non-zero element of \(R^{(2)} \) and \((0, 0) \neq (c, d) \in \text{Rad}_{R^{(2)}}(R(a, b))\). We assume that \(c = rd \) and \(a = sb \), for some \(r, s \in R \). Then we have \((c, d) = d(r, 1) = (s, 1)\). It follows by Theorem 2.4, that \(db(r - s) = 0 \) and \(d^k = tb \), for some \(k \in \mathbb{N} \) and \(t \in R \). Therefore \(r = s \) and we have \((c, d) = d(r, 1) = d(s, 1)\). Hence \((c, d) \in \mathbb{E}_{R^{(2)}}(R(a, b))\). Now let \(a = sb \) and \(d = rc \) for some \(r, s \in R \). Then we have \((c, d) = c(1, r)\) and \((a, b) = b(s, 1)\). Now by Theorem 2.4, we have \(bct(sr - 1) = 0 \) and \(c^k = tb \), for some natural number \(k \) and \(t \in R \). Therefore \(sr = 1 \) and we have \((c, d) = c(1, r)\) and \(c^k(1, r) = c^k r(s, 1) = trb(s, 1) = tr(a, b)\). Hence \((c, d) \in \mathbb{E}_{R^{(2)}}(R(a, b))\). Conversely let \((a, b)\) be non-zero elements of \(R \). It is enough to show that \(a \in Rb \) or \(b \in Ra \). Since \((aR + bR)^2 = a^2R + b^2R\), hence \(ab = ra^2 + sb^2 \), for some \(r, s \in R \) and \(a(b - ra) = sb^2 \). By Theorem 2.4, we have \((sb, b - ra) \in \text{Rad}_{R^{(2)}}(R(a, b))\). Now we assume that \(a \notin Rb \), \(b \notin Ra \) and we show that \(sb, b - ra \in \bigcap_{n=1}^{\infty} m^n \). Hence \(sb = 0 \), \(b - ra = 0 \). Therefore \(b = ra \), which is a contradiction. Since \((sb, b - ra) \in \text{Rad}_{R^{(2)}}(R(a, b)) = \mathbb{E}_{R^{(2)}}(R(a, b))\), then \((sb, b - ra) \in m \) and \((sb, b - ra) = r_0(x_0, y_0)\), for some \(0 \neq r_0, x_0, y_0 \in R \) such that \(r_0^2(x_0, y_0) = t_0(a, b) \), for some \(n_0 \in \mathbb{N} \) and \(t_0 \in R \). If \(r_0 \) is unit in \(R \), then \((x_0, y_0) = \ell(a, b)\), for some \(\ell \in R \) and so \((sb, b - ra) = r_0\ell(a, b)\). It follows that \(sb = r_0\ell a \) and \(b(1 - r_0\ell) = ra \). Since \(R \) is a local ring, \(r_0\ell \) or \(1 - r_0\ell \) is unit and so \(a \in Rb \) or \(b \in Ra \), which is a contradiction. Therefore \(r_0 \in m \). If \(x_0 \) or \(y_0 \) is unit, because \(r_0^{m_0}a_0y_0 = r_0^{m_0}b_0x_0 \) hence \(a_0y_0 = b_0x_0 \), then we have \(b \in Ra \) or \(a \in bR \). Hence \(0 \neq r_0, x_0, y_0 \in m \) and so \(sb, b - ra \in m^2 \). By induction, let \((sb, b - ra) = r_0r_1 \ldots r_{k-1}(x_{k-1}, y_{k-1})\), for some \(0 \neq r_i, x_i, y_i \in m, 0 \leq i \leq k - 1 \) such that \(r_i^{m_i}(x_i, y_i) = t_i(a, b) \), for some \(n_i \in \mathbb{N} \) and \(t_i \in R, 0 \leq i \leq k - 1 \). Since \(x_{k-1}, y_{k-1} \in m \) and \(bx_{k-1} = ay_{k-1} \), hence by Theorem 2.4, we have \((x_{k-1}, y_{k-1}) \in \text{Rad}_{R^{(2)}}(R(a, b))\). So \((x_{k-1}, y_{k-1}) = r_k(x_k, y_k)\), for some \(0 \neq r_k, x_k, y_k \in R \) such that \(r_k^{m_k}(x_k, y_k) = t_k(a, b) \), for some \(n_k \in \mathbb{N} \) and \(t_k \in R \). Similarly for the case \(k = 0 \), we have \(0 \neq r_k, x_k, y_k \in m \) and hence \((sb, b - ra) = r_0r_1 \ldots r_k(x_k, y_k) \in (m^k + 2)^{(2)}\). \(\square \)

Theorem 3.4. Let \(R \) be a one dimensional domain such that \(\bigcap_{n=1}^{\infty} m^n = 0 \), for all maximal ideals \(m \) of \(R \). Then \(R \) is almost Dedekind if and only if \((aR + bR)^2 = a^2R + b^2R \) and \(\text{Rad}_{R^{(2)}}(R_m(a, b)) = E_{R^{(2)}}(R_m(a, b)) \), for all maximal ideals \(m \) of \(R \) and \(a, b \in R \).

Proof. Let \(R \) be almost Dedekind domain. Then \(R \) is a Prüfer domain and hence by [5], \((aR + bR)^2 = a^2R + b^2R \), for all \(a, b \in R \). So by [2], Theorem 2.4, \(R^{(2)} \) s.t.r.f. as an \(R \)-module. Now let \(a, b \in R \). Then \((\text{Rad}_{R^{(2)}}(R(a, b)))_m = \)
\[(E_{R_m}^{(2)}(R(a, b)))_m = (E_{R_m}^{(2)}(R_m(a, b))) \text{, for all } m \in \text{max}(R). \] Since \(R_m \) is a valuation ring, hence by Lemma 3.3, \(\text{Rad}_{R_m}^{(2)}(R_m(a, b)) = E_{R_m}^{(2)}(R_m(a, b)) \). \(\square \)

Acknowledgments
The authors would like to thank the referee for his/her useful suggestions that improved the presentation of this paper.

References

[8] F. Mirzaei and R. Nekooei, On prime submodules of a finitely generated free module over a commutative ring, Communications In Algebra, Accepted.

(F. Mirzaei) Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, P.O. Box 76169133, Kerman, Iran. E-mail address: mirzaee0269@yahoo.com

(R. Nekooei) Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, P.O. Box 76169133, Kerman, Iran. E-mail address: rnekooei@uk.ac.ir