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ABSTRACT. The Mordell-Weil theorem states that the group of rational
points on an elliptic curve over the rational numbers is a finitely gener-
ated abelian group. In our previous paper, H. Daghigh, and S. Didari,
On the elliptic curves of the form y? = 3 — 3px, Bull. Iranian Math.
Soc. 40 (2014), no. 5, 1119-1133., using Selmer groups, we have shown
that for a prime p the rank of elliptic curve y? = z® — 3px is at most
two. In this paper we go further, and using height function, we will de-
termine the Mordell-Weil group of a family of elliptic curves of the form
y? = % — 3nz, and give a set of its generators under certain conditions.
We will introduce an infinite family of elliptic curves with rank at least
two. The full Mordell-Weil group and the generators of a family (which
is expected to be infinite under the assumption of a standard conjecture)
of elliptic curves with exact rank two will be described.

Keywords: Elliptic curve, Mordell-Weil group, generators, height func-
tion.
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1. Introduction

Let E be an elliptic curve over Q and let E(Q) be the group of rational
points on E. By the Mordell-Weil theorem E(Q) is a finitely generated abelian
group, and so it can be written as

E(Q) 27" E(Q)t07'87
where F(Q);ors denotes the torsion subgroup of E(Q). The number r is called
the (algebraic) rank of E over Q. Recently Duquesne [5] and Fujita and Terai
[6,8], found the generators of some specific families of elliptic curves. In this
paper, we will prove the following result.
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Theorem 1.1. Let n be a positive fourth-power-free odd integer. Suppose
that there exist positive integers my, ni,mo,ny with m; odd and msy even
such that

(1.1) n = 3mi —n?, n = 3mj — n3.

Let Es, be the elliptic curve y?> = 23 — 3nz. Then the following statements
hold.
(1) The points Q1 = (3m?,3miny) and Q2 = (3m3,3mans) are indepen-
dent points in F3,(Q) and hence rank(Es,(Q)) > 2.
(2) Let m = max{m;,mp}. If m* < 27n, 3|my, and 3 { many, then
{Q1,Q2} is part of a system of generators for the free part of Fs,(Q).
(3) For every fourth-power-free d of the form d = 2592r*+6048r3+5112r%+
18487 + 239, we have that the points Q1 = (10872 + 108r + 27, 6487 +
75612 +252r+18) and Q2 = (10872 +144r+48, 64873 +1512r2 4 1134r+
276) are part of a system of generators of the free part of F34(Q) and
so rank(E34(Q)) > 2.
(4) If d in the previous part is prime, then rank(Esq(Q)) = 2 and the given
points generate the free part of E34(Q).

Part (1) of the theorem is proved by considering the properties of the ele-
ments of 2E(Q). We define the lattice index of {Q1, @2} in section 4, and find
upper bounds for the canonical heights of 1 and Q3. Using these bounds and
Theorem 4.1, which is one the main ingredients of the proof, we show that v,
the lattice index of {Q1, @2}, is less than 5. Finally using the properties of
the points in 2E3,(Q) and 3E3, (Q) we show that the lattice index is indeed 1,
which proves (2).

We note that under the assumption of a standard conjecture on prime values
of polynomials (Conjecture 4.1), Theorem 1.1 produces an infinite family of
elliptic curves of rank 2.

Notation 1.1. Throughout the paper the number n will be of the form n =
3mi —n? = 3mi —nd, Q1 = (3m?,3min1), Q2 = (3m3,3many), and m =
max{my, ms}.

For computing Ei,,s(Q) in our family, we use the following fact from [14, p.
347].

Lemma 1.2. Let D be a fourth-power free integer, and Ep be the elliptic
curve
Ep:y? =2% + Dzx.
Then
7/47 if D=4
Eiors(Q) = { Z/27 x 7./27  if -D is a perfect square
7)27 otherwise.
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2. Estimating the canonical height

Let E : 4% = 23 +asx? +asz+ag be an elliptic curve with integer coefficients,
and let P € E(Q). By [15, P. 68], P = (z,y) = (%, ), where a, b and d are
integers and ged(a,d) = ged(b,d) = 1. We define the naive height of P by
h(P) = max{log |a],log |d?|} and the canonical height of P by

“ h(2™"P
WP) = tim MDD

n—o00 4n
As mentioned in [16, Chapter VI], the value h(P) can be expressed as
hPy= 3" X(P)+Ax(P),

p prime

where S\I,(P) is the local height at prime p and Ao (P) is the local height at
infinity. Let

ilfiTL(P) = Zp prime x1~”(P))

To estimate the canonical height of desired points, we need the following lem-
mas.

Lemma 2.1. ( [7, lemma 3.2]) Let n be a positive fourth-power-free integer
and E,, be the elliptic curve given by y? = 2® —nz. For every P = (a/d?,b/d?),
hfin(P) can be computed as

N 1 A
hyin(P) =2logd = Slog( [[ p) +ha(P),
pl(a,n),p#2

where pr||n and hy(P) is a real number satisfying —(7log2)/4 < hy(P) < 0.

Remark 2.2. To compute the exact value of hs (P), one can use Lemma 2.3
in [7].

Lemma 2.3. For any point P € F,(Q), :\\OO(P) is computed using the Tate
series

A I=c¢
hoe(P) = loga(P)] + 13 %,
k=0
where ¢, = log |2(2¥P)| and 2(Q) = (1 + n/z(Q)?)? for Q € E,(Q) \ {(0,0)}.
Proof. This follows from Cohen’s formula [2, Algorithm 7.5.7]. O

Remark 2.4. For any non-torsion point P € E,(Q), we have 2*P € E%(R),
where E2(R) denotes the identity component of FE,(R), and x(2¥P) > \/n for
all positive integers k. Therefore the series in Lemma 2.3 converges.

Next lemma determines a lower bound on the canonical height of points in
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Lemma 2.5. ( [7, Proposition 3.3]) Let n be a positive fourth-power-free in-
teger and E,, be the elliptic curve y? = 2% — nx. If n # 12 (mod 16), then

h(P) > 0.1251logn + 0.3917 for any non-torsion point P € E, (Q).
Next lemma will be used to bound the lattice index of {Q1,Q2}.
Lemma 2.6. For i = 1,2, we have
h(Q:) < 0.45 + 2log m;.
Proof. By Lemma 2.3, we have
Moo (Q;) = log 3m2 + 1o %,
On the other hand by Remark 2.4, we have c; < log4. Therefore

. 1 log4
2
Aoo (@) < log3m; + 1 2 T

Hence
S\OO(QZ-) <log3m? + glog 2.
On the other hand ) . A
hin(Qi) = > log 3 + h2(Q:),

where
—Tlog?2

4

< ha(Qs) < 0.
Therefore

. 1 2
h(Q;) < §log3 + glog2 + 2logm; < 0.45 4+ 2logm;.

3. Independence of the points

In this section we prove the independence of the points 1 and Q2. We then
prove that none of the point Q1,Q2, @1 + Q2,Q1 — Q2 is in 3E5,(Q). These
results will be used in the next section to prove that Q; and ) are in fact part
of a set of generators of the free part of E(Q).

Lemma 3.1. ( [I1, p. 85]) Let E3, be the elliptic curve y*> = z® — 3nz. If
P € 2F3,(Q) then z(P) is a rational square and z(P) 4+ v/3n is a square in
Q(v3n).

Lemma 3.2. If P = (u?/s?,v/s3) € E3,(Q) and 21 s. Then P ¢ 2E3,,(Q).

Proof. Suppose that P € 2E3,(Q). Then from the previous lemma, (u?/s?) +
V3n is a square in Q(v/3n). So there exist A, B € Q such that

u? + s%V/3n = (A% + 3nB?) + 2ABV/3n.
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From this equation we can see that A, B are integers. Now s? must be even,
which contradicts the assumption. Hence P ¢ 2E3,(Q). O

Lemma 3.3. @)1 and Q)2 are independent modulo Es,(Q)tors-
Proof. By Lemma 1.2, F5,(Q)tors = {O,T}, where T = (0,0). From the
previous lemma we have Q1, Q2 ¢ 2E(Q). On the other hand
2(Q1 + Q2) = (mang — mana)?/(m3 —mi)?.
If mo is even and m; is odd then
2 (m3 —mi)?.

Therefore from the previous lemma we have Q1 + Q2 ¢ 2E5,(Q). On the
other hand Q1 + 7T, Q2 + T, and Q1 + Q2+ T € EY,(Q),s0 Q1 + T, Q2 + T,
and Q1 + Q2+ T ¢ 2F3,(Q). Hence @1 and Qs are independent modulo
E3n(@)tors~ O

Lemma 3.4. If logm? < 1.125log 3n + 3.0753, then Q; ¢ 3F3,(Q).
Proof. Suppose that there exists R € Fs,(Q) such that 1 = 3R. Then using

Lemma 2.6 we have
9h(R) = h(3R) = h(Q1) < 0.45 + 2log m,.
On the other hand Lemma 2.5 implies that

9h(R) > 9(0.12510og 3n + 0.3917).
Hence
9(0.1251log 3n + 0.3917) < 0.45 + 2logm; < 0.45 4 1.1251og 3n + 3.0753,
which is a contradiction. |

Lemma 3.5. Suppose that P = (u/s?,v/s%) € 3E3,(Q). We have

(1) If 3|u then ords(u) > 3.
(2) If 3t u then ords(s) > 1.

Proof. (1) Let R = (w/t?, 2/t3) € FE3,(Q) and P = 3R. Then
u/s® =(—236196t*w’n® 4 472392t°%w" 'n® — 393660t '°w'*n” + 174960t"*w'"n°
— 43740t%w" "n® + (5832t w'? + 729t w)n? + (—324w>" — 648t"2w*)n?
+ 270%w°n® + 36t"w n + w?)/(3tw* — 18t°w?n — 9t'n?)?.
Hence

u(Btw* — 18t°w?n — 9t°n?)? =s%(—236196t>*w’n® + 472392t*°w' ' n® — 393660t Cw'n”

12 15 6 8 17 5 4 19

+ 174960t 2w n® — 43740t%w' "n® + (5832t *w'? + 729t Cw)n*

+ (—324w?" — 648t 2w>)n® + 2702w n? + 36t w n + w?).
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Since 3|u, 3 1 s, considering the above equation modulo 3, we have
3|w, and hence 3t t. Therefore
ords(u)+4 > ords(—3%x23w3t12n3 +3%410wn? +33 x 5 x 2t3wOn? 432 x 22w n+w?).
Let w = 3wy, we have
ordz(u) +4 > 7+ ordz(wq),

and therefore ords(u) > 3.

(2) Suppose that there exists R € E3,(Q) such that P = 3R. Then P+T =
3(R+T), and so P+ T € 3E5,(Q). On the other hand (P + T) =
—3ns? /u. Now using the previous part we have ordz(—3ns?) > 3, and
therefore ords(s) > 1.

g

Lemma 3.6. None of the points Q2, Q1 + Q2,Q1 — Q2 is in 3E5,(Q).

Proof. This follows from Lemma 3.5 U

4. Proof of the main theorem

Let E be an elliptic curve of rank (> 2) defined over a number field K.
Let Q1,Q2,...,Qs (s < r) be independent points in E(K). By [13, Theorem
3.1], there exist generators G1,Ga,...,Gs of the free part of F(K) such that
Q1,Q2,...,Qs € ZG1 + ZG3 + ...+ ZG,. The index of the subgroup ZQ; +
7Qo + ... + ZQs in ZG1 + ZGy + ... + ZG, is called the lattice index of
{le Q2v L) Qs}

For every points P and @ in E(Q),

(P,Q) = 3(h(P+ Q) — h(P) — h(Q))
denotes the scalar product associated to h. 1f Py, Py, ..., P, are t points in the
free part of E(Q), then the elliptic regulator of Py, Ps, ..., P; is defined as
R(Pl, P27 ey Pt) = det((Pi, Pj>)1§i,j§t-

The following theorem gives an upper bound for the lattice index.

Theorem 4.1. ( [13, Theorem 3.1]) Let E be an elliptic curve of rank (r > 2)
defined over a number field K. Let Q1,Q2, ..., Qs (s < r) be independent points
in F(K) and v be the lattice index of {Q1,Q2,...,Qs}. Suppose that A > 0 is
a constant such that any point P € E(K) of infinite order satisfies h(P) > A.
Then
v S R(Q17 QQa ) Qs)l/Q(rYS/)‘)S/Qa

where ;s are the Hermite constants [10, p. 372], and the exact value of v, is
known only for 1 <n < 8 and for n = 24:

m=17%=351=27=41%=81=%, 7 =64, 1§ =256,
and o4 = 4.
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As we saw in Lemma 3.3, the points @)1 and ()> are independent. Let v
be the lattice index of {Q1,Q2}. To prove that the set {Q1,Q2} is a set of
generators for Es,(Q), it suffices to show that v = 1. In the next lemma we
will find an upper bound for v.

Lemma 4.2. Let 3n be a positive fourth-power-free integer. If n #Z 4 (mod 16)
and 4logm < log3n + 2.49 then v < 5.

Proof. Since
R(Q1,Q2) = MQ1)1(Q2) — H{A(Q1 + Q2) — h(Q1) — @22,
by Theorem 4.1 and Lemma 2.5 we have

2 < 4R(Q1, Q2) o AR(QMQ)
= 3(0.125log 3n + 0.3917)2 — 3(0.125log 3n + 0.3917)2°

Now by Lemma 2.6,

(4.1)

(42) o < 4h(Q1)M(Q2) < 4(0.45 + 2logm1)(0.45 + 2log ms)
' ~ 3(0.125log 3n + 0.3917)2 — 3(0.1251og 3n 4 0.3917)2

Let m = max{m;, mo}. If 4logm < log3n + 2.23, then

(4.3) 2logm + 0.45 < 4(0.1251log 3n + 0.3917).

Therefore (4.2) implies that

(4.4) 2 < 4 x 16(0.125log 3n + 0.3917)?

< 25.
= 7 3(0.125log 3n + 0.3917)2

Now we can prove our main theorem.
Proof of Theoreml.1.

Proof. (1) This follow from Lemma 3.3.
(2) Let {G1, G2} be part of a set of generators for F, with Q1, Q2 € ZG1 +
ZG+5 then there exists a matrix M € May2(Z) such that

@1 G1
=M .
[ Q2 G2
Note that the lattice index of {Q1,Q2} is |det(M)|. For any rational
prime p, we have

3] =] G ] tmod v

where M is the image of M in My (Z/pZ). If p|det(M) then there
exists a matrix A € Myyo(Z/pZ) such that AM has a zero row. So if
plv then there exist k1, ko € Z/pZ such that k1Q1 + ko2Q2 € pFEs,(Q).
From Propositions 3.3, 3.4 and 3.6, we know in the case p =2 or p =3
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there is no such k; and ko. Hence 2t v and 34 v. On the other hand
v < 5 and therefore v = 1.
(3) For every ri,r3 € Z we have
3(3r1)* — (1872 — 13)? = 3rd — (2r3 — 9r3)2.
Let r be a nonzero integer and 11 = 2r +1, 1, = 3r1 + 1 and n =
3(3r1)* — (18rF —r3)? = 25927 + 604813 + 5112r% + 1848r +239. Then
r1 is odd, rs is even, and we can easily check that for every » € NU{0},
27(2592r* + 60487r° + 511272 + 18487 + 239) — (3(2r + 1) + 1)* > 0.
Therefore every fourth-power-free n of the form 2592r* + 604873 +
511212 + 1848r + 239 satisfies the conditions, in (2). This proves (3).
(4) This follows from (3) and the next theorem.
O

In our previous paper [4], we have proved the following theorem.

Theorem 4.3. Let p be a prime number such that there exist my,n; € Z
such that p = 3m} — n?. Let Ej3, be the elliptic curve y* = 23 — 3pz. Then

rank(Es,(Q)) < 2.
Indeed, we have a more precise statement:

Corollary 4.1. Let p be a prime number. Suppose that there exist positive

integers m1, ni,ms,ny with m; odd and msy even such that

— 2 _ 2 — 94 _ 2
p=3mj —nj, p = 3my —nj.

Let 3, be the elliptic curve y? = 2® —3pz. Then rank(E3,(Q)) = 2 and points
Q1 = (3m?2,3miny) and Q2 = (3m2, 3mans) are independent points. Moreover
if m* < 27p, 3|my and 3 { mans then {Q1,Q2} is a system of generators for

E3P(Q)'
Proof. This follows from part (1) in Theorem 1.1 and Theorem 4.3. O

Remark 4.4. In 1922 Nagell [12] proved that for a natural number k, every
irreducible polynomial f of degree d < k assumes infinitely many kth-power-
free values. Thus f(z) = 2592z% + 6048x3 + 511222 + 1848x + 239 assumes
infinitely many fourth-power-free values. Hence there exist infinitely many n
which satisfies part (3) of Theorem 1.1.

Example 4.1. Let n = 15839 = 3 x 9 — 622 = 3 x 10* — 1192, and E : y?> =
2% — 3nz. The points Q; = (300, 3570) and Qy = (243,1674) are independent
points on E. Using online package of Magma [3], we can see that rank(E) = 4.

To show that in part (4) of Theorem 1.1 there exist infinitely many prime
value of d, we use the following conjecture.

Conjecture 4.1. ( [1]) A necessary and sufficient condition for a polynomial
f(z) € Z[z] to be irreducible is that there exist infinitely many integers m such
that f(m)/Ny is prime, where Ny = GCD{f(n),1 <n < g+ 1} and g = deg f.
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We have
f(z) = 25922* + 60482° + 511222 + 1848z + 239
=3(3(2z +1))* — (18(2x + 1)% — (3(2z + 1) +1)%)?
=332z + 1)+ 1)* — (2(3(2z + 1) +1)% — 9(2z + 1))

The polynomial f(z) is irreducible. To see this, we first note that the equality
3y* — 22 = 0 is impossible modulo 4, and hence f(z) has no integer roots. On
the other hand, if

(4.5)

we will have

f(z) = (az? + bx £ 1)(d2® + ex + 239),

+239b + e = 1848
+239a + d + be = 5112
ae + bd = 6048

ad = 2592.

Considering this system of equations modulo powers of 2, we can see that the
system has no integer solutions. Therefore the factorization(4.5) is impossible.
Hence f(z) is irreducible. Thus the above conjecture predicts the existence of
infinitely many positive integers r, such that f(r) is a prime number. Some
examples of such primes are 239, 425039, 4860959,.... Table 1 gives a list of
primes p in the desired form and the generators of the elliptic curve y? =

x® — 3px
TABLE 1.

r p = f(r) Q1 Q2

0 239 [27, 18] [48, 276]

3 425039 [1323, 25074] [1452, 34782]

6 4860959 [4563, 168714] [4800, 201480

9 21846047 [9747, 535914] [10092, 605346

11 46638479 [14283, 956754] 14700, 1058190

14 117198047 [22707, 1929834] 23232, 2090616

15 152810159 [25947, 2360898] 26508, 2544486

621 386929964541119 41716323, 155476724634 41738700, 155768817210
623 391933978780079 41985243, 156982812354 42007692, 157276787622
632 415055242121519 43206075, 163880631090 43228848,164183153316
644 447456903156047 44861067, 173388012354 44884272,173702121036
655 478791623202479 46405467, 182419878978 46429068, 182744799846
663 502593430360559 47545083, 189181873314 47568972, 189514772502
664 505629858048047 47688507, 190038688434 47712432,190372591716
669 521018890986047 48408867, 194361588954 48432972, 194700535386
9209 18646396922899206047 9160008147, 506136249996714 9160339692, 506200371214146
9230 18817052067570298079 9201830067, 509606550774378 9202162368, 509670964747896
9235 18857856307302144719 9211801707,510435144220338 9212134188, 510499627995966
9237 18874196570501260799 9215791875, 510766832921850 9216124428, 510831344628906
9243 18923281079193672719 9227767563,511762761110034 9228100332,511827356647662
9244 18931471129046076047 9229764267, 511928874902754 9230097072, 511993484417436
9250 18980667270912594239 9241749027, 512926312581018 9242082048, 512991005989776
9264 19095831117581448047 9269743707, 515258703786834 9270077232,515323593160116
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