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1. Introduction

In this paper, we deal with non-simply connected 7-dimensional Riemannian
manifolds of constant positive curvature which admit irreducible cohomogene-
ity one (C1) actions, that is, isometric actions whose orbit spaces are one-
dimensional or equivalently the principal orbits have codimension one. C1
Riemannian manifolds have been studied by several authors. W. D. Neumann
and J. Parker studied C1 Riemannian manifolds in dimensions 3, 4 ( [10], [12]).
C. Hoelscher in [7] gave a classifiaction of simply connected C1 Riemannian
manifolds in dimensions 5, 6, and 7. C. Searle in [15] has classified simply
connected Riemannian C1 manifolds with positive sectional curevature in di-
mensions less than seven. According to her classification, these manifolds are,
up to diffeomorphism, spheres or complex projective spaces. Simply connected
7-dimensional case was treated in [13] by F. Podesta and L. Verdiani when
the semisimple part of the acting group has dimension greater than six. They
got only the 7-sphere up to diffeomorphism. Verdiani has also provided a
classification of simply connected C1 manifolds of positive curvature in even
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dimensions; he obtained just rank one symmetric spaces, up to equivariant dif-
feomorphism [18, 19]. The nonsimply connected ones have only been classified
in dimension 4, so it is interesting to consider other dimensions. In this paper,
we take the dimension to be 7 and hope to study dimension 5 in a forthcoming
paper. Clearly, the nonsimply connected C1 Riemannian manifolds are cov-
ered by those which have been classified. Therefore, one need to find finite
groups which commute with the actions on simply connected C1 Riemannian
manifolds and act on them freely to complete the classification. In [1], Abedi,
Kashani studied non-simply connected C1 manifolds of constant positive cur-
vature. They characterized the orbits of reducible C1 actions on positive space
form Sn/Γ. For the irreducible actions, they proved that if Γ is a group of type
I introduced in [20, Theorem 6.1.11], the C1 manifold Sn/Γ is homogeneous.
For the groups of other types listed in [20, Theorems 6.1.11, 6.3.1 ], they made
a conjecture, saying that if the space form Sn/Γ is C1, then it is homogeneous.
On the other hand, presentation of fundamental groups of closed manifolds of
positive sectional curvature is an interesting problem in Riemannian geome-
try. By Bonnet theorem, π1(M) is finite, and if M is even dimensional and
orientable, then π1(M) is trivial by Synge theorem. Hence one should study
just odd dimensions. Fang, Rong, and Shankar in [4,14,16] obtained some nice
results on the fundamental groups of positively curved Riemannian manifolds.
Therefore, a trend in this context is to find fundamental groups of C1 closed
Riemmanian manifolds with positive sectional curvature which leads to the
classification of nonsimply connected cases.

This paper which is a continuation of [1] classifies up to isometry, 7-dimensi-
onal non-simply connected Riemannian manifolds of constant positive curva-
ture which admit irreducible C1 actions. We should emphasize that, since the
actions in this paper are irreducible, our results and techniques are quite inter-
esting and different from those of [1]. As a byproduct of our results, we give a
positive answer to the conjecture made by Abedi, Kashani in [1] in dimension
7. To obtain our classification, we benefit from a classification of Riemann-
ian manifolds of constant positive curvature attributed to J. Wolf which states
that every complete connected Riemannian manifold of constant positive cur-
vature is isometric to Sn

(σ1⊕...⊕σr)(G) where G is a finite group and σi’s are fixed

point free irreducible orthogonal representations of G [20]. We also use the
auxiliary Proposition 3.2 (see section 2) which provides us with the necessary
and sufficient conditions for a quotient manifold to admit a C1 action. By the
proposition, we just need to know C1 actions on S7, which have been provided
by E. Straume in [17].

The paper is organized as follows. In the first section, we give the prelim-
inaries. The second section is devoted to the classification. Our main results
are Theorems 3.3, 3.7, and Propositions 3.6, 3.10, 3.12.
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2. Preliminaries

In this section we review the classification of Riemannian manifolds of con-
stant positive curvature and recall some basic facts about representation theory.

First we briefly outline the classification of 7-dimensional spherical space
forms due to J. A. Wolf (see [20, Chapters 6, 7]). Beforehand, we need the
following lemma which describes the induced representation:

Lemma 2.1. [20] If σ is a representation on a vector space W of a subgroup H
of finite index n in a group G, then there is a well defined induced representation
σG of G on V = W ⊕ . . .⊕W︸ ︷︷ ︸

n-times

given by σG(g) = (σ(b−1
j gbi)) where G =

∪
biH,

b1 ∈ H, σ(c) = 0 for c /∈ H.

Now we introduce the finite groups and their fixed point free representations
which appear in the Wolf’s classification of 7-dimensional spherical space forms.

Type I. G has representation Am = Bn = 1, ABA−1 = Ar, where m ≥
1, n ≥ 1, rn ≡ 1 (mod m), (n(r − 1),m) = 1, and every prime divisor of the
order d of r in the multiplicative group of residues modulo m of integers prime
to m divides n′ = n/d. Then the complex irreducible fixed point free represen-
tations of the subgroup ⟨A,Bd⟩ are given by

σk ⊗ σl : A
uBvd 7→ e2πiku/m.e2πilv/n

′

where (k,m) = 1 = (l, n). Define πk,l = (σk ⊗ σl)
G, which is a complex

irreducible fixed point free representation of G by Lemma 2.1.
Type II. G = ⟨A,B,R⟩ where ⟨A,B⟩ is of type I, and R normalizes both

⟨A⟩ and ⟨B⟩, n1 ≡ 0 (mod 4). Then the two following cases happen:
case 1. n1 = 4, d ≡ 2 (mod 4), and for some s, RBs.A = A.RBs. Then
the complex irreducible fixed point free representations of G are given by βk,l,
where βk,l ⊕ βk,l = αk,l = πG

k,l, and πk,l is as above.
case 2. At least one of the conditions of case 1 fails. Then the representations
of G are given by αk,l = πG

k,l.

Type IV. G = ⟨A,B, P,Q,R⟩ where ⟨A,B⟩ is a group of odd order of
type I, P 4 = 1, P 2 = Q2, PQP−1 = Q−1, AP = PA,AQ = QA,BPB−1 =
Q,BQB−1 = PQ,P 2 = R2, RP = QPR,RQR−1 = Q−1, and R normalizes
both ⟨A⟩ and ⟨B⟩. Then G admits the following complex irreducible fixed point
free representations:

γk,l = (πk,l ⊗ τ)G,

where πk,l is the representation of ⟨A,B3⟩, and τ is the representation of binary
tetrahedral group T ∗, (cf. [20, Lemma 7.1.3] for more details).

ξk,l,j = πk,l ⊗ oj ,
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where πk,l is the representation of ⟨A,B3v ⟩, n = 3vn′′, (3, v) = 1, and oj is a
representation of O∗

v , (cf. [20, Lemma 7.1.5] for more details).

γk,l,j = (πk,l ⊗ τj)
G,

where πk,l is the representation of ⟨A,B3v ⟩, n = 3vn′′, (3, v) = 1, and τj is the
representation of T ∗

v , (cf. [20, Lemma 7.1.3] for more details).

ηk,l = (µk,l)
G,

where µk,l is the representation of ⟨A,B, P,Q⟩ induced by σk ⊗ σl ⊗ α for σk

a representation of ⟨A⟩, σl a representation of ⟨Bd⟩, and α a representation of
Q8 (cf. [20, Lemma 5.6.2] for more details).

Type VI. G = ⟨K × SL(2, 5), S⟩ where K is of type I with order prime to
30, SL(2, 5), is the multiplicative group of 2×2 matrices of determinant 1 with
coefficients in Z3, S

2 is the element of order 2 in SL(2, 5), S normalizes SL(2, 5),
K, ⟨A⟩ and ⟨B⟩ of K, and conjugation of SL(2, 5) by S is the conjugation by

the matrix

[
0 −1
2 0

]
. Then G admits the follwing complex irreducible fixed

point free representations:

κk,l,j = (πk,l ⊗ ιj)
G,

where πk,l is the representation of K and ιj is the representation of SL(2, 5),
(cf. [20, Lemma 7.1.7] for more details).

Now we quote the classification of 7-dimensional spherical space forms, The-
orem 2.2, and the classifications of n-dimensional homogeneous spherical space
forms, 2.3, from [20]. Recall that for a complex representation π on a com-
plex vector space V we have a real representation on VR, where we forget the
complex structure. In Theorem 2.2 π̂ refers to the real representation corre-
sponding to the complex representations described above. We use these results
in the proofs of Theorem 3.3 and Corollaries 3.4 and 3.5.

Theorem 2.2. [20] A 7-dimensional complete connected Riemannian mani-
fold of constant positive curvature is isometric to one of the following:

1. S7/Γ, Γ generated by diag(R( 1
n
), R( a

n
), R( b

n
), R( c

n
)) where R(θ) =

[
cos 2πθ−sin 2πθ

sin 2πθ cos 2πθ

]
;

2. S7

{(π̂k1,l1
⊕π̂k2,l2

)(G)} , G of type I with d = 2;

3. S7

π̂k,l(G) , G of type I with d = 4;

4 . S7

{(β̂k1,l1
⊕β̂k2,l2

)(G)}
, G of type II with d = 2;

5. S7

{(α̂k1,l1
⊕α̂k2,l2

)(G)} , G of type II with d = 1;

6. S7

α̂k,l(G) , G of type II with d = 2;
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7. S7

γ̂k,l(G) ,
S7

ξ̂k,l,j(G)
, S7

γ̂k,l,j(G) and S7

η̂k,l(G) , G of type IV with d = 1;

8. S7

κ̂k,l,j(G) , G of type V I with d = 1;

Theorem 2.3. [20] Let Mn be a connected homogeneous Riemannian mani-
fold of constant positive curvature K, then Mn is isometric to a manifold Sn/Γ

where (i) F is a field R, C or Q, (ii) Sn is the sphere ∥ x ∥= K
−1
2 in a left

hermitian vector space V over F where V has real dimension n + 1, (iii) Γ is
a finite multiplicative group of elements of norm 1 in F which is not contained
in a proper subfield F1, R ⊂ F1 ⫋ F, of F, and (iv) Γ acts on Sn by F-scalar
multiplication of vectors.

conversely, all the manifolds listed are n-dimensional Riemannian homoge-
neous manifolds of constant positive curvature K.

Definition 2.4. [1] An isometric action of a Lie group G on a sphere Sn is
called reducible if the corresponding action on Rn+1 is reducible, i.e. there
are two proper subspaces of Rn+1 invariant under the G-action; otherewise the
action is called irreducible.

The folowing theorem of E. Straume describes irreducible C1 actions on S7.

Theorem 2.5. [17] Let G be a compact connected Lie subgroup of Iso(S7)
and Φ be a irreducible C1 action of G on S7. Then G and Φ can be one of the
following cases.

Table 2.1. irreducible C1 actions on 7-sphere

n G Φ
1 SU(3) Adjoint
2 SO(4) ν1 ⊗ S3ν3
3 U(1)× SO(4) ρ2 ⊗ ρ4
4 U(2)× SU(2) [µ2 ⊗C µ2]R

For the sake of completeness, in the sequel, we take a look at some necessary
concepts of representation theory.

Notation 2.6. [21] Let V be endowed with a real inner product in the case
of real representation π or a hermitian inner product in the case of complex
representaion π. If we denote the adjoint of a linear map L by L∗, then π∗ is
defined by π∗(g)v = (π(g−1))∗v on the group level and by π∗(X)v = −(π(X))∗v
on the Lie algebra level.

Definition 2.7. Let π1, π2 be two representations of a Lie group G on vec-
tor spaces V1 and V2, respectively. π1 and π2 are said to be equivalent,
denoted by π1 ≃ π2, if there is an isomorphism L : V1 → V2 such that
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L(π1(g)v) = π2(g)L(v). Such an isomorphism L is called an intertwining map.

Definition 2.8. [21] Let π be a complex representation of the complex lie
algebra g on a vector space V .
a) π is called orthogonal if there exists a non-degenerate symmetric bilinear
form on V invariant under π.
b) π is called symplectic if there exists a non-degenerate skew-symmetric bilin-
ear form on V invariant under π.
c) π is called complex if it is neither orthogonal nor symplectic.
d) π is called self dual if π ≃ π∗.

Proposition 2.9. [21] Let π be a complex irreducible representation of a
compact semisimple Lie algebra k on V . Then there exists a symmetric bilin-
ear form on V invariant under π if and only if there exists a conjugate linear
intertwining map τ with τ2 = Id.

Proposition 2.10. [21] (a) Let π be a complex representation. π is orthogo-
nal or symplectic if and only if π is self dual.
(b) Let π1 and π2 be two complex representation. π1 ⊗ π2 is self dual if and
only if both representations are self dual.

Notation 2.11. For a complex representation π on a complex vector space V
we denote by πR the real representation on VR, where we forget the complex
structure.
If σ is a real representation on W , σC = σ ⊗C is a complex representation on
WC = W ⊗ C.

Lemma 2.12. [21] If π is a complex repreesntation of a compact Lie algebra
k, then πR ⊗ C ≃ π ⊕ π∗.

Proposition 2.13. [21] Let σ be a real irreducible representation of k. Then
one and only one of the following holds:
(a) σ ⊗ C ≃ π with π an orthogonal irreducible representation.
(b) σ ⊗ C ≃ π ⊕ π∗ with π an irreducible complex representation.
(c) σ ⊗ C ≃ π ⊕ π with π an irreducible symplectic representation.

We say that the real representation σ is of real type in case (a), of complex
type in case (b) and quaternionic type in case (c).

Proposition 2.14. [21] Let σ be a real irreducible representation of k, and Iσ
the algebra of intertwining operators.
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(a)If σ is of real type, then Iσ ≃ R.
(b)If σ is of complex type, then Iσ ≃ C.
(c) If σ is of quaternionic type, then Iσ ≃ H.

Proposition 2.15. [3] An irreducible real representation of a compact abelian
Lie group is either one-dimensional and of real type or two-dimensional and of
complex type.

3. Main results

In this section we deal with our classifiaction problem. The first step is
to find conditions under which a quotient manifold admits a C1 action. The
following proposition states the necessary and sufficient conditions.

Definition 3.1. Let (M, g) be a Riemannian manifold and G ⊆ Isog(M)
be a closed Lie subgroup. The action of G on M is C1 if there exists an
orbit of codimension one, or equivalently, if the orbit space is a 1-dimensional
topological space.

Proposition 3.2. Let G̃ be a compact connected Lie subgroup of isometries of

a Riemannian manifold M such that the action of G̃ on M is C1, let Γ be a
properly discontinuous subgroup of isometries of M , π : M → M

Γ be the natural

projection map π(x) = OΓ(x), and let ρ : G̃ → G be a covering homomorphism.

Then the action of G̃ descends to an action of G on M/Γ if and only if the
following conditions hold:

1. for all g̃ ∈ G̃, φ ∈ Γ, x ∈ M, g̃.φ(x) = φ(g̃.x),
2. {Φg̃ : g̃ ∈ kerρ} ⊆ Γ, where

Φg̃ : M → M

x 7→ g̃.x

Further the action is C1.

Proof. The ”only if” statement has been proved in [2, Theorem I. 9. 1]. Now
we prove the inverse.

Let ρ : G̃ → G be a covering homomorphism so that the two conditions
hold. Define the action of G on M

Γ as follows:

Ψ :G× M

Γ
→ M

Γ
(g, [x]) 7→ [g̃.x],

for some g̃ ∈ G̃ such that ρ(g̃) = g. First, we show that the definition of Ψ does
not depend on g̃. let ρ(g̃1) = ρ(g̃2) = g, so ρ(g̃−1

2 g̃1) = e, i.e, g̃−1
2 g̃1 ∈ kerρ.
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Since kerρ is in the center of G̃, we have g̃2g̃
−1
2 g̃1 = g̃−1

2 g̃1g̃2. Thus

g̃1.x = g̃2g̃
−1
2 g̃1.x

= g̃−1
2 g̃1g̃2.x

= g̃−1
2 g̃1.(g̃2.x)

= Φg̃−1
2 g̃1(g̃2.x)

=⇒ [g̃1.x] = [g̃2.x].

Now suppose x, y ∈ M, [x] = [y], so y = φ(x), for some φ ∈ Γ. Let g̃ ∈ G̃, we
have

g̃.y = g̃.ϕ(x)

= ϕ(g̃.x)

=⇒ [g̃.x] = [g̃.y].

It means that Ψ is well-defined.
It can be easily seen that Ψ is a C1 action. Since π : M → M

Γ is a Riemannain

covering, π∗x : TxM → T[x]
M
Γ is a linear isomorphism, and on the other hand

π(o(x)) = o(π(x)), we have dimo(x) = dimo(π(x)). It shows that the action
of G on M

Γ is a C1 action. □

Now we state the classification which is summarized in Table 3.1 on page
577.

Theorem 3.3. Let M7 be a complete connected non-simply connected, compact
Riemannian manifoldof constant positive curvature admiting an irreducible C1
action. Then, up to isometry, one and only one of the cases of Table 3.1 can

happen. Note that in Table 3.1, Ak = ⟨
[
cos2π

k −sin 2π
k

sin 2π
k cos2π

k

]
⟩ and Bk = ⟨e 2πi

k ⟩.

Proof. By Theorem 2.2, we know that M is isometric to an spherical space
form S7/Γ, where Γ is a properly discontinuous subgroup of O(8). To find
7-dimensional spherical space forms which admit irreducible C1 actions, we in-
vestigate properly discontinuous subgroups of O(8) which satisfy conditions of
Proposition 3.2, for the actions determined in Theorem 2.5. By Theorem 2.5,

there are four Lie groups G̃ which act on S7 irreducibly and of cohomogeneity
one, namely SU(3), SO(4), SO(2) × SO(4) and U(2) × SU(2) . We explore
each group and its action on S7 to obtain the division algebra of intertwining
maps of the action. This leads us to get the properly discontinuous subgroups
of O(8), say Γ, which satisfy condition 1 of Proposition 3.2. To obtain the
groups Γ which satisfy condition 2 as well, we consider a covering homomor-

phism from G̃ and study its kernel as a discrete normal subgroup of Z(G̃).
Then we examine condition 2 and find all those Γ, which satisfy conditions 1, 2

of Proposition 3.2. Notice that the groups acting on S7/Γ have the form G̃/H,
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where G̃ is one of the groups introduced in Theorem 2.5 and H is a discrete

normal subgroup of Z(G̃). In the following, by the aid of representation the-
ory, we give the details of our investigation of the acting groups, case by case
according to Theorem 2.5, to see if Proposition 3.2 is satisfied.

a) G̃ = SU(3). Consider the inner product space V = (su(3), ⟨, ⟩), where
⟨X,Y ⟩ = −traceXY and define the action of SU(3) on V as follows:

Ad : SU(3)× su(3) −→ su(3)

(A,X) 7−→ AXA−1.

According to [17], this action is irreducible and of cohomogeneity one, d(Ad) =
ad is a real irreducible reprsentation of su(3). By [6] ad⊗C is irreducible as well,
so Propositions 2.13 and 2.14 yeild Iσ ≃ R. Hence condition 1 of Proposition
3.2 holds only for Γ = Z2 as the only finite subgroup of (R∗, .) is Z2.

Now we consider codition 2 of Proposition 3.2. Let ρ : SU(3) → G be a cov-
ering homomorphism. Since kerρ is a discrete normal subgroup of Z(SU(3)) =
Z3, we have two cases:
1. kerρ = Id, so condition 2 of Proposition 3.2 holds trivially, hence it gives a

C1 action of SU(3) on RP7 = S7

Z2
.

2. kerρ = Z3. Let g = αI ∈ Z3 = {Id, e 2πi
3 Id, e

4πi
3 Id},

Φg(x) = g.x

= gxg−1

= (αI)x(αI)−1

= (αI)x(α−1I)

= (αα−1)IxI

= x.

That is, Φg = I ∈ Γ = Z2, so condition 2 of Proposition 3.2 holds which gives

rise to a C1 action of SU(3)
Z3

on RP7 = S7

Z2
.

b) G̃ = SO(4). Here we follow [22] to describe the action of SO(4) on S7. Let
Vk be the vector space of homogeneous polynomials of degree k in two complex
variables z,w, then SU(2) acting on vectors (z,w) via matrix multiplication
induces an irreducuble representation π on Vk of complex dimension k + 1
and preserves the inner product, which makes zmwn into an orthogonal basis
with |zmwn|2 = m!n!. The map (z, w) 7→ (w,−z) extended to be a complex
antilinear map Jk : Vk → Vk, satisfies J2

k = (−1)kId. Now consider V1 ⊗ V3

and J1 ⊗ J3, which satisfies (J1 ⊗ J3)
2 = Id. Thus J1 ⊗ J3 induces a real

structure on C8, hence its +1 eigenspace W is invariant under the action of
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G = SU(2)× SU(2) and is spanned by:

xz3 + yw3, i(xz3 − yw3), xzw2 + ywz2, i(xzw2 − ywz2),

yz3 − xw3, i(yz3 + xw3), xz2w − yw2z, i(xz2w + yw2z).

Since the kernel of the 2-fold covering SU(2) × SU(2) → SO(4) is Z2, the
action of SU(2) × SU(2) on W , say σ, induces an irreducible C1 action of
SO(4) on W . In fact, σ = π|W with σ ⊗ C = π. By Proposition 2.9, π is
orthogonal, so according to Proposition 2.13, σ is of real type, hence Iσ ≃ R
by Proposition 2.14. As the result, condition 1 holds only for Z2.

As Z(SO(4)) = Z2, kerρ ⊆ Z2. Straightforward calculation shows that

Φ(−Id) = −Id ∈ Z2, thus SO(4) and SO(4)
Z2

act on RP7 with cohomogeneity
one.

c) G̃ = SO(2)× SO(4). According to [17], irreducible C1 action of SO(2)×
SO(4) on R2 ⊗ R4 is defined by ρ2 ⊗ ρ4, where ρn is the standard action of
SO(n) on Rn. The vector subspace spanC{−e1⊗e1⊗1−e2⊗e1⊗ i,−e1⊗e2⊗
1− e2⊗ e2⊗ i,−e1⊗ e3⊗1− e2⊗ e3⊗ i,−e1⊗ e4⊗1− e2⊗ e4⊗ i} of the vector
space R2 ⊗ R4 ⊗ C is invariant under the complex representation ρ2 ⊗ ρ4 ⊗ C,
thus ρ2 ⊗ ρ4 ⊗ C is reducible. By the proof of Proposition 2.13, ( [21], p:126),
ρ2 ⊗ ρ4 ⊗ C ≃ π ⊕ π∗ with π irreducible and π ̸≃ π∗, so σ = ρ2 ⊗ ρ4 is of
complex type, hence Iσ ≃ C. Thus condition 1 of Proposition 3.2 holds for
Zm = ⟨cos 2π

m Id+ sin 2π
m I⟩, where I is the complex structure on R2 ⊗R4, since

the only finite subgroups of (C∗, .) are Zm = ⟨e 2πi
m ⟩.

Now we consider condition 2. Let H be a discrete normal subgroup of
SO(2)× Z2, which is the center of SO(2)× SO(4). The next two possibilities
can occur:

1) (Id,−Id) ∈ H. One can easily see that H = Zk × Z2, for some k, as it
is well-known that the discrete normal subgroup of SO(2) is finite cyclic. We
show that condition 2 of Proposition 3.2 holds if and only if m is even and k|m.

Suppose that condition 2 holds, then −Id = φ(Id,−Id) ∈ Zm, so m has to be

even. Now assume that A =

[
cos2π

k −sin 2π
k

sin 2π
k cos2π

k

]
. As φ(A,−Id) ∈ Zm, we have

φ(A,Id)
([

1 0 0 0
0 0 0 0

])
=

[
cos 2π

k 0 0 0
sin 2π

k 0 0 0

]
=

[
cos 2πq

m 0 0 0

sin 2πq
m 0 0 0

]
for some q ≤ m. Thus

2πq

m
= 2πl +

2π

k
=⇒ kq = m(kl + 1),
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which shows that k|m.
Conversely, let m be even and k|m, i.e. m = kq, then we have

φ(Al, Id)
([

1 0 0 0
0 0 0 0

])
=

[
cos 2πl

k − sin 2πl
k

sin 2πl
k cos 2πl

k

] [
1 0 0 0
0 0 0 0

]
=

[
cos 2πl

k 0 0 0
sin 2πl

k 0 0 0

]
=

[
cos 2πlq

m 0 0 0

sin 2πlq
m 0 0 0

]
= (cos

2πlq

m
Id+ sin

2πlq

m
I)
( [1 0 0 0

0 0 0 0

] )

φ(Al,−Id)
([

1 0 0 0
0 0 0 0

])
=

[
cos 2πl

k − sin 2πl
k

sin 2πq
m cos 2πl

k

] [
−1 0 0 0
0 0 0 0

]
=

[
− cos 2πl

k 0 0 0
− sin 2πl

k 0 0 0

]
=

[
− cos 2πlq

m 0 0 0

− sin 2πlq
m 0 0 0

]
= −(cos

2πlq

m
Id+ sin

2πlq

m
I)
( [1 0 0 0

0 0 0 0

] )
Since J = cos 2πlq

m Id+ sin 2πlq
m I ∈ Zm and m is even, −J ∈ Zm.

2) (Id,−Id) /∈ H. In this case H can be embedded in SO(2) as a dis-
crete subgroup, and as stated before, it is cyclic. If H = ⟨(A, Id)⟩, for some

A ∈ So(2), then H =< A > ×Id, where A =

[
cos 2π

k − sin 2π
k

sin 2π
k cos 2π

k

]
. The same

discussion as above shows that condition 2 holds if and only if k|m.
Now suppose that H = ⟨(A,−Id)⟩. Note that in this case the order of H,

namely k, is even, since otherwise (Id,−Id) ∈ H. First, let k = 2rq, where
r ≥ 2 and (q, 2) = 1. We show that condition 2 holds if and only if k|m.
Suppose it holds, then we have

φ(A,−Id)
( [1 0 0 0

0 0 0 0

] )
=

[
cos 2πl

k − sin 2πl
k

sin 2πq
m cos 2πl

k

] [
−1 0 0 0
0 0 0 0

]
=

[
− cos 2πl

k 0 0 0
− sin 2πl

k 0 0 0

]
=

[
cos 2πlq

′

m 0 0 0

sin 2πlq
′

m 0 0 0

]
.
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Therefore

2πq
′

m
= 2πl + π +

2π

k
=⇒ 2kq

′
= m(2kl + k + 2)

=⇒ kq
′
= m(kl +

k

2
+ 1)

=⇒ k|m. (k, lk +
k

2
+ 1) = 1.

Conversely, if k|m , the condition holds similarly.
Now assume that k = 2q and (q, 2) = 1. Condition 2 holds if and only if

k|2m. the ”only if” statement is obvious, so we prove the ”if” statement. Let

k|2m, i. e., 2m = kq
′
, for some q

′
.

2m = kq
′
=⇒ m = qq

′

φ(Al, (−1)lId)
( [1 0 0 0

0 0 0 0

] )
=

[
cos 2πl

k − sin 2πl
k

sin 2πq
m cos 2πl

k

] [
(−1)l 0 0 0
0 0 0 0

]
=

[
(−1)l cos 2πl

k 0 0 0
(−1)l sin 2πl

k 0 0 0

]
=

[
(−1)l cos 2πlq

′

2m 0 0 0

(−1)l sin 2πlq
′

2m 0 0 0

]

=

[
(−1)l cos πlq

′

m 0 0 0

(−1)l sin πlq
′

m 0 0 0

]

If l is even, then φ(Al,(−1)lId) = cos
2πq

′ l
2

m Id+sin
2πq

′ l
2

m I ∈ Zm and if l is odd , we

have φ(Al,(−1)lId) = cos πq
′
(q+l)
m Id+sin πq

′
(q+l)
m I = cos

πq
′ q+l

2

m Id+sin
πq

′ q+l
2

m I ∈
Zm as q is odd.

d) G̃ = U(2)× SU(2). According to Theorem 2.5, σ = (ν2 ⊗C µ2)R is
an irreducible C1 reprsentation of U(2) × SU(2) on (C2 × C2)R, where µ2

is the standard representation of SU(2) on C2 and ν2 = δ ⊗ µ2 with δ the
representation of S1 on C. It is well-known that µ2 is of quaternionic type,
and by Proposition 2.15, δ is of complex type. therefore ν2 ⊗ µ2 is of complex
type by Proposition 2.10. On the other hand, according to Proposition 2.12
[ν2 ⊗C µ2]R ⊗ C ≃ π ⊕ π∗, where π = ν2 ⊗C µ2. Hence σ is of complex type
resulting in Iσ ≃ C. Thus condition 1 of Proposition 3.2 holds for Γ = Zm.
Investigating condition 2 is the same as in case (c). □

We collect the admissible data for our classification in the following table.
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Corollary 3.4. Among all manifolds introduced in Theorem 2.2 only the man-
ifolds in part 1 with Γ = ⟨diag(R( 1n ), R( 1n ), R( 1n ), R( 1n )⟩ admit an irreducible
C1 action.

Proof. By a straightforward computation, one can see that just the group in
part 1 of Theorem 2.2 is cyclic. On the other hand, by the proof of Theorem
3.3, we see that all Γ’s obained in the theorem are cyclic, so the result is
obtained. □

Corollary 3.5. A compact connected non-simply connected 7-dimensional Rie-
mannian manifold of constant positive curvature admits an irreducible C1 ac-
tion only if it is homogeneous.

Proof. Theorem 2.3 and the proof of Theorem 3.3 gives the corollary. □

The readers should note that the corollary is the positive answer to the
conjecture presented in [1] in dimension 7.

In the following, we search for the isotropy subgroups of these actions to
describe the orbits.

Proposition 3.6. Let G be a Lie group acting on a nonsimply connectd man-

ifold M
Γ , G̃ be its covering group which acts on the manifold M and G̃x be an

isotropy subgroup of G̃. Then the isotropy subgroup of G at π(x) is isomorphic

to H̃
kerρ , where H̃ = {g̃ ∈ G̃ : g̃.x = φ(x) for some φ ∈ Γ}, ρ : G̃ → G is the

covering homomorphism, and π : M → M
Γ is the natural projection.

Table 3.1. 7-dimensional spherical space forms admitting
irreducible C1 actions

G̃ Z(G̃) H≤discreteZ(G̃) Γ G M7

SU(3) Z3 Id,Z3 Z2
SU(3)

H
RP7

SO(4) Z2 Id,Z2 Z2
SO(4)

H
RP7

SO(2)× SO(4) SO(2)× Z2 Zk × Z2 Zm,m even, k|m SO(2)×SO(4)
H

S7

Zm

SO(2)× SO(4) SO(2)× Z2 Zk × Id,

⟨Ak,−Id⟩,
k = 2rq, r ≥ 2

Zm, k|m SO(2)×SO(4)
H

S7

Zm

SO(2)× SO(4) SO(2)× Z2 ⟨Ak,−Id⟩,
k = 2q

Zm, k|2m SO(2)×SO(4)
H

S7

Zm

U(2)× SU(2) S1 × Z2 Zk × Z2 Zm,m even, k|m SO(2)×SO(4)
H

S7

Zm

U(2)× SU(2) S1 × Z2 Zk × Id,
⟨Bk,−Id⟩,
k = 2rq, r ≥ 2

Zm, k|m SO(2)×SO(4)
H

S7

Zm

U(2)× SU(2) S1 × Z2 ⟨Bk,−Id⟩,
k = 2q

Zm, k|2m SO(2)×SO(4)
H

S7

Zm
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Proof. First, notice that kerρ ⊆ H̃, since for g̃ ∈ kerρ we have

π(g̃.x) = ρ(g̃)π(x)

= eπ(x)

= π(x)

=⇒ g̃.x = φ(x), for someφ ∈ Γ.

For x ∈ M , the isotropy subgroup of G at π(x) is Gπ(x) = {ρ(g̃) : g̃ ∈ G̃, g̃.x =
φ(x) for some φ ∈ Γ}, so the result is readily obtained. □

According to the classification given in Theorem 3.3, we explore the princi-
pal and singular isotropy subgroups of the irreducible C1 actions on S7/Γ case

by case. To specify the notation, we use K̃±, K̃0 instead of H̃ in Proposition
3.6 and call them the subgroups corresponding to the singular and principal
isotropy subgroups, respectively.

Theorem 3.7. The singular and principal orbits of irreducible C1 actions on
S7/Γ are those listed in the following table.

Table 3.2. singular and principal orbits of C1 actions on S7/Γ

G̃ singular orbits principal orbit

SU(3) SU(3)
U(2)

∼= CP2 SU(3)
T 2×Z2

SU(3)
T 2

SO(4) SO(4)
O(2)×Z2

SO(4)
O(2)×Z2

SO(4)
Z2×Z2×Z2

U(1)× SO(4) U(1)×SO(4)
S(Z2×O(3))×Γ

U(1)×SO(4)
SO(2)×SO(2)×Γ

U(1)×SO(4)
Z2×SO(2)×Γ

U(2)× SU(2) U(2)×SU(2)
S1×S1×Γ

U(2)×SU(2)

G̃X−×Γ

U(2)×SU(2)
S1×Γ

Here G̃X− =
{
(1,

[
a b
−b̄ ā

]
,

[
a b
−b̄ ā

]
), (−1,

[
a b
−b̄ ā

]
,

[
−a −b
b̄ −ā

]
) : a, b ∈

C, aā+ bb̄ = 1
}
.

Proof. Case 1: G̃ = SU(3). The two singular points of the C1 action of SU(3)

on S7/Γ are x+ =


√
6
6 i 0 0

0
√
6
6 i 0

0 0 −
√
6

3 i

 and x− = −x+ whose isotropy sub-

groups are isomorphic to U(2). According to [1], O(π(x+)) = O(π(x−)) =
SU(3)
U(2)

∼= CP2 and the other singular orbit is exceptoinal. To find the exceptional

and principal orbits, let ρ : SU(3) → G be either the identity homomorphism

to SU(3) or the natural projection to SU(3)
Z3

, and Gπ(x) =
K̃

ker ρ , Gπ(y) =
H̃

ker ρ be

the isotropy subgroups of the exceptional and principal orbits of the G-action
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on RP7, respectively, where K̃, H̃ are as in Proposition 3.6. Since x, y are reg-
ular points of SU(3)-action on S7, and T 2 is the isotropy subgroups of regular

points, it is isomorphic to the identity components of K̃, H̃. As in this case,

Γ = Z2, we get that K̃, H̃ have at most two components. Therefore

Gπ(x)

Gπ(y)
=

( K̃
ker ρ )

( H̃
ker ρ )

=
K̃

H̃
=

( K̃
T 2 )

( H̃
T 2 )

=
π0(K̃)

π0(H̃)
,

On the other hand, K̃

H̃
= π0(K̃)

π0(H̃)
=

Gπ(x)

Gπ(y)
is finite and nontrivial by definition

(cf. [2], p. 181), hence K̃ = T 2 × Z2, H̃ = T 2. As the result, SU(3)
T 2×Z2

, SU(3)
T 2 are

the exceptional and principal orbits, respectively.

Case 2: G̃ = SO(4). Let a = xz3+yw3

2
√
3

and b = xzw2+yzw2

2 . By [22],

x0 = cos( π
12 )a + sin( π

12 )b, x+ = xz3+yw3

4 + xzw2+yzw2

4 and x− = xz3+yw3

2
√
3

are

regular and singular points, and their isotropy subgroups are Z2 ⊕ Z2, O(2),

respectively. Again an easy computation shows that K̃± ∼= O(2) × Z2 and

K̃0 = Z2 × Z2 × Z2.

Case 3: G̃ = SO(2)×SO(4). E+ =

[
1 0 0 0
0 0 0 0

]
is a singular point and its

isotropy subgroup is S(Z2×O(3)). For every φ ∈ Γ, φ(E1) ∈ O(E1). Therefore,

K̃+ = S(Z2 ×O(3))×Γ. The other singular point is E− =
√
2
2

[
1 1 0 0
−1 1 0 0

]
whose isotropy subgroup is SO(2)×SO(2) and K̃− = SO(2)×SO(2)×Γ since

for every φ ∈ Γ, φ(X) ∈ O(X). The regular point is E =
√
3
3

[
1 1 0 0
0 1 0 0

]
with isotropy subgroup Z2 × SO(2), and similarly K̃0 = Z2 × SO(2)× Γ.

Case 4: G̃ = U(2)×SU(2). X+ =

[
1 0
0 0

]
is a singular point with S1×S1 as

its isotropy subgroup. Since φ(X+) ∈ O(X+), for all φ ∈ Γ, K̃+ = S1×S1×Γ.

We also have X− = 1
2

[
1 0
0 1

]
as the other singular point and

G̃X− =
{
(1,

[
a b
−b̄ ā

]
,

[
a b
−b̄ ā

]
), (−1,

[
a b
−b̄ ā

]
,

[
−a −b
b̄ −ā

]
) : a, b ∈ C, aā+ bb̄ = 1

}
as the isotropy subgroup. We can easily see that for all φ ∈ Γ, φ(X−) ∈ O(X−)

and as the result K̃− = G̃X− × Γ. Finally, the principal isotropy subgroup is

S1 and similarly K̃0 = S1 × Γ. □
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We now take a look at some of the properties of the orbits. First, we study
their fundamental groups and then we discuss some of their geometric proper-
ties.

The two following lemmas are needed to investigate the fundamental groups.

Lemma 3.8. [11] For a coset manifold M = G/H there is an exact sequence
of groups and homomorphisms

0 → π2(M) → π1(H) → π1(G) → π1(M) → π0(H) → π0(G).

Lemma 3.9. [9] Let G be a connected Lie group and K be a closed subgroup of

G; we denote by p : G → G
K the quotient map. Let q : G̃ → G be the universal

covering group of G, K̃ = q−1(K) and K̃0 be the connected component of the
neutral element 1 ∈ G . Then, the fundamental group π1(

G
K ) is isomorphic to

the quotient K̃

K̃0
.

In the following proposition we compute the 1st, and 2nd homotopy groups
of the orbits. The results are summarized in Table 3.3 on page 582.

Proposition 3.10. The first and second homotopy groups of the orbits pre-
sented in Theorem 3.7 are listed in Table 3.3. Notice that in Table 3.3

G̃X− =
{
(1,

[
a b
−b̄ ā

]
,

[
a b
−b̄ ā

]
), (−1,

[
a b
−b̄ ā

]
,

[
−a −b
b̄ −ā

]
) : a, b ∈ C, aā +

bb̄ = 1
}
,

G1 = {±(1, 1),±(i, i),±(j, j),±(k, k),±(−1, 1),±(−i, i),±(−j, j),±(−k, k)},
G2 = {±(1, 1),±(i, i),±(j, j),±(k, k)}

Proof. Case 1: Let G = SU(3). Since π1(SU(3)) = 0, by the exact sequence

given in Lemma 3.8, π1(
SU(3)

H ) ∼= π0(H), π2(
SU(3)

H ) ∼= π1(H), where H = T 2

or H = T 2 × Z2. Now the result can be easily obtained.

Case 2: Let G = SO(4), and q : SU(2) × SU(2) → SO(4) be the uni-

versal covering map. Let K = Z2 × Z2. As π1(K) = 0, π2(
SO(4)

K ) = 0

by the exact sequence of Lemma 3.8. Some calculations show that K̃ =

q−1(K) = {±(1, 1),±(i, i),±(j, j),±(k, k)}. Since K0 = {(1, 1)}, π1(
SO(4)

K ) ∼=
K̃, by Lemma 3.9. If K = Z2 × Z2 × Z2, we see that K̃ = q−1(K) =
{±(1, 1),±(i, i),±(j, j),±(k, k),±(−1, 1),±(−i, i),±(−j, j),±(−k, k)}, so
π1(

SO(4)
K ) ∼= K̃. Now let K = O(2). In this case K̃ = (ejt, ejt) ∪ (i, i)(ejt, ejt),

so π1(
SO(4)

K ) ∼= Z2. if we take K = O(2)× Z2, K̃ = (ejt, ejt) ∪ (i, i)(ejt, ejt) ∪
(e−jt, ejt) ∪ (i, i)(e−jt, ejt), and π1(

SO(4)
K ) ∼= Z2 × Z2.
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Case 3: Let G = SO(2) × SO(4), and q : R × SU(2) × SU(2) → SO(4)
be the universal covering map. Let K = S(Z2 × O(3)) × Γ, where Γ =

⟨cos2π
m Id + sin 2π

m I⟩. By some calculations we have K̃ =
∪

0≤l≤m−1{(2kπ +
2πl
m , A,A) : k ∈ Z, A ∈ SU(2)}

∪∪
0≤l≤m−1{((2k + 1)π + 2πl

m , A,−A) : k ∈
Z, A ∈ SU(2)}, hence π1(

SO(2)×SO(4)
K ) ∼= Z× Z2 × Γ. For K = S(Z2 ×O(3)),

K̃ = {(2kπ,A,A) : k ∈ Z, A ∈ SU(2)} ∪ {((2k + 1)π,A,−A) : k ∈ Z, A ∈
SU(2)}, and π1(

SO(2)×SO(4)
K ) ∼= Z×Z2. Now letK = SO(2)×SO(2)×Γ. In this

case K̃ =
∪

0≤l≤m−1{(t, cos
t+ 2πl

m +s

2 −i sin
t+ 2πl

m +s

2 , cos
t+ 2πl

m −s

2 −i sin
t+ 2πl

m −s

2 ) :

t, s ∈ R}, and π1(
SO(2)×SO(4)

K ) ∼= Γ. If we take K = SO(2) × SO(2), K̃ =

{(t, cos t+s
2 − i sin t+s

2 , cos t−s
2 − i sin t−s

2 ) : t, s ∈ R}, so π1(
SO(2)×SO(4)

K ) = 0.

For K = Z2 × SO(2)× Γ, K̃ =
∪

0≤l≤m−1{(2kπ + 2πl
m , cos

2πl
m +s

2 − i sin
2πl
m +s

2 ,

cos
2πl
m −s

2 +i sin
2πl
m −s

2 ) : k ∈ Z, s ∈ R}
∪∪

0≤l≤m−1{((2k+1)π+ 2πl
m , cos

π+ 2πl
m +s

2

−i sin
π+ 2πl

m +s

2 , cos
π 2πl

m −s

2 +i sin
π 2πl

m −s

2 ) : k ∈ Z, s ∈ R}, hence π1(
SO(2)×SO(4)

K )
∼= Z×Z2×Γ. If K = Z2×SO(2), K̃ = {(2kπ, cos s

2−i sin s
2 , cos

s
2−i sin s

2 ) : k ∈
Z, s ∈ R}

∪
{((2k+1)π, cos π+s

2 − i sin π+s
2 , cos π−s

2 + i sin π−s
2 ) : k ∈ Z, s ∈ R},

so π1(
SO(2)×SO(4)

K ) ∼= Z× Z2.

Case 4: Let G = U(2)×SU(2), and q : R×SU(2)×SU(2) → S1×SU(2)×SU(2)

be the universal covering map.

LetK = S1×S1×Γ. We have K̃ =
∪

0≤l≤m−1{(t,
[
eis 0
0 e−is

]
,

[
ei(t+s+ 2πl

m
) 0

0 e−i(t+s+ 2πl
m

)

]
) :

t, s ∈ R}, so π1(
U(2)×SU(2)

K ) ∼= Γ.

If we take K = S1 × S1, K̃ = {(t,
[
eis 0
0 e−is

]
,

[
ei(t+s) 0

0 e−i(t+s)

]
) : t, s ∈ R},

we have π1(
U(2)×SU(2)

K
) = 0. Now let K = S1 × Z2 × Γ, we see that K̃ =∪

0≤l≤m−1{(t,

[
ei(t+

2πl
m

) 0

0 e−i(t+ 2πl
m

)

]
, 1) : t ∈ R}

∪∪
0≤l≤m−1{(t,

[
ei(t+

2πl
m

) 0

0 e−i(t+ 2πl
m

)

]
,

− 1) : t ∈ R}, and π1(
U(2)×SU(2)

K ) ∼= Z2 × Γ. But for K = S1 × Z2, K̃ =

{(t,
[
eit 0
0 e−it

]
, 1) : t ∈ R}

∪
{(t,

[
eit 0
0 e−it

]
,−1) : t ∈ R}, and π1(

U(2)×SU(2)
K ) ∼=

Z2. If we takeK = G̃X− =
{
(1,

[
a b
−b̄ ā

]
,

[
a b
−b̄ ā

]
), (−1,

[
a b
−b̄ ā

]
,

[
−a −b
b̄ −ā

]
) :

a, b ∈ C, aā+bb̄ = 1
}
×Γ, then K̃ =

∪
0≤l≤m−1{(2kπ+

2πl
m ,

[
a b
−b̄ ā

]
,

[
a b
−b̄ ā

]
) :

a, b ∈ C, aā+bb̄ = 1, k ∈ Z}
∪∪

0≤l≤m−1{(
2πl
m +(2k+1)π,

[
a b
−b̄ ā

]
,

[
−a −b
b̄ −ā

]
) :

a, b ∈ C, aā + bb̄ = 1, k ∈ Z}, and π1(
U(2)×SU(2)

K ) ∼= Z × Z2 × Γ. Now
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let K =
{
(1,

[
a b
−b̄ ā

]
,

[
a b
−b̄ ā

]
), (−1,

[
a b
−b̄ ā

]
,

[
−a −b
b̄ −ā

]
) : a, b ∈ C, aā +

bb̄ = 1
}
, then K̃ = {(2kπ,

[
a b
−b̄ ā

]
,

[
a b
−b̄ ā

]
) : a, b ∈ C, aā + bb̄ = 1, k ∈

Z}
∪
{((2k + 1)π,

[
a b
−b̄ ā

]
,

[
−a −b
b̄ −ā

]
) : a, b ∈ C, aā + bb̄ = 1, k ∈ Z}, so

π1(
U(2)×SU(2)

K ) ∼= Z× Z2.

The statements about second homotopy groups can be easily obtained by
the above resuls and the exact sequence of Lemma 3.8. □

Table 3.3. First and second homotopy goups of the orbits

orbits of S7/Γ π1 π2 orbits of S7 π1 π2
SU(3)
T 2×Z2

Z2 Z× Z - - -
SU(3)
T 2 0 Z× Z SU(3)

T 2 0 Z× Z
SO(4)

O(2)×Z2
Z2 × Z2 Z SO(4)

O(2) Z2 Z
SO(4)

Z2×Z2×Z2
G1 0 SO(4)

Z2×Z2
G2 0

SO(2)×SO(4)
S(Z2×O(3))×Γ Z× Z2 × Γ 0 U(1)×SO(4)

S(Z2×O(3)) Z× Z2 0
SO(2)×SO(4)

SO(2)×SO(2)×Γ Γ Z U(1)×SO(4)
SO(2)×SO(2) 0 Z

SO(2)×SO(4)
Z2×SO(2)×Γ Z× Z2 × Γ Z U(1)×SO(4)

Z2×SO(2) Z× Z2 Z
U(2)×SU(2)
S1×S1×Γ Γ Z U(2)×SU(2)

S1×S1 0 Z
U(2)×SU(2)

G̃X−×Γ
Z2 × Γ 0 U(2)×SU(2)

G̃X−
Z2 0

U(2)×SU(2)
S1×Z2×Γ Z× Z2 × Γ 0 U(2)×SU(2)

S1×Z2
Z× Z2 0

Theorem 3.11. [8] Let π : M̃ → M be a Riemannian submersion. If g : Ñ →
M̃ is a horizontal isometric immersion, then its second fundamental form is
closely related to the second fundamental form of its projrction f = π ◦ g. For
instance, f is totally geodesic, minimal or totally umbilical if and only if g has
the coresponding property.

Proposition 3.12. The orbits of C1 actions on S7/Γ are not totally umbilic.

Proof. Since the natural projection π : S7 → S7/Γ is a local isometry, it is
a Riemannian submersion with discrete fibers, so the orbits of S7/Γ are the
image of the horinzontal submanifolds (orbits) of S7. Thus by Theorem 3.11,
the orbits of S7/Γ are totally umbilic if and only if the orbits of S7 are totally
umbilic. Now by Proposition 3.10, we see that first and/or second homotopy
groups of the orbits G/H of S7 are not the same as those of the spheres,
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which follows that none of the orbits is homotopy equivalent to a sphere. Since

totally umbilic submanifolds of spheres are again spheres, no orbit G̃/H̃ is
totally umbilic in S7/Γ. □
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