Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 3, pp. 555-563

Title:

On radical formula and Prüfer domains

Author(s):

F. Mirzaei and R. Nekooei

Published by Iranian Mathematical Society

ON RADICAL FORMULA AND PRÜFER DOMAINS

F. MIRZAEI AND R. NEKOOEI*

(Communicated by Jost-Hinrich Eschenburg)

Abstract

In this paper we characterize the radical of an arbitrary submodule N of a finitely generated free module F over a commutatitve ring R with identity. Also we study submodules of F which satisfy the radical formula. Finally we derive necessary and sufficient conditions for R to be a Prüfer domain, in terms of the radical of a cyclic submodule in $R \bigoplus R$. Keywords: Prime submodules, Radical of a submodule, Radical formula, Prüfer domains, Dedekind domains. MSC(2010): Primary: 13A99; Secondary: 13C99, 13F05.

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. A proper submodule P of an R-module M is called a p-prime submodule, if $r m \in P$ for $r \in R$ and $m \in M$ implies $m \in P$ or $r \in p=(P: M)$, where $(P: M)=\{r \in R \mid r M \subseteq P\}$. Let I be an ideal of R. The radical, \sqrt{I}, is defined to be the intersection of all prime ideals of R containing I. We denote the radical of I by \sqrt{I}. Let X be a subset of an R-module M. We denote the submodule of M that X generates, by $\langle X\rangle$ or $R X$. The prime radical, $\operatorname{Rad}_{M} T$, of a submodule T in an R-module M is defined to be the intersection of all prime submodules of M containing T. If there is no prime submodule containing T, then $\operatorname{Rad}_{M} T=M$. In particular $\operatorname{Rad}_{M} M=M$. We use the notation $R^{(n)}$ for $\underbrace{R \oplus \cdots \oplus R}_{n \text {-times }}$ and $I^{(n)}$ for $\underbrace{I \oplus \cdots \oplus I}_{n-\text { times }}$, where I is an ideal of R.

Let M be an R-module and T be a submodule of M. The envelope of T in M is defined to be the set

$$
E_{M}(T)=\left\{r m \mid r \in R, m \in M ; r^{n} m \in T, \text { for some } n \in \mathbf{Z}^{+}\right\}
$$

[^0]We say that the submodule T of an R-module M satisfies the radical formula in $M(T$ s.t.r.f. in $M)$ if $\operatorname{Rad}_{M} T=\left\langle E_{M}(T)\right\rangle$. An R-module M s.t.r.f. if for every submodule T of M, the prime radical of T is the submodule generated by its envelope, i.e. $\operatorname{Rad}_{M} T=\left\langle E_{M}(T)\right\rangle$. A ring R s.t.r.f. provided that for every R module M, M s.t.r.f. The question of what kind of rings and modules s.t.r.f. has studied by many authors, see $[1,3,6,7,10]$.

In [1], Azizi has shown that every arithmetical ring with $\operatorname{dim} R \leq 1$ satisfies the radical formula. In [9], Parkash proved that every arithmetical ring satisfies the radical formula and Buyruk and Pusat Yilmaz in [2], proved that if R is a Prüfer domain, then the free R-module $R^{(2)}$ satisfies the radical formula.

In [11] Pusat-Yilmaz and Smith have described $\operatorname{Rad}_{F}(T)$, where T is a finitely generated submodule of a free R-module $F=R^{(n)}$. In this paper we generalize this characterization for an arbitrary submodule N of F and we characterize some submodules of F satisfying the radical formula. Finally we apply this characterization on the radical of a cyclic submodule of $R^{(2)}$ to give necessary and sufficient conditions for an integral domain R to be a Prüfer domain.

2. Radical of a submodule and radical formula

Let $X_{i}=\left(x_{i 1}, \ldots, x_{i n}\right) \in F=R^{(n)}$, for some $x_{i j} \in R, 1 \leq i \leq m, 1 \leq j \leq n$, $m \leq n$. We put

$$
B_{m \times n}=\left[X_{1} \ldots X_{m}\right]=\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
\ddots & & & \\
x_{m 1} & x_{m 2} & \ldots & x_{m n}
\end{array}\right) \in M_{m \times n}(R)
$$

Thus the j th row of the matrix $\left[X_{1} \ldots X_{m}\right]$ consists of the components of element X_{j} in F. We use $B\left(j_{1}, \ldots, j_{k}\right) \in M_{m \times k}(R)$ to denote the submatrix of B consisting of the columns $j_{1}, \ldots, j_{k} \in\{1, \ldots, n\}$ and

$$
\left[X_{1} \ldots X_{m}\right]_{m}=\sum_{j_{1}, \ldots, j_{m} \in\{1, \ldots, n\}} \operatorname{Rdet} B\left(j_{1}, \ldots, j_{m}\right)
$$

the ideal generated by $\left\{\operatorname{det} B\left(j_{1}, \ldots, j_{m}\right) \mid j_{1}, \ldots, j_{m} \in\{1, \ldots, n\}\right\}$. We use N to be a non-zero submodule of F generated by the set $\Psi=\left\{X_{i}=\left(x_{i 1}, \ldots, x_{i n}\right) \in\right.$ $F \mid i \in \Omega\}$. We put $\Re_{t}=\sum_{i_{1}, \ldots, i_{t} \in \Omega} R\left[X_{i_{1}} \ldots X_{i_{t}}\right]_{t}, 1 \leq t \leq n$. Note that $\Re_{1} \supseteq \Re_{2} \supseteq \cdots \supseteq \Re_{n}=\Re$.
We first state two useful results.
Lemma 2.1. Let F be the free R-module $R^{(n)}$. Then $\Re \subseteq(N: F) \subseteq \sqrt{\Re}$.
Proof. [8], Lemma 1.1.

The following lemma is proved in [8], Lemma 1.5. But we give the proof of part (ii) of this lemma, because we use this proof in Proposition 2.5.
Lemma 2.2. Let F be the free R-module $R^{(n)}$, p be a prime ideal of R and $B=\left[X_{1} \ldots X_{k}\right] \in M_{k \times n}(R)$ for some $X_{i} \in F, 1 \leq i \leq k$ and positive integer $k<n$. Put
$T_{p}(B)=\left\{X=\left(x_{1}, \ldots, x_{n}\right) \in F \mid \operatorname{det} \beta\left(i_{1}, \ldots, i_{k+1}\right) \in p\right.$, for every $i_{1}, \ldots, i_{k+1} \in$ $\{1, \ldots, n\}\}$, where $\beta=\left[\begin{array}{ll}X & X_{1} \ldots X_{k}\end{array}\right] \in M_{k+1 \times n}(R)$. Then
i) $T_{p}(B)$ is a submodule of F.
ii) If $X=\left(x_{1}, \ldots, x_{n}\right) \in T_{p}(B)$, then $\operatorname{det}\left(B\left(i_{1}, \ldots, i_{k}\right)\right) X \in p F+\langle B\rangle$ for all submatrices $B\left(i_{1}, \ldots, i_{k}\right)$ of B, where $\langle B\rangle$ is the R-submodule of F generated by the rows of B. (Note that in this part, the ideal p is not necessarily prime.) iii) If the determinant of every submatrix $k \times k$ of B is in p, then $T_{p}(B)=F$. iv) If there exists a submatrix $B\left(j_{1}, \ldots, j_{k}\right) \in M_{k \times k}(R)$ of B such that $\operatorname{det}\left(B\left(j_{1}, \ldots, j_{k}\right)\right) \notin p$, then $T_{p}(B)$ is a p-prime submodule of F.
Proof. ii) Let $X=\left(x_{1}, \ldots, x_{n}\right) \in T_{p}(B)$ and $B\left(j_{1}, \ldots, j_{k}\right) \in M_{k \times k}(R)$ be a submatrix of B. Without loss of generality, assume that $j_{1}<j_{2}<\ldots<j_{k}$. Since $\operatorname{det} \beta\left(i_{1}, \ldots, i_{k+1}\right) \in p$ for every $i_{1}, \ldots, i_{k+1} \in\{1, \ldots, n\}$, there exists $p_{t} \in$ p such that $x_{t} \operatorname{det} B\left(j_{1}, \ldots, j_{k}\right)=p_{t}+\sum_{i=1}^{k}(-1)^{i+1} x_{j_{i}} \operatorname{det} B\left(t, j_{1}, \ldots, j_{i-1}, j_{i+1}, \ldots, j_{k}\right)$ for every $1 \leq t \leq n, t \neq j_{i}, 1 \leq i \leq k$. It follows that $\operatorname{det}\left(B\left(j_{1}, \ldots, j_{k}\right)\right)\left(x_{1}, \ldots, x_{n}\right)$ $=X_{p}+\sum_{i=1}^{k} Y_{i}$, for some $X_{p} \in p^{(n)}$ and $Y_{i}=\left(y_{i 1}, \ldots, y_{i n}\right) \in F, 1 \leq i \leq k$. We fix $1 \leq i \leq k$. Then $y_{i t}=(-1)^{i+1} x_{j_{i}} \operatorname{det} B\left(t, j_{1}, \ldots, j_{i-1}, j_{i+1}, \ldots, j_{k}\right)$, $1 \leq t \leq n, t \neq j_{1}, \ldots, j_{k}$ and $y_{i j_{i}}=x_{j_{i}} \operatorname{det} B\left(j_{1}, \ldots, j_{k}\right)$ and $y_{i j_{s}}=0,1 \leq s \leq k$, $s \neq i$. Therefore $y_{i t}=\sum_{m=1}^{k}(-1)^{m+i} x_{m t} x_{j_{i}} \operatorname{det}\left[B\left(t, j_{1}, \ldots, j_{i-1}, j_{i+1}, \ldots, j_{k}\right)\right]_{m 1}$, $1 \leq t \leq n, t \neq j_{1}, \ldots, j_{k}$ and $y_{i j_{i}}=\sum_{m=1}^{k}(-1)^{m+i} x_{m j_{i}} x_{j_{i}} \operatorname{det}\left[B\left(j_{1}, \ldots, j_{k}\right)\right]_{m i}$. Also $y_{i j_{s}}=\sum_{m=1}^{k}(-1)^{m+i} x_{m j_{s}} x_{j_{i}} \operatorname{det}\left[B\left(j_{1}, \ldots, j_{i-1}, j_{s}, j_{i+1}, \ldots, j_{k}\right)\right]_{m i}=0,1 \leq$ $s \leq k, s \neq i$. So $Y_{i}=\sum_{m=1}^{k} x_{j_{i}}(-1)^{m+i} \operatorname{det}\left[B\left(j_{1}, \ldots, j_{k}\right)\right]_{m i} X_{m}$ and hence $Y_{i} \in\langle B\rangle, 1 \leq i \leq k$. Thus $\operatorname{det} B\left(j_{1}, \ldots, j_{k}\right)\left(x_{1}, \ldots, x_{n}\right) \in p F+\langle B\rangle$.

Let M be an R-module, p be a prime ideal of R and T be a submodule of M. In [11] Pusat-Yilmaz and Smith defined the submodule $K(T, p)=\{m \in$ $M \mid c m \in T+p M$, for $c \in R \backslash p\}$. They showed that this is the smallest p-prime submodule of M containing T and so $\operatorname{Rad}_{M} T=\cap\{K(T, p): p$ is a prime ideal of $R\}$.

Lemma 2.3. Let F be the free R-module $R^{(n)}$ and p be a prime ideal of R. Then
i) If $(N: F) \nsubseteq p$, then $K(N, p)=F$.
ii) If $\Re_{1} \subseteq p$, then $K(N, p)=p^{(n)}$.
iii) If $\Re_{1} \nsubseteq p$, then there exists a positive integer $k<n$ and a matrix $B_{k \times n}=$ $\left[X_{1} \ldots X_{k}\right] \in M_{k \times n}(R), X_{i} \in \Psi, 1 \leq i \leq k$ such that $K(N, p)=T_{p}(B)$, where $T_{p}(B)$ is the p-prime submodule in Lemma 2.2.
Proof. i) Let p be a prime ideal of R. Assume $(N: F)$ is not contained in p and $c \in(N: F) \backslash p$. Then $c F \subseteq N$ and so $F \subseteq K(N, p)$.
ii) Let $\Re_{1} \subseteq p$. Then $p F$ contains N and since $p F$ is a p-prime submodule of F, we get that $K(N, p)=p^{(n)}$.
iii) Let \Re_{1} is not contained in p. Suppose that ξ is the set of all positive integers m such that there exists a matrix $B_{m \times n}=\left[X_{1} \ldots X_{m}\right] \in M_{m \times n}(R)$, for some $X_{i} \in \Psi(1 \leq i \leq m)$ and a submatrix $B\left(j_{1}, \ldots, j_{m}\right)$ such that $\operatorname{det} B\left(j_{1}, \ldots, j_{m}\right) \notin p$, for some $j_{1}, \ldots, j_{m} \in\{1, \ldots, n\}$. Since $\Psi \not \subset p^{(n)}$, hence $1 \in \xi \neq \emptyset$. Let $k=\max (\xi)$, by Lemma 2.1, we have $k<n$.
Let $B_{k \times n}=\left[X_{1} \ldots X_{k}\right] \in M_{k \times n}(R)$ such that $\operatorname{det} B\left(j_{1}, \ldots, j_{k}\right) \notin p$, for some $j_{1}, \ldots, j_{k} \in\{1, \ldots, n\}$. Then by Lemma 2.2(iv), we have $T_{p}(B)$ is a p-prime submodule of F. It is clear that $N \subseteq T_{p}(B)$ and by Lemma 2.2(ii), $T_{p}(B) \subseteq$ $K(N, p)$.

The Theorem 2.4, is a generalization of Theorem 1.5 in [11].

Theorem 2.4. Let F be the free R-module $R^{(n)}$ and $N=\langle\Psi\rangle$. Then $\operatorname{Rad}_{F} N=$ $\left\{X=\left(x_{1}, \ldots, x_{n}\right) \in \sqrt{\Re_{1}} F \mid\left[X X_{i_{1}} \ldots X_{i_{k-1}}\right]_{k} \subseteq \sqrt{\Re_{k}}\right.$, for every $i_{1}, \ldots, i_{k-1} \in$ $\Omega, 2 \leq k \leq n\}$, where $\Re_{k}=\sum_{i_{1}, \ldots, i_{k} \in \Omega} R\left[X_{i_{1}} \ldots X_{i_{k}}\right]_{k}$ and $\left[\begin{array}{ll}X & \left.X_{i_{1}} \ldots X_{i_{k-1}}\right]_{k}= \\ =\end{array}\right.$ $\sum_{\substack{j_{1}, \ldots, j_{k} \in\{1, \ldots, n\} \\ B=\left[X X_{1}\right.}} R \operatorname{det} B\left(j_{1}, \ldots, j_{k}\right)$ with
$B=\left[\begin{array}{llll}X & X_{i_{1}} & \ldots & X_{i_{k-1}}\end{array}\right]$.

Proof. Let ξ be the set of prime ideals of R containing $(N: F)$. Then by Lemma 2.3 (ii), $\sqrt{\Re_{1}} F=\bigcap_{\Re_{1} \subset p \in \xi} K(N, p)$ and so we get $\operatorname{Rad}_{F} N=\bigcap_{p \in \xi} K(N, p)=$ $\sqrt{\Re_{1}} F \cap\left[\bigcap_{\Re_{1} \not \subset p \in \xi} K(N, p)\right]$.
Let $\Delta=\left\{X=\left(x_{1}, \ldots, x_{n}\right) \in \sqrt{\Re_{1}} F \mid\left[X X_{i_{1}} \ldots X_{i_{k-1}}\right]_{k} \subseteq \sqrt{\Re_{k}}\right.$, for every $\left.i_{1}, \ldots, i_{k-1} \in \Omega, 2 \leq k \leq n\right\}$. We show that $\operatorname{Rad}_{F} N=\Delta$. Suppose that $X=\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Rad}_{F} N$ where $x_{i} \in R, 1 \leq i \leq n$. Then $X \in \sqrt{\Re_{1}} F \cap$ $\left[\bigcap_{\Re_{1} \not \subset p \in \xi} K(N, p)\right]$. Let p be any prime ideal of R containing $\Re_{k}(2 \leq k \leq n)$. If
$\Re_{k-1} \subseteq p$, then $\left[\begin{array}{ll}X & \left.X_{i_{1}} \ldots X_{i_{k-1}}\right]_{k} \subseteq p, \text { for all } i_{1}, \ldots, i_{k-1} \in \Omega \text {. If } \Re_{k-1} \not \subset p, ~\end{array}\right.$ then $\Re_{1} \not \subset p$ and so by Lemma 2.3 (iii), there exists a matrix $B_{k-1 \times n}=$ $\left[X_{1} \ldots X_{k-1}\right] \in M_{k-1 \times n}(R)$, for some $X_{i} \in \Psi(1 \leq i \leq k-1)$ with a submatrix $B\left(i_{1}, \ldots, i_{k-1}\right)$ such that $\operatorname{det} B\left(i_{1}, \ldots, i_{k-1}\right) \notin p$ and $K(N, p)=T_{p}(B)$. By [8], Proposition 1.7, $K(N, p)=\left\{Y=\left(y_{1}, \ldots, y_{n}\right) \in F \mid\left[Y X_{i_{1}} \ldots X_{i_{k-1}}\right]_{k} \subseteq P\right.$ for every $\left.i_{1}, \ldots, i_{k-1} \in \Omega\right\}$. Since $X \in K(N, p)$, then $\left[\begin{array}{ll}X & \left.X_{i_{1}} \ldots X_{i_{k-1}}\right]_{k} \subseteq\end{array}\right.$ p, for every $i_{1}, \ldots, i_{k-1} \in \Omega$. It follows that $\left[X X_{i_{1}} \ldots X_{i_{k-1}}\right]_{k} \subseteq \sqrt{\Re_{k}}$, for every $i_{1}, \ldots, i_{k-1} \in \Omega$ and hence $X \in \Delta$. So $\operatorname{Rad}_{F} N \subseteq \Delta$. Now let $X=$ $\left(x_{1}, \ldots, x_{n}\right) \in \Delta$ and p be any prime ideal in ξ such that $\Re_{1} \not \subset p$. Then by Lemma 2.3 (iii), there exists a positive integer $m<n$ and a matrix $B_{m \times n}=$ $\left[X_{1} \ldots X_{m}\right] \in M_{m \times n}(R)$, for some $X_{i} \in \Psi(1 \leq i \leq m)$ with a submatrix $B\left(j_{1}, \ldots, j_{m}\right)$ such that $\operatorname{det} B\left(j_{1}, \ldots, j_{m}\right) \notin p$, for some $j_{1}, \ldots, j_{m} \in\{1, \ldots, n\}$ and $K(N, p)=T_{p}(B)$. It is clear that $X \in K(N, p)$ and so $X \in \operatorname{Rad}_{F} N$. Thus $\Delta=\operatorname{Rad}_{F} N$.

Proposition 2.5. Let $F=R^{(n)}$ be a free R-module and $N=\langle\Psi\rangle$. If there exist $1 \leq j \leq n-1$ and $B=\left[X_{1} \ldots X_{j}\right] \in M_{j \times n}(R)$, for some $X_{1}, \ldots, X_{j} \in \Psi$ such that B contains an $j \times j$ submatrix whose determinant is a unit in R and $\sqrt{\Re_{j+1}}=\sqrt{(N: F)}$, then N s.t.r.f in F.

Proof. Suppose there exists a matrix $B=\left[X_{1} \ldots X_{j}\right] \in M_{j \times n}(R)$, for some $X_{1}, \ldots, X_{j} \in \Psi$ with a submatrix $B\left(i_{1}, \ldots, i_{j}\right) \in M_{j \times j}(R)$, for some $i_{1}, \ldots, i_{j} \in$ $\{1, \ldots, n\}$ such that $\operatorname{det} B\left(i_{1}, \ldots, i_{j}\right)$ is unit. Let $X \in \operatorname{Rad}_{F} N$. Then $\left[X X_{1} \ldots X_{j}\right]_{j+1}$ $\subseteq \sqrt{\Re_{j+1}}=\sqrt{(N: F)}$. If we replace the ideal p in Lemma 2.2(ii) with $\sqrt{(N: F)}$, then $\operatorname{det} B\left(i_{1}, \ldots, i_{j}\right) X \in \sqrt{(N: F)} F+N$. It follows that $X \in \sqrt{(N: F)} F+N$ and hence $\operatorname{Rad}_{F} N=\sqrt{(N: F)} F+N=\left\langle E_{F}(N)\right\rangle$.

Corollary 2.6. Let (R, m) be a local ring with m as maximal ideal. Let F be the free R-module $R^{(n)}$ and $N=\langle\Psi\rangle$. If $\Re_{j}=R$ and $\sqrt{\Re_{j+1}}=\sqrt{(N: F)}$, for some $1 \leq j \leq n-1$, then N s.t.r.f in F.

Proof. Let $\Re_{j}=\sum_{i_{1}, \ldots, i_{j} \in \Omega} R\left[X_{i_{1}} \ldots X_{i_{j}}\right]_{j}=R$, for some $1 \leq j \leq n-1$ and $\sqrt{\Re_{j+1}}=\sqrt{(N: F)}$. Since R is a local ring, then there exists a ma$\operatorname{trix} B=\left[X_{1} \ldots X_{j}\right] \in M_{j \times n}(R)$, for some $X_{1}, \ldots, X_{j} \in \Psi$ with a submatrix $B\left(i_{1}, \ldots, i_{j}\right) \in M_{j \times j}(R)$, for some $i_{1}, \ldots, i_{j} \in\{1, \ldots, n\}$ such that $\operatorname{det} B\left(i_{1}, \ldots, i_{j}\right)$ is unit. Then by Proposition $2.5, N$ s.t.r.f in F.

Proposition 2.7. Let R be a commutative ring with identity. Let F be the free R-module $R^{(n)}$ and $N=\langle\Psi\rangle$. If $\sqrt{\Re_{1}}=\sqrt{\Re_{2}}=\cdots=\sqrt{\Re_{n-1}}=\sqrt{(N: F)}$, then $\operatorname{Rad}_{F} N=\sqrt{(N: F)} F=\left\langle E_{F}(N)\right\rangle$.

Proof. Let N be a submodule of F such that $\sqrt{\Re_{1}}=\sqrt{\Re_{2}}=\cdots=\sqrt{\Re_{n-1}}=$ $\sqrt{(N: F)}$. Then by Theorem 2.4, $\operatorname{Rad}_{F} N=\left\{X=\left(x_{1}, \ldots, x_{n}\right) \in \sqrt{(N: F)} F \mid\right.$
$\left[X X_{i_{1}} \ldots X_{i_{k-1}}\right]_{k} \subseteq \sqrt{(N: F)}$, for every $i_{1}, \ldots, i_{k-1} \in \Omega$ and $\left.2 \leq k \leq n\right\}$. Since $X_{i} \in \sqrt{(N: F)} F$, for every $X_{i} \in \Psi$, we get that $\operatorname{Rad}_{F} N=\sqrt{(N: F)} F=$ $\left\langle E_{F}(N)\right\rangle$.

Theorem 2.8 is a generalization of Theorem 1.9 in [11].
Theorem 2.8. Let $F=R^{(n)}$ be a free R-module and $N=\langle\Psi\rangle$, where $\Psi=$ $\left\{X_{i}=\left(x_{i 1}, \ldots, x_{i n}\right) \in F \mid i \in \Omega\right\}$.
Let I be an ideal of R and $T=N+I F$. Then $\operatorname{Rad}_{F} T=\left\{X=\left(x_{1}, \ldots, x_{n}\right) \in\right.$ $\sqrt{\Re_{1}+I} F \left\lvert\,\left[\begin{array}{ll}X & \left.X_{i_{1}} \ldots X_{i_{k-1}}\right]_{k} \subseteq \sqrt{\Re_{k}+I} \text {, for every } i_{1}, \ldots, i_{k-1} \in \Omega, 2 \leq k \leq \\ \hline\end{array}\right.\right.$ $n\}$, where $\Re_{k}=\sum_{i_{1}, \ldots, i_{k} \in \Omega} R\left[X_{i_{1}} \ldots X_{i_{k}}\right]_{k}, 1 \leq k \leq n$.

Proof. Let $\Psi^{\prime}=\left\{Y_{i}=\left(y_{i 1}, \ldots, y_{i n}\right) \in I F \mid i \in \Omega^{\prime}\right\}$ be a subset of $I F$ such that $I F=\left\langle\Psi^{\prime}\right\rangle$. Then $T=\left\langle\Psi \cup \Psi^{\prime}\right\rangle$ and so by Theorem $2.4, \operatorname{Rad}_{F} T=\{X=$ $\left(x_{1}, \ldots, x_{n}\right) \in \sqrt{\Re^{\prime}{ }_{1}} F \mid\left[X Z_{i_{1}} \ldots Z_{i_{k-1}}\right]_{k} \subseteq \sqrt{\Re^{\prime}{ }_{k}}, Z_{i_{1}}, \ldots, Z_{i_{k-1}} \in \Psi \cup \Psi^{\prime}$, for every $\left.i_{1}, \ldots, i_{k-1} \in \Omega \cup \Omega^{\prime}, 2 \leq k \leq n\right\}$, where $\Re^{\prime}{ }_{k}=\sum_{i_{1}, \ldots, i_{k} \in \Omega \cup \Omega^{\prime}} R\left[Z_{i_{1}} \ldots Z_{i_{k}}\right]_{k}$, $1 \leq k \leq n$. But it is easy to see that $\sqrt{\Re^{\prime}}{ }_{i}=\sqrt{i_{1}, \ldots, i_{k} \in \Omega \cup \Omega^{\prime}}$. $X \in F$ then $\left[X Z_{i_{1}} \ldots Z_{i_{k-1}}\right]_{k} \subseteq \sqrt{\Re_{k}+I}$, for every $i_{1}, \ldots, i_{k-1} \in \Omega \cup \Omega^{\prime}$ if and only if $\left[X X_{i_{1}} \ldots X_{i_{k-1}}\right]_{k} \subseteq \sqrt{\Re_{k}+I}$, for every $i_{1}, \ldots, i_{k-1} \in \Omega$.

3. Prüfer domains

There are many equivalent conditions for an integral domain R to be a Prüfer domain [5], Theorem 24.3. In what follows we give another equivalent condition in terms of radical of a cyclic submodules of $R^{(2)}$.

Let R be an integral domain and K its field of fractions. R is said to be integrally closed if for every $a \in K, f(a)=0$ for some monic polynomial $f \in R[x]$, then $a \in R$. Furthermore, R is integrally closed if and only if $\left(I:_{K} I\right)=R$, for every finitely generated ideal I of $R[4]$, Theorem 3.7.I, where $\left(I:_{K} I\right)=\{x \in K \mid x I \subseteq I\}$.

In Theorem 3.1 we give necessary and sufficient condition for an integral domain to be integrally closed, by radical of a cyclic submodules in $R^{(n)}$.
Theorem 3.1. Let R be an integral domain with quotient field K and let F be the free R-module $R^{(n)}$. Then R is integrally closed if and only if $\operatorname{Rad}_{F}\left(R\left(a_{1}, \ldots\right.\right.$, $\left.a_{n}\right)$)
$\cap\left(I_{n}\right)^{(n)}=R\left(a_{1}, \ldots, a_{n}\right)$, for every $\left(a_{1}, \ldots, a_{n}\right) \in F$ and $n \geq 1$, where $I_{n}=$ $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ is a finitely generated ideal of R.

Proof. Let R be an integrally closed domain. If $n=1$, then the proof is clear. Let $n \geq 2$ and $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Rad}_{F}\left(R\left(a_{1}, \ldots, a_{n}\right)\right) \cap\left(I_{n}\right)^{(n)}$, for some $\left(x_{1}, \ldots, x_{n}\right),\left(a_{1}, \ldots, a_{n}\right) \in F$. We can assume that there exists $1 \leq t \leq n$, such that $a_{t} \neq 0$. Since $R\left(a_{1}, \ldots, a_{n}\right)$ is a cyclic submodule of F and $n \geqslant 2$
then by [8], Proposition 1.2, $\left(R\left(a_{1}, \ldots, a_{n}\right): F\right)=\langle 0\rangle$. Since $\left(x_{1}, \ldots, x_{n}\right) \in$ $\operatorname{Rad}_{F}\left(R\left(a_{1}, \ldots, a_{n}\right)\right)$ and $\left(R\left(a_{1}, \ldots, a_{n}\right): F\right)=\langle 0\rangle$, by Theorem 2.4, $x_{i} a_{t}=$ $a_{i} x_{t}$ for all $i ; 1 \leq i \leq n, i \neq t$, and hence $a_{t}\left(x_{1}, \ldots, x_{n}\right)=x_{t}\left(a_{1}, \ldots, a_{n}\right)$. It follows that $\frac{x_{t}}{a_{t}} \in\left(I_{n}:_{K} I_{n}\right)$. Since R is integrally closed then $x_{t}=r a_{t}$, for some $r \in R$ and hence $\left(x_{1}, \ldots, x_{n}\right)=r\left(a_{1}, \ldots, a_{n}\right) \in R\left(a_{1}, \ldots, a_{n}\right)$. Conversely, let $I_{n}=\left\langle a_{1}, \ldots, a_{n}\right\rangle(n \geq 1)$ be a finitely generated ideal of R and $\frac{f}{s} \in\left(I_{n}:_{K} I_{n}\right)$ for some $0 \neq s, f \in R$. Then there exist $x_{i} \in I_{n}, 1 \leq i \leq n$, such that $f a_{i}=s x_{i}$. By Theorem 2.4, $\left(x_{1}, \ldots, x_{n}\right) \in \operatorname{Rad}_{R^{(n)}}\left(R\left(a_{1}, \ldots, a_{n}\right)\right) \cap\left(I_{n}\right)^{(n)}$. Then $\left(x_{1}, \ldots, x_{n}\right)=r\left(a_{1}, \ldots, a_{n}\right)$, for some $r \in R$. Since $s\left(x_{1}, \ldots, x_{n}\right)=$ $f\left(a_{1}, \ldots, a_{n}\right), f=r s$ and so $\frac{f}{s} \in R$.

Theorem 3.2. Let R be an integral domain. Then R is a Prüfer domain if and only if for all $a, b \in R,(a R+b R)^{2}=a^{2} R+b^{2} R$ and $I^{(2)} \cap \operatorname{Rad}_{F}(R(a, b))=$ $R(a, b)$, where $I=\langle a, b\rangle$.
Proof. Let R be a Prüfer domain. Then R is integrally closed and by [5], Theorem 24.3, $(a R+b R)^{2}=a^{2} R+b^{2} R$ for all $a, b \in R$. Hence by Theorem 3.1, $I^{(2)} \cap \operatorname{Rad}_{R^{(2)}}(R(a, b))=R(a, b)$ and $(a R+b R)^{2}=a^{2} R+b^{2} R$ for all $a, b \in R$. Conversely, let m be a maximal ideal of R. It is enough to show that R_{m} is a valuation ring. We assume $\frac{a}{s_{1}}, \frac{b}{s_{2}} \in R_{m}$, for some $a, b \in R$, $s_{1}, s_{2} \in R-m$. If $a \notin m$ or $b \notin m$ then $b R_{m} \subseteq a R_{m}$ or $a R_{m} \subseteq b R_{m}$. Now let a, b be non-zero element of m. Since $(a R+b R)^{2}=a^{2} R+b^{2} R$, hence $a b=r a^{2}+s b^{2}$ for some $r, s \in R$ and so $a(b-r a)=s b^{2}$. Therefore by Theorem $2.4,(s b, b-r a) \in \operatorname{Rad}_{R^{(2)}}(R(a, b)) \cap I^{(2)}$. It follows that $(s b, b-r a)=t(a, b)$ for some $t \in R$. Then $s b=t a$ and $(1-t) b=r a$ and so we have $a R_{m} \subseteq b R_{m}$ or $b R_{m} \subseteq a R_{m}$.

A Noetherian valuation domain is called a discrete rank one valuation. Furthermore, a domain R is said to be almost Dedekind provided that, for each maximal ideal m of R, the localization R_{m} is a discrete rank one valuation [4], page 119. It is clear that every almost Dedekind domain is a Prüfer domain. In [4], Theorem 7.1, Chapter III, it is proved that a domain R which is not a field, is an almost Dedekind domain if and only if R is a Prüfer domain of Krull dimension one and $\{0\}$ is the only idempotent prime ideal of R. In Theorem 3.4, we give a necessary and sufficient condition for a one dimensional domain R with $\{0\}$ as only idempotent prime ideal to be an almost Dedekind domain.

Lemma 3.3. Let R be a one dimensional local domain with maximal ideal m such that $\bigcap_{n=1}^{\infty} m^{n}=0$. Then R is a valuation ring if and only if $\operatorname{Rad}_{R^{(2)}}(R(a, b))$ $=E_{R^{(2)}}\left(\stackrel{n=1}{R(a, b))}\right.$ and $(a R+b R)^{2}=a^{2} R+b^{2} R$, for all $a, b \in R$.

Proof. Let R be a valuation ring. It is clear that $(a R+b R)^{2}=a^{2} R+b^{2} R$, for all $a, b \in R$. Now let (a, b) be a non-zero element of $R^{(2)}$ and $(0,0) \neq(c, d) \in$ $\operatorname{Rad}_{R^{(2)}}(R(a, b))$. We assume that $c=r d$ and $a=s b$, for some $r, s \in R$. Then we have $(c, d)=d(r, 1)$ and $(a, b)=b(s, 1)$. It follows by Theorem 2.4, that $d b(r-s)=0$ and $d^{k}=t b$, for some $k \in \mathbf{N}$ and $t \in R$. Therefore $r=s$ and we have $(c, d)=d(r, 1)=d(s, 1), d^{k}(r, 1)=d^{k}(s, 1)=t b(s, 1)=t(a, b)$. Hence $(c, d) \in E_{R^{(2)}}(R(a, b))$. Now let $a=s b$ and $d=r c$ for some $r, s \in R$. Then we have $(c, d)=c(1, r)$ and $(a, b)=b(s, 1)$. Now by Theorem 2.4, we have $b c(s r-1)=0$ and $c^{k}=t b$, for some natural number k and $t \in R$. Therefore $s r=1$ and we have $(c, d)=c(1, r)$ and $c^{k}(1, r)=c^{k} r(s, 1)=\operatorname{trb}(s, 1)=\operatorname{tr}(a, b)$. Hence $(c, d) \in E_{R^{(2)}}(R(a, b))$. Conversely let a, b be non-zero elements of R. It is enough to show that $a \in R b$ or $b \in R a$. Since $(a R+b R)^{2}=a^{2} R+b^{2} R$, hence $a b=r a^{2}+s b^{2}$, for some $r, s \in R$ and so $a(b-r a)=s b^{2}$. By Theorem 2.4, we have $(s b, b-r a) \in \operatorname{Rad}_{R^{(2)}}(R(a, b))$. Now we assume that $a \notin R b, b \notin R a$ and we show that $s b, b-r a \in \bigcap_{n=1}^{\infty} m^{n}$. Hence $s b=0, b-r a=0$. Therefore $b=r a$, which is a contradiction. Since $(s b, b-r a) \in \operatorname{Rad}_{R^{(2)}}(R(a, b))=E_{R^{(2)}}(R(a, b))$, then $s b, b-r a \in m$ and $(s b, b-r a)=r_{0}\left(x_{0}, y_{0}\right)$, for some $0 \neq r_{0}, x_{0}, y_{0} \in R$ such that $r_{0}^{n_{0}}\left(x_{0}, y_{0}\right)=t_{0}(a, b)$, for some $n_{0} \in N$ and $t_{0} \in R$. If r_{0} is unit in R, then $\left(x_{0}, y_{0}\right)=\ell(a, b)$, for some $\ell \in R$ and so $(s b, b-r a)=r_{0} \ell(a, b)$. It follows that $s b=r_{0} \ell a$ and $b\left(1-r_{0} \ell\right)=r a$. Since R is a local ring, $r_{0} \ell$ or $1-r_{0} \ell$ is unit and so $a \in R b$ or $b \in R a$, which is a contradiction. Therefore $r_{0} \in m$. If x_{0} or y_{0} is unit, because $r_{0}^{n_{0}} a y_{0}=r_{0}^{n_{0}} b x_{0}$ hence $a y_{0}=b x_{0}$, then we have $b \in R a$ or $a \in b R$. Hence $0 \neq r_{0}, x_{0}, y_{0} \in m$ and so $s b, b-r a \in m^{2}$. By induction, let $(s b, b-r a)=r_{0} r_{1} \ldots r_{k-1}\left(x_{k-1}, y_{k-1}\right)$, for some $0 \neq r_{i}, x_{i}, y_{i} \in$ $m, 0 \leq i \leq k-1$ such that $r_{i}^{n_{i}}\left(x_{i}, y_{i}\right)=t_{i}(a, b)$, for some $n_{i} \in N$ and $t_{i} \in R$, $0 \leq i \leq k-1$. Since $x_{k-1}, y_{k-1} \in m$ and $b x_{k-1}=a y_{k-1}$, hence by Theorem 2.4, we have $\left(x_{k-1}, y_{k-1}\right) \in \operatorname{Rad}_{R^{(2)}}(R(a, b))$. So $\left(x_{k-1}, y_{k-1}\right)=r_{k}\left(x_{k}, y_{k}\right)$, for some $0 \neq r_{k}, y_{k}, x_{k} \in R$ such that $r_{k}^{n_{k}}\left(x_{k}, y_{k}\right)=t_{k}(a, b)$, for some $n_{k} \in \mathbf{N}$ and $t_{k} \in R$. Similarly for the case $k=0$, we have $0 \neq r_{k}, x_{k}, y_{k} \in m$ and hence $(s b, b-r a)=r_{0} r_{1} \ldots r_{k}\left(x_{k}, y_{k}\right) \in\left(m^{k+2}\right)^{(2)}$.

Theorem 3.4. Let R be a one dimensional domain such that $\bigcap_{n=1}^{\infty} m^{n}=0$, for all maximal ideals m of R. Then R is almost Dedekind if and only if $(a R+b R)^{2}=a^{2} R+b^{2} R$ and $\operatorname{Rad}_{R_{m}^{(2)}}\left(R_{m}(a, b)\right)=E_{R_{m}^{(2)}}\left(R_{m}(a, b)\right)$, for all maximal ideals m of R and $a, b \in R$.

Proof. Let R be almost Dedekind domain. Then R is a Prüfer domain and hence by [5], $(a R+b R)^{2}=a^{2} R+b^{2} R$, for all $a, b \in R$. So by [2], Theorem 2.4, $R^{(2)}$ s.t.r.f. as an R-module. Now let $a, b \in R$. Then $\left(\operatorname{Rad}_{R^{(2)}}(R(a, b))\right)_{m}=$
$\left\langle E_{R^{(2)}}(R(a, b))\right\rangle_{m}=\left\langle E_{R_{m}^{(2)}}\left(R_{m}(a, b)\right)\right\rangle$, for all $m \in \max (R)$. Since R_{m} is a valuation ring, hence by Lemma $3.3, \operatorname{Rad}_{R_{m}^{(2)}}\left(R_{m}(a, b)\right)=E_{R_{m}^{(2)}}\left(R_{m}(a, b)\right)$.

Acknowledgments

The authors would like to thank the referee for his/her useful suggestions that improved the presentation of this paper.

References

[1] A. Azizi, Radical formula and prime submodules, J. Algebra 307 (2007), no. 1, 454-460.
[2] D. Buyruk and D. P. Yilmaz, Modules over Prüfer domains which satisfy the radical formula, Glasg. Math. J. 49 (2007), no. 1, 127-131.
[3] S. Ceken and M. Alkan, On radical formula over free modules with two generators, Numerical Analysis and Applied Mathematics ICNAAM (2011) 333-336.
[4] L. Fuchs and L. Salce, Modules over non-Noetherian domains, Mathematical Surveys and Monographs, American Mathematical Society, Providence, 2001.
[5] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
[6] J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra 20 (1991), no. 12, 3593-3602.
[7] K. H. Leung and S. H. Man, On commutative Noetherian rings which satisfy the radical formula, Glasgow Math. J. 39 (1997), no. 3, 285-293.
[8] F. Mirzaei and R. Nekooei, On prime submodules of a finitely generated free module over a commutative ring, Communications In Algebra, Accepted.
[9] A. Parkash, Arithmetical rings satisfy the radical formula, J. Commutative Algebra (2013), no. 2, 293-296.
[10] H. Sharif, Y. Sharifi and S. Namazi, Rings satisfying the radical formula, Acta Math. Hungar. 71 (1996), no. 1-2, 103-108.
[11] D. P. Yilmaz and P. F. Smith, Radical of submodules of free modules, Comm. Algebra 27 (1999), no. 5, 2253-2266.
(F. Mirzaei) Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, P.O. Box 76169133, Kerman, Iran.

E-mail address: mirzaee0269@yahoo.com
(R. Nekooei) Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, P.O. Box 76169133 , Kerman, Iran.

E-mail address: rnekooei@uk.ac.ir

[^0]: Article electronically published on June 29, 2016.
 Received: 8 May 2014, Accepted: 25 February 2015.

 * Corresponding author.

