
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 42 (2016), No. 3, pp. 585–594

.

Title:

.

Complete characterization of the Mordell-
Weil group of some families of elliptic curves

.

Author(s):

.

H. Daghigh and S. Didari

.

Published by Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 42 (2016), No. 3, pp. 585–594
Online ISSN: 1735-8515

COMPLETE CHARACTERIZATION OF THE

MORDELL-WEIL GROUP OF SOME FAMILIES OF ELLIPTIC

CURVES

H. DAGHIGH∗ AND S. DIDARI

(Communicated by Rahim Zaare-Nahandi)

Abstract. The Mordell-Weil theorem states that the group of rational
points on an elliptic curve over the rational numbers is a finitely gener-
ated abelian group. In our previous paper, H. Daghigh, and S. Didari,

On the elliptic curves of the form y2 = x3 − 3px, Bull. Iranian Math.
Soc. 40 (2014), no. 5, 1119–1133., using Selmer groups, we have shown
that for a prime p the rank of elliptic curve y2 = x3 − 3px is at most

two. In this paper we go further, and using height function, we will de-
termine the Mordell-Weil group of a family of elliptic curves of the form
y2 = x3 − 3nx, and give a set of its generators under certain conditions.
We will introduce an infinite family of elliptic curves with rank at least

two. The full Mordell-Weil group and the generators of a family (which
is expected to be infinite under the assumption of a standard conjecture)
of elliptic curves with exact rank two will be described.
Keywords: Elliptic curve, Mordell-Weil group, generators, height func-

tion.
MSC(2010): Primary: 11G05; Secondary: 14H52.

1. Introduction

Let E be an elliptic curve over Q and let E(Q) be the group of rational
points on E. By the Mordell-Weil theorem E(Q) is a finitely generated abelian
group, and so it can be written as

E(Q) ∼= Zr ⊕ E(Q)tors,

where E(Q)tors denotes the torsion subgroup of E(Q). The number r is called
the (algebraic) rank of E over Q. Recently Duquesne [5] and Fujita and Terai
[6, 8], found the generators of some specific families of elliptic curves. In this
paper, we will prove the following result.
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Theorem 1.1. Let n be a positive fourth-power-free odd integer. Suppose
that there exist positive integers m1, n1,m2, n2 with m1 odd and m2 even
such that

(1.1) n = 3m4
1 − n2

1, n = 3m4
2 − n2

2.

Let E3n be the elliptic curve y2 = x3 − 3nx. Then the following statements
hold.

(1) The points Q1 = (3m2
1, 3m1n1) and Q2 = (3m2

2, 3m2n2) are indepen-
dent points in E3n(Q) and hence rank(E3n(Q)) ≥ 2.

(2) Let m = max{m1,m2}. If m4 ≤ 27n, 3|m1, and 3 ∤ m2n2, then
{Q1, Q2} is part of a system of generators for the free part of E3n(Q).

(3) For every fourth-power-free d of the form d = 2592r4+6048r3+5112r2+
1848r+239, we have that the points Q1 = (108r2 +108r+27, 648r3 +
756r2+252r+18) and Q2 = (108r2+144r+48, 648r3+1512r2+1134r+
276) are part of a system of generators of the free part of E3d(Q) and
so rank(E3d(Q)) ≥ 2.

(4) If d in the previous part is prime, then rank(E3d(Q)) = 2 and the given
points generate the free part of E3d(Q).

Part (1) of the theorem is proved by considering the properties of the ele-
ments of 2E(Q). We define the lattice index of {Q1, Q2} in section 4, and find
upper bounds for the canonical heights of Q1 and Q2. Using these bounds and
Theorem 4.1, which is one the main ingredients of the proof, we show that v,
the lattice index of {Q1, Q2}, is less than 5. Finally using the properties of
the points in 2E3n(Q) and 3E3n(Q) we show that the lattice index is indeed 1,
which proves (2).

We note that under the assumption of a standard conjecture on prime values
of polynomials (Conjecture 4.1), Theorem 1.1 produces an infinite family of
elliptic curves of rank 2.

Notation 1.1. Throughout the paper the number n will be of the form n =
3m4

1 − n2
1 = 3m4

2 − n2
2, Q1 = (3m2

1, 3m1n1), Q2 = (3m2
2, 3m2n2), and m =

max{m1,m2}.

For computing Etors(Q) in our family, we use the following fact from [14, p.
347].

Lemma 1.2. Let D be a fourth-power free integer, and ED be the elliptic
curve

ED : y2 = x3 +Dx.

Then

Etors(Q) ∼=


Z/4Z if D=4

Z/2Z× Z/2Z if -D is a perfect square

Z/2Z otherwise.
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2. Estimating the canonical height

Let E : y2 = x3+a2x
2+a4x+a6 be an elliptic curve with integer coefficients,

and let P ∈ E(Q). By [15, P. 68], P = (x, y) = ( a
d2 ,

b
d3 ), where a, b and d are

integers and gcd(a,d) = gcd(b, d) = 1. We define the naive height of P by
h(P ) = max{log |a|, log |d2|} and the canonical height of P by

ĥ(P ) = lim
n→∞

h(2nP )

4n
.

As mentioned in [16, Chapter VI], the value ĥ(P ) can be expressed as

ĥ(P ) =
∑

p prime

λ̂p(P ) + λ̂∞(P ),

where λ̂p(P ) is the local height at prime p and λ̂∞(P ) is the local height at
infinity. Let

ĥfin(P ) =
∑

p prime λ̂p(P ).

To estimate the canonical height of desired points, we need the following lem-
mas.

Lemma 2.1. ( [7, lemma 3.2]) Let n be a positive fourth-power-free integer
and En be the elliptic curve given by y2 = x3−nx. For every P = (a/d2, b/d3),

ĥfin(P ) can be computed as

ĥfin(P ) = 2 log d− 1

2
log(

∏
p|(a,n),p̸=2

pep) + ĥ2(P ),

where pep ||n and ĥ2(P ) is a real number satisfying −(7 log 2)/4 ≤ ĥ2(P ) ≤ 0.

Remark 2.2. To compute the exact value of ĥ2(P ), one can use Lemma 2.3
in [7].

Lemma 2.3. For any point P ∈ En(Q), λ̂∞(P ) is computed using the Tate
series

λ̂∞(P ) = log |x(P )|+ 1

4

∞∑
k=0

ck
4k

,

where ck = log |z(2kP )| and z(Q) = (1 + n/x(Q)2)2 for Q ∈ En(Q) \ {(0, 0)}.

Proof. This follows from Cohen’s formula [2, Algorithm 7.5.7]. □

Remark 2.4. For any non-torsion point P ∈ En(Q), we have 2kP ∈ E0
n(R),

where E0
n(R) denotes the identity component of En(R), and x(2kP ) ≥

√
n for

all positive integers k. Therefore the series in Lemma 2.3 converges.

Next lemma determines a lower bound on the canonical height of points in
E3n(Q).
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Lemma 2.5. ( [7, Proposition 3.3]) Let n be a positive fourth-power-free in-
teger and En be the elliptic curve y2 = x3 − nx. If n ̸≡ 12 (mod 16), then

ĥ(P ) > 0.125 log n+ 0.3917 for any non-torsion point P ∈ En(Q).

Next lemma will be used to bound the lattice index of {Q1, Q2}.

Lemma 2.6. For i = 1, 2, we have

ĥ(Qi) ≤ 0.45 + 2 logmi.

Proof. By Lemma 2.3, we have

λ̂∞(Qi) = log 3m2
i +

1
4

∑∞
k=0

ck
4k
.

On the other hand by Remark 2.4, we have ck ≤ log 4. Therefore

λ̂∞(Qi) ≤ log 3m2
i +

1

4

∞∑
k=0

log 4

4k
.

Hence

λ̂∞(Qi) ≤ log 3m2
i +

2

3
log 2.

On the other hand

ĥfin(Qi) =
−1

2
log 3 + ĥ2(Qi),

where
−7 log 2

4
≤ ĥ2(Qi) ≤ 0.

Therefore

ĥ(Qi) ≤
1

2
log 3 +

2

3
log 2 + 2 logmi < 0.45 + 2 logmi.

□

3. Independence of the points

In this section we prove the independence of the points Q1 and Q2. We then
prove that none of the point Q1, Q2, Q1 + Q2, Q1 − Q2 is in 3E3n(Q). These
results will be used in the next section to prove that Q1 and Q2 are in fact part
of a set of generators of the free part of E(Q).

Lemma 3.1. ( [11, p. 85]) Let E3n be the elliptic curve y2 = x3 − 3nx. If

P ∈ 2E3n(Q) then x(P ) is a rational square and x(P ) +
√
3n is a square in

Q(
√
3n).

Lemma 3.2. If P = (u2/s2, v/s3) ∈ E3n(Q) and 2 ∤ s. Then P /∈ 2E3n(Q).

Proof. Suppose that P ∈ 2E3n(Q). Then from the previous lemma, (u2/s2) +√
3n is a square in Q(

√
3n). So there exist A,B ∈ Q such that

u2 + s2
√
3n = (A2 + 3nB2) + 2AB

√
3n.
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From this equation we can see that A,B are integers. Now s2 must be even,
which contradicts the assumption. Hence P /∈ 2E3n(Q). □

Lemma 3.3. Q1 and Q2 are independent modulo E3n(Q)tors.

Proof. By Lemma 1.2, E3n(Q)tors = {O, T}, where T = (0, 0). From the
previous lemma we have Q1, Q2 /∈ 2E(Q). On the other hand

x(Q1 +Q2) = (m1n2 −m2n2)
2/(m2

2 −m2
1)

2.

If m2 is even and m1 is odd then

2 ∤ (m2
2 −m2

1)
2.

Therefore from the previous lemma we have Q1 + Q2 /∈ 2E3n(Q). On the
other hand Q1 + T , Q2 + T , and Q1 +Q2 + T ∈ E0

3n(Q), so Q1 + T , Q2 + T ,
and Q1 + Q2 + T /∈ 2E3n(Q). Hence Q1 and Q2 are independent modulo
E3n(Q)tors. □

Lemma 3.4. If logm2
1 < 1.125 log 3n+ 3.0753, then Q1 /∈ 3E3n(Q).

Proof. Suppose that there exists R ∈ E3n(Q) such that Q1 = 3R. Then using
Lemma 2.6 we have

9ĥ(R) = ĥ(3R) = ĥ(Q1) ≤ 0.45 + 2 logm1.

On the other hand Lemma 2.5 implies that

9ĥ(R) ≥ 9(0.125 log 3n+ 0.3917).

Hence

9(0.125 log 3n+ 0.3917) ≤ 0.45 + 2 logm1 < 0.45 + 1.125 log 3n+ 3.0753,

which is a contradiction. □

Lemma 3.5. Suppose that P = (u/s2, v/s3) ∈ 3E3n(Q). We have

(1) If 3|u then ord3(u) ≥ 3.
(2) If 3 ∤ u then ord3(s) ≥ 1.

Proof. (1) Let R = (w/t2, z/t3) ∈ E3n(Q) and P = 3R. Then

u/s2 =(−236196t24w9n9 + 472392t20w11n8 − 393660t16w13n7 + 174960t12w15n6

− 43740t8w17n5 + (5832t4w19 + 729t16w)n4 + (−324w21 − 648t12w3)n3

+ 270t8w5n2 + 36t4w7n+ w9)/(3tw4 − 18t5w2n− 9t9n2)2.

Hence

u(3tw
4 − 18t

5
w

2
n − 9t

9
n
2
)
2
=s

2
(−236196t

24
w

9
n
9
+ 472392t

20
w

11
n
8 − 393660t

16
w

13
n
7

+ 174960t
12

w
15

n
6 − 43740t

8
w

17
n
5
+ (5832t

4
w

19
+ 729t

16
w)n

4

+ (−324w
21 − 648t

12
w

3
)n

3
+ 270t

8
w

5
n
2
+ 36t

4
w

7
n + w

9
).
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Since 3|u, 3 ∤ s, considering the above equation modulo 3, we have
3|w, and hence 3 ∤ t. Therefore
ord3(u)+4 ≥ ord3(−34×23w3t12n3+36t16wn4+33×5×2t8w5n2+32×22w7n+w9).

Let w = 3w1, we have

ord3(u) + 4 ≥ 7 + ord3(w1),

and therefore ord3(u) ≥ 3.
(2) Suppose that there exists R ∈ E3n(Q) such that P = 3R. Then P+T =

3(R + T ), and so P + T ∈ 3E3n(Q). On the other hand x(P + T ) =
−3ns2/u. Now using the previous part we have ord3(−3ns2) ≥ 3, and
therefore ord3(s) ≥ 1.

□

Lemma 3.6. None of the points Q2, Q1 +Q2, Q1 −Q2 is in 3E3n(Q).

Proof. This follows from Lemma 3.5 □

4. Proof of the main theorem

Let E be an elliptic curve of rank r(≥ 2) defined over a number field K.
Let Q1, Q2, . . . , Qs (s ≤ r) be independent points in E(K). By [13, Theorem
3.1], there exist generators G1, G2, . . . , Gs of the free part of E(K) such that
Q1, Q2, . . . , Qs ∈ ZG1 + ZG2 + . . . + ZGs. The index of the subgroup ZQ1 +
ZQ2 + . . . + ZQs in ZG1 + ZG2 + . . . + ZGs is called the lattice index of
{Q1, Q2, . . . , Qs}.

For every points P and Q in E(Q),

⟨P,Q⟩ = 1
2 (ĥ(P +Q)− ĥ(P )− ĥ(Q))

denotes the scalar product associated to ĥ. If P1, P2, . . . , Pt are t points in the
free part of E(Q), then the elliptic regulator of P1, P2, . . . , Pt is defined as

R(P1, P2, . . . , Pt) = det(⟨Pi,Pj⟩)1≤i,j≤t.

The following theorem gives an upper bound for the lattice index.

Theorem 4.1. ( [13, Theorem 3.1]) Let E be an elliptic curve of rank (r ≥ 2)
defined over a number field K. LetQ1, Q2, . . . , Qs (s ≤ r) be independent points
in E(K) and v be the lattice index of {Q1, Q2, . . . , Qs}. Suppose that λ > 0 is

a constant such that any point P ∈ E(K) of infinite order satisfies ĥ(P ) > λ.
Then

v ≤ R(Q1, Q2, . . . , Qs)
1/2(γs/λ)

s/2,

where γis are the Hermite constants [10, p. 372], and the exact value of γn is
known only for 1 ≤ n ≤ 8 and for n = 24:

γ1 = 1, γ2
2 = 4

3 , γ3
3 = 2, γ4

4 = 4, γ5
5 = 8, γ6

6 = 64
3 , γ7

7 = 64, γ8
8 = 256,

and γ24 = 4.
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As we saw in Lemma 3.3, the points Q1 and Q2 are independent. Let v
be the lattice index of {Q1, Q2}. To prove that the set {Q1, Q2} is a set of
generators for E3n(Q), it suffices to show that v = 1. In the next lemma we
will find an upper bound for v.

Lemma 4.2. Let 3n be a positive fourth-power-free integer. If n ̸≡ 4 (mod 16)
and 4 logm ≤ log 3n+ 2.49 then v < 5.

Proof. Since

R(Q1, Q2) = ĥ(Q1)ĥ(Q2)− 1
4{ĥ(Q1 +Q2)− ĥ(Q1)− Q̂2}2,

by Theorem 4.1 and Lemma 2.5 we have

(4.1) v2 ≤ 4R(Q1, Q2)

3(0.125 log 3n+ 0.3917)2
≤ 4ĥ(Q1)ĥ(Q2)

3(0.125 log 3n+ 0.3917)2
.

Now by Lemma 2.6,

(4.2) v2 ≤ 4ĥ(Q1)ĥ(Q2)

3(0.125 log 3n+ 0.3917)2
≤ 4(0.45 + 2 logm1)(0.45 + 2 logm2)

3(0.125 log 3n+ 0.3917)2
.

Let m = max{m1,m2}. If 4 logm ≤ log 3n+ 2.23, then

(4.3) 2 logm+ 0.45 ≤ 4(0.125 log 3n+ 0.3917).

Therefore (4.2) implies that

(4.4) v2 ≤ 4× 16(0.125 log 3n+ 0.3917)2

3(0.125 log 3n+ 0.3917)2
< 25.

□

Now we can prove our main theorem.
Proof of Theorem1.1.

Proof. (1) This follow from Lemma 3.3.
(2) Let {G1, G2} be part of a set of generators for E, with Q1, Q2 ∈ ZG1+

ZG2 then there exists a matrix M ∈ M2×2(Z) such that[
Q1

Q2

]
= M

[
G1

G2

]
.

Note that the lattice index of {Q1, Q2} is |det(M)|. For any rational
prime p, we have[

Q1

Q2

]
≡ M

[
G1

G2

]
(mod pE3n(Q)),

where M is the image of M in M2(Z/pZ). If p|det(M) then there
exists a matrix A ∈ M2×2(Z/pZ) such that AM has a zero row. So if
p|v then there exist k1, k2 ∈ Z/pZ such that k1Q1 + k2Q2 ∈ pE3n(Q).
From Propositions 3.3, 3.4 and 3.6, we know in the case p = 2 or p = 3
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there is no such k1 and k2. Hence 2 ∤ v and 3 ∤ v. On the other hand
v < 5 and therefore v = 1.

(3) For every r1, r2 ∈ Z we have

3(3r1)
4 − (18r21 − r22)

2 = 3r42 − (2r22 − 9r21)
2.

Let r be a nonzero integer and r1 = 2r + 1, r2 = 3r1 + 1 and n =
3(3r1)

4− (18r21 − r22)
2 = 2592r4+6048r3+5112r2+1848r+239. Then

r1 is odd, r2 is even, and we can easily check that for every r ∈ N∪{0},
27(2592r4 + 6048r3 + 5112r2 + 1848r + 239)− (3(2r + 1) + 1)4 > 0.

Therefore every fourth-power-free n of the form 2592r4 + 6048r3 +
5112r2 + 1848r + 239 satisfies the conditions, in (2). This proves (3).

(4) This follows from (3) and the next theorem.
□

In our previous paper [4], we have proved the following theorem.

Theorem 4.3. Let p be a prime number such that there exist m1, n1 ∈ Z
such that p = 3m4

1 − n2
1. Let E3p be the elliptic curve y2 = x3 − 3px. Then

rank(E3p(Q)) ≤ 2.

Indeed, we have a more precise statement:

Corollary 4.1. Let p be a prime number. Suppose that there exist positive
integers m1, n1,m2, n2 with m1 odd and m2 even such that

p = 3m4
1 − n2

1, p = 3m4
2 − n2

2.

Let E3p be the elliptic curve y2 = x3−3px. Then rank(E3p(Q)) = 2 and points
Q1 = (3m2

1, 3m1n1) and Q2 = (3m2
2, 3m2n2) are independent points. Moreover

if m4 ≤ 27p, 3|m1 and 3 ∤ m2n2 then {Q1, Q2} is a system of generators for
E3p(Q).

Proof. This follows from part (1) in Theorem 1.1 and Theorem 4.3. □
Remark 4.4. In 1922 Nagell [12] proved that for a natural number k, every
irreducible polynomial f of degree d ≤ k assumes infinitely many kth-power-
free values. Thus f(x) = 2592x4 + 6048x3 + 5112x2 + 1848x + 239 assumes
infinitely many fourth-power-free values. Hence there exist infinitely many n
which satisfies part (3) of Theorem 1.1.

Example 4.1. Let n = 15839 = 3× 94 − 622 = 3× 104 − 1192, and E : y2 =
x3 − 3nx. The points Q1 = (300, 3570) and Q2 = (243, 1674) are independent
points on E. Using online package of Magma [3], we can see that rank(E) = 4.

To show that in part (4) of Theorem 1.1 there exist infinitely many prime
value of d, we use the following conjecture.

Conjecture 4.1. ( [1]) A necessary and sufficient condition for a polynomial
f(x) ∈ Z[x] to be irreducible is that there exist infinitely many integers m such
that f(m)/Nf is prime, where Nf = GCD{f(n), 1 ≤ n ≤ g + 1} and g = deg f .
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We have

f(x) = 2592x4 + 6048x3 + 5112x2 + 1848x+ 239

= 3(3(2x+ 1))4 − (18(2x+ 1)2 − (3(2x+ 1) + 1)2)2

= 3(3(2x+ 1) + 1)4 − (2(3(2x+ 1) + 1)2 − 9(2x+ 1)2)2.

The polynomial f(x) is irreducible. To see this, we first note that the equality
3y4 − z2 = 0 is impossible modulo 4, and hence f(x) has no integer roots. On
the other hand, if

(4.5) f(x) = (ax2 + bx± 1)(dx2 + ex± 239),

we will have 
±239b± e = 1848

±239a± d+ be = 5112

ae+ bd = 6048

ad = 2592.

Considering this system of equations modulo powers of 2, we can see that the
system has no integer solutions. Therefore the factorization(4.5) is impossible.
Hence f(x) is irreducible. Thus the above conjecture predicts the existence of
infinitely many positive integers r, such that f(r) is a prime number. Some
examples of such primes are 239, 425039, 4860959,.... Table 1 gives a list of
primes p in the desired form and the generators of the elliptic curve y2 =
x3 − 3px

Table 1.

r p = f(r) Q1 Q2

0 239 [27, 18] [48, 276]

3 425039 [1323, 25074] [1452, 34782]

6 4860959 [4563, 168714] [4800, 201480]

9 21846047 [9747, 535914] [10092, 605346]

11 46638479 [14283, 956754] [14700, 1058190]

14 117198047 [22707, 1929834] [23232, 2090616]

15 152810159 [25947, 2360898] [26508, 2544486]

621 386929964541119 [41716323, 155476724634] [41738700, 155768817210]

623 391933978780079 [41985243, 156982812354] [42007692, 157276787622]

632 415055242121519 [43206075, 163880631090] [43228848, 164183153316]

644 447456903156047 [44861067, 173388012354] [44884272, 173702121036]

655 478791623202479 [46405467, 182419878978] [46429068, 182744799846]

663 502593430360559 [47545083, 189181873314] [47568972, 189514772502]

664 505629858048047 [47688507, 190038688434] [47712432, 190372591716]

669 521018890986047 [48408867, 194361588954] [48432972, 194700535386]

9209 18646396922899206047 [9160008147, 506136249996714] [9160339692, 506200371214146]

9230 18817052067570298079 [9201830067, 509606550774378] [9202162368, 509670964747896]

9235 18857856307302144719 [9211801707, 510435144220338] [9212134188, 510499627995966]

9237 18874196570501260799 [9215791875, 510766832921850] [9216124428, 510831344628906]

9243 18923281079193672719 [9227767563, 511762761110034] [9228100332, 511827356647662]

9244 18931471129046076047 [9229764267, 511928874902754] [9230097072, 511993484417436]

9250 18980667270912594239 [9241749027, 512926312581018] [9242082048, 512991005989776]

9264 19095831117581448047 [9269743707, 515258703786834] [9270077232, 515323593160116]
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Bordeaux 23 (2011), no. 2, 403–416.

[8] Y. Fujita, Generators for the elliptic curve y2 = x3−nx of rank at least three, J. Number
Theory 133 (2013), no. 5, 1645–1662.

[9] C. Hooley, On the power-free values of polynomials in two variables, Analytic number
theory, 235–266, Cambridge University Press, Cambridge, 2009.

[10] J. Hoffstein, J. Pipher and J. H. Silverman, An Introduction to Mathematical Cryptog-
raphy (Undergraduate Texts in Mathematics), Springer, New York, 2008.

[11] A. W. Knapp, Elliptic Curves, Princeton University Press, Princeton, 1992.
[12] T. Nagell, Zur Arithmetik der polynome, Abhandl. Math. Sem. Hamburg 1 (1922) 179–

194.

[13] S. Siksek, Infinite descent on elliptic curves, Rocky Mountain J. Math. 25 (1995), no. 4,
1501–1538.

[14] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics,
106, Springer, Dordrecht, 2009.

[15] J. H. Silverman and J. Tate, Rational Points on Elliptic Curves, Undergraduate Texts
in Mathematics, Springer-Verlag, New York, 1992.

[16] J. H. Silverman, Advanced topics in the arithmetic of elliptic curves, 151, Springer-
Verlag, New York, 1994.

[17] J.H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), no. 183,
339–358.

[18] L. C. Washington, Elliptic curves: Number Theory and Cryptography, Chapman &
Hall/CRC, Boca Raton, 2008.

(Hassan Daghigh) Faculty of Mathematical Sciences, University of Kashan, P.O.

Box 8731751167, Kashan, Iran.
E-mail address: hassan@kashanu.ac.ir

(Somayeh Didari) Faculty of Mathematical Sciences, University of Kashan, P.O.
Box 8731751167, Kashan, Iran.

E-mail address: didari@kashanu.ac.ir

http://magma.maths. usyd.edu.au/magma/handbook/
http://magma.maths. usyd.edu.au/magma/handbook/

	1. Introduction
	2. Estimating the canonical height
	3. Independence of the points
	4. Proof of the main theorem
	References

