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ated by Cheryl PraegerAbstra
t. Suppose e = uv is an edge 
onne
ting the verti
es uand v of a graph G, Nu(ejG) is the number of verti
es of G lying
loser to u and Nv(ejG) is the number of verti
es of G lying 
loserto v. Then the Szeged index of the graph G is de�ned as Sz(G) =Pe=uv2E(G)Nu(ejG)Nv(ejG).In this paper, the notion of Szeged polynomial of a graph is in-trodu
ed. We investigate some of the properties of this polynomialand 
ompute it for some well-known graphs.1. Introdu
tionLet G be a graph with vertex and edge sets V (G) and E(G), respe
tively.As usual, the distan
e between the verti
es u and v of G is denotedby d(u; v) and it is de�ned as the number of edges in a minimal path
onne
ting the verti
es u and v. Throughout this arti
le, we assumethat G is 
onne
ted.A topologi
al index is a numeri
 quantity from the stru
tural graphof a mole
ule. Usage of topologi
al indi
es in 
hemistry began in 1947when 
hemist Harold Wiener developed the most widely known topo-logi
al des
riptor, the Wiener index, and used it to determine physi
alproperties of types of alkanes known as paraÆn [12℄. Although theMSC(2000): Primary 05C12; Se
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eived: 25 Mar
h 2007, Revised: 23 April 2007�Corresponding author

 2007 Iranian Mathemati
al So
iety. 37



38 Ashra�, Manoo
hehrian and Youse�-Azaritopologi
al index, is easily 
al
ulable quantity, it does not uniquely 
or-respond to the individual stru
ture of a graph. It roughly represents thetopologi
al nature of the graph, i.e., bran
hing and 
y
lization.John Platt was the only person who immediately realized the impor-tan
e of the Wiener's pioneering work and wrote papers analyzing andinterpreting the physi
al meaning of the Wiener index.We now des
ribe some notations whi
h will be kept throughout. Avertex weighted graph G = (V;E;w) is a 
ombinatorial obje
t 
onsistingof an arbitrary set V = V (G) of verti
es, a set E = E(G) of unorderedpairs fx; yg = xy of distin
t verti
es of G 
alled edges, and a weight-ing fun
tion w, where w : V (G) �! R assigns positive real numbers(weights) to verti
es. The Cartesian produ
t G � H of graphs G andH has the vertex set V (G � H) = V (G) � V (H) and (a; x)(b; y) is anedge of G � H if a = b and xy 2 E(H), or ab 2 E(G) and x = y. IfG1; G2; � � � ; Gn are graphs then we denote G1 � � � � �Gn by Nni=1Gi.Throughout this paper our notation is standard and taken mainlyfrom [1, 2, 9, 10℄. Let Kn, Pn, Cn, Wn denote the 
omplete graph, path,
y
le and wheel on n verti
es, respe
tively. Also, Qn is the 
ube ofdimension n and Km1;:::;mk is a 
omplete k-partite graph on parts of sizem1; ::::;mk . In the 
ase of r = 2, we write G = (V1 + V2; E) to denote abipartite graph with parts V1 and V2.2. De�nitionsIn this se
tion, the notions of Szeged index, Szeged polynomial, andweighted hyper-Sz index are introdu
ed. Szeged index is a mathemati-
ally elegant topologi
al index de�ned by Ivan Gutman [4℄ at the AttilaJozsef University in Szeged, and so it was 
alled the Szeged index, de-noted by Sz. For more information about Szeged index we en
ouragethe reader to 
onsult [4, 7, 11℄ and referen
es therein.De�nition 2.1. Suppose that e = uv is an edge 
onne
ting the verti
esu and v, Nu(ejG) is the number of verti
es of G lying 
loser to u andNv(ejG) is the number of verti
es of G lying 
loser to v. Then the Szegedindex of the graph G is de�ned as Sz(G) =Pe=uv2E(G)Nu(ejG)Nv(ejG).In the previous de�nition, we noti
e that verti
es equidistant fromboth ends of the edge e = uv are not 
ounted.



On Szeged polynomial of a graph 39In 1988, Hosoya [5℄ introdu
ed what he termed the Wiener polynomialof a graph as H(G;x) = Plk=1 d(G; k)xk, where d(G; k) is the numberof pairs of verti
es in the graph G that are distan
e k apart, and l is themaximum value of k. In [8℄, Sagan et al., produ
ed a treatment appar-ently independent of Hosoya's. Perhaps the most interesting property ofH(G; z) is that its �rst derivative, evaluated at x = 1, equals the Wienerindex: W (G) = H 0(G; 1).In what follows, we 
ontinue the lines of [1, 2, 8, 12℄ to de�ne theSzeged polynomial and weighted hyper-Sz index of a graph.De�nition 2.2. Let G be a 
onne
ted graph, and let u; v be ver-ti
es of G and e = uv. Then the Szeged polynomial of G is de�nedas Sz(G;x) = Xe=uv2E(G) xNu(ejG)Nv(ejG). If G is a vertex weighted graphthen the Szeged polynomial of G is de�ned as followsSzw(G;x) = Xe=uv2E(G)w(u)w(v)xNu(ejG)Nv(ejG);where w(u) denotes the weight of vertex u.De�nition 2.3. Let G be a vertex weighted graph. Then the weightedhyper-Sz index G is de�ned as followsSz(2)w (G) = Xe=uv2E(G)w(u)w(v)[N2u (ejG)N2v (ejG) +Nu(ejG)Nv(ejG)℄:3. ExamplesIn this se
tion we 
al
ulate the Szeged polynomial of some well-knowngraphs.Example 3.1. Consider the 
omplete graph Kn and the 
y
le graphCn. Then Sz(Kn; x) = �n2�x andSz(Cn; x) = ( nxn2=4 n is even;nx(n�1)2=4 n is odd:Example 3.2. In this example, the Szeged polynomial of the path Pnis 
omputed. It is easy to see that Sz(P1:x) = 0, Sz(P2; x) = x and
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hehrian and Youse�-AzariSz(P3; x) = 2x2. If n � 4 then we haveSz(Pn; x) = x1�n�1 + x2�n�2 + � � � + xn�1�1= ( 2xn�1 + 2x2(n�2) + � � � + xn=2�n=2 2jn2xn�1 + 2x2(n�2) + � � � + 2x(n�1)=2�(n+1)=2 2 6 jn :Example 3.3. Suppose that Wn is the wheel graph with n+1 verti
es.Then Sz(Wn; x) = Sz(Cn; x) + nx1�(n�3) and by Example 3.1,Sz(Wn; x) = ( nxn�3 + nxn2=4 n is evennxn�3 + nx(n�1)2=4 n is odd:Example 3.4. Consider a 
omplete r-partite graph G = Kn1;n2;:::;nr
ontaining v = jV (G)j verti
es. By de�nition of this graph, Figure 1,V = V (G) 
an be partitioned into subsets V1; V2; :::; Vr of V su
h thatfor every i, 1 � i � r, there is no edge between the verti
es of Vi. In thisgraph we have Sz(Kn1;n2;:::;nr; x) =P1�i<j�r ninjxninj .
. . .
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Figure 1. An r-partite graphs.By the previous example, if G is a star with exa
tly n + 1 verti
esthen Sz(G;x) = nxn.



On Szeged polynomial of a graph 414. Main resultsIn this se
tion, we prove Szeged polynomial of a graph has the sameproperties as Wiener polynomial of the graph under 
onsideration. Also,some of the results of Sagan et al. are generalized to the 
ase of Szegedpolynomial of a graph, see [8℄ for details. We re
all that a graph Gis 
alled bipartite if we 
an de
ompose the set of its verti
es into twodisjoint parts A and B su
h that no two verti
es within the same set areadja
ent. A bipartite graph is said to be balan
ed if jAj = jBj.Lemma 4.1. Let G be a 
onne
ted graph with n verti
es. Then we have(i) Sz(G;x) has the 
onstant term 0 and Sz(G; 1) = jE(G)j,(ii) Sz0(G; 1) = Sz(G),(iii) if T is a tree with edges e1, ..., en�1, then Sz(G;x) =Pn�1i=1 xni(n�ni),where ni is the number of verti
es of one 
omponent of T � ei. HereT � ei is the subtree obtained from T by deleting the edge ei. Moreover,the term with minimum degree of Sz(T ;x) is kxn�1, in whi
h k is thenumber of end verti
es of T .Proof. The proof is straightforward and follows from the de�nition ofSzeged polynomial. �Corollary 4.2. If G = Kn1;n2;:::;nr thenSz(Kn1;n2;:::;nr) = X1�i<j�rn2in2j :Proof. The proof follows from Lemma 4.1 and Example 3.4. �In what follows, we extend the main results of [1, 2, 13℄ to the Szegedpolynomial of a weighted graph.Theorem 4.3. Sz(2)w (G) = 2Sz0w(G; 1) + Sz00w(G; 1).Proof. By de�nition of Szeged polynomial, we have
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hehrian and Youse�-AzariSzw(G;x) = Xe=uv2E(G)w(u)w(v)xNu(ejG)Nv(ejG);xSz0w(G;x) = Xe=uv2E(G)Nu(ejG)Nv(ejG)w(u)w(v)xNu(ejG)Nv(ejG)Sz0w(G;x) + xSz00w(G;x)= Xe=uv2E(G)Nu(ejG)2Nv(ejG)2w(u)w(v)xNu(ejG)Nv(ejG)�1:Therefore, by de�nition of Sz(2)w (G), one 
an see thatSz(2)w (G) = Xe=uv2E(G)w(u)w(v)[Nu(ejG)2Nv(ejG)2 +Nu(ejG)Nv(ejG)= 2Sz0w(G; 1) + Sz00w(G; 1):This 
ompletes the proof. �Suppose G = (V1 + V2; E) denotes a bipartite graph whose partitionhas the parts V1 and V2. Then G is 
alled balan
ed, if jV1j = jV2j. Inwhat follows dG(x) denotes the degree of a vertex x in the graph G.Theorem 4.4. Let G be a graph with an even number of verti
es. Thendeg(Sz(G;x)) � 1=4jV (G)j2. Moreover, suppose G = (V1 + V2; E) isbipartite. Then the upper bound is attained if and only if G is balan
edand there exists an edge e = xy of E(G) su
h that dG(x) = jV1j anddG(y) = jV2j.Proof. It is well-known fa
t then if x+y is 
onstant then the maximumvalue of xy is [x2=4℄, where [x℄ denotes the greatest integer � x. Sin
eV(G) is even, deg(Sz(G;x)) � 1=4jV (G)j2. Suppose G = (V1 + V2; E)is bipartite. If G is balan
ed and there exists an edge e = uv su
h thatdG(u) = jV1j and dG(v) = jV2j then Nu(ejG)Nv(ejG) = jV1jjV2j and bythe �rst part of theorem deg(Sz(G;x)) = 1=4jV (G)j2. Conversely, weassume that deg(Sz(G;x)) = 1=4jV (G)j2. By the assumption, jV j =jV1j+ jV2j and jV1jjV2j = 1=4jV j2. So, jV1j = jV2j = 1=2jV j and thereforeG is balan
ed. On the other hand, sin
e deg(Sz(G;x)) = 1=4jV (G)j2,there exists an edge e = xy of E(G) su
h that dG(x) = Nx(ejG) = jV1jand dG(y) = Ny(ejG) = jV2j. �



On Szeged polynomial of a graph 43Suppose that A and B are two disjoint n-
y
les, and n is odd. Con-stru
t a graph G by 
onne
ting a vertex of A to a vertex of B. Then Gis not bipartite, but deg(Sz(G;x)) = 1=4jV (G)j2.Question. Suppose G is a graph with an even number of verti
es anddeg(Sz(G;x)) = 1=4jV (G)j2. What we 
an say about the stru
ture ofG?Theorem 4.5. Let G be a graph with an odd number of verti
es. Thendeg(Sz(G;x)) � 1=4(jV (G)j2 � 1). Moreover, suppose that G = (V1 +V2; E) is bipartite. Then the upper bound is attained if and only if jjV1j�jV2jj = 1 and there exists an edge e = xy of E(G) su
h that dG(x) = jV1jand dG(y) = jV2j.Proof. The proof is similar to Theorem 4.4. �A similar argument shows that for an r-partite graph G, the upperbound is attained if and only if r = 2 and G satis�es the 
onditions ofTheorem 4.4 or 4.5, when jV j is even or odd. Trees and hexagonal sys-tems are two of most important 
lasses of bipartite graphs and Theorems4.4 and 4.5 
ompute the degree of Szeged polynomial of su
h graphs.In what follows we extend a result of Klavzar, Rajapakse and Gutman[7℄ to Szeged polynomial.Theorem 4.6. Let G and H be 
onne
ted graphs. Then Sz(G�H;x) =jV (G)jSz(H;xjV (G)j2) + jV (H)jSz(G;xjV (H)j2).Proof. Suppose that P = G � H. There are only two types of edgesin P 
orresponding to 
opies of G and of H, respe
tively. Let (u; v) =((a; x); (b; y)) be an arbitrary edge of P . The Szeged polynomial of P
an be written as follows:Sz(P; x) = Xa2V (G) Xxy2E(H)xNu((a;x)(a;y)jP )Nv((a;x)(a;y)jP )+ Xx2V (H) Xab2E(G) xNu((a;x)(b;x)jP )Nv((a;x)(b;x)jP ):It is 
lear that Nu((a; x)(a; y)jP ) = jV (G)jNx(xyjH) andNv((a; x)(a; y)jP ) = jV (G)jNy(xyjH). Analogous statements hold forthe edge (a; x)(b; x). Then
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hehrian and Youse�-AzariSz(P; x) = Xa2V (G) Xxy2E(H) xjV (G)jNx(xyjH)jV (G)jNy(xyjH)+ Xx2V (H) Xab2E(G) xjV (H)jNa(abjG)jV (H)jNb(abjG)= jV (G)j Xxy2E(H)(xjV (G)j2)Nx(xyjH)Ny(xyjH)+ jV (H)j Xab2E(G)(xjV (H)j2)Na(abjG)Nb(abjG)= jV (G)jSz(H;xjV (G)j2) + jV (H)jSz(G;xjV (H)j2):This 
ompletes the proof. �We 
on
lude the paper by extending the previous theorem to produ
tof n 
onne
ted graphs.Theorem 4.7. Let G1; G2; � � �Gn be 
onne
ted graphs. ThenSz(
ni=1Gi; x) =Pni=1 Sz(Gi; xQnj=1;j 6=i jV (Gj)j2)Qnj=1;j 6=i jV (Gj)j.Proof. Sin
e the produ
t of 
onne
ted graphs are 
onne
ted [6℄, we 
anuse indu
tion. In Theorem 4.6, we proved the 
ase of n = 2. Supposethat G = 
ni=1G1, H = 
n+1i=1 Gi and the result is valid for G. Then wehaveSz(H;x) = Sz(G�Gn+1; x)= jV (G)jSz(Gn+1; xjV (G)j2) + jV (Gn+1)jSz(G;xjV (Gn+1)j2)= nYi=1 jV (Gi)jSz(Gn+1; xQni=1 jV (Gi)j2) + jV (Gn+1)jSz(G;xjV (Gn+1)j2)= nYi=1 jV (Gi)jSz(Gn+1; xQni=1 jV (Gi)j2)+jV (Gn+1)j nXi=1 Sz(Gi; xQnj=1;j 6=i jV (Gj)j2) nYj=1;j 6=i jV (Gj)j= n+1Xi=1 Sz(Gi; xQn+1j=1;j 6=i jV (Gj)j2) n+1Yj=1;j 6=i jV (Gj)j;as desired. �



On Szeged polynomial of a graph 45Corollary 4.8. If G is a 
onne
ted graph thenSz(Gn; x) = nXi=1 Sz(G;xjV (G)j2(n�1))jV (G)jn�1:Proof. The proof follows from Theorem 4.7. �Suppose Qn denotes an n-dimensional 
ube. Then we apply our pre-vious 
orollary to 
ompute the Szeged polynomial and then Szeged indexof Qn. Sz(Qn; x) = Sz(Kn2 ; x) = 2n�1 nXi=1 Sz(K2; x4n�1)= n2n�1x4n�1 :Thus, Sz(Qn) = Sz0(Qn; 1) = n23(n�1).A
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