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ON SZEGED POLYNOMIAL OF A GRAPH

A. R. ASHRAFT*, B. MANOOCHEHRIAN AND H. YOUSEFI-AZARI

Communicated by Cheryl Praeger

ABSTRACT. Suppose e = uv is an edge connecting the vertices u
and v of a graph G, N,(e|G) is the number of vertices of G lying
closer to u and N,(e|G) is the number of vertices of G lying closer
to v. Then the Szeged index of the graph G is defined as Sz(G) =

Ze:uveE‘(G) N (E‘G)Nv (6|G)

In this paper, the notion of Szeged polynomial of a graph is in-
troduced. We investigate some of the properties of this polynomial
and compute it for some well-known graphs.

1. Introduction

Let G be a graph with vertex and edge sets V(G) and E(G), respectively.
As usual, the distance between the vertices v and v of G is denoted
by d(u,v) and it is defined as the number of edges in a minimal path
connecting the vertices u and v. Throughout this article, we assume
that G is connected.

A topological index is a numeric quantity from the structural graph
of a molecule. Usage of topological indices in chemistry began in 1947
when chemist Harold Wiener developed the most widely known topo-
logical descriptor, the Wiener index, and used it to determine physical
properties of types of alkanes known as paraffin [12]. Although the
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topological index, is easily calculable quantity, it does not uniquely cor-
respond to the individual structure of a graph. It roughly represents the
topological nature of the graph, i.e., branching and cyclization.

John Platt was the only person who immediately realized the impor-
tance of the Wiener’s pioneering work and wrote papers analyzing and
interpreting the physical meaning of the Wiener index.

We now describe some notations which will be kept throughout. A
vertex weighted graph G = (V, E, w) is a combinatorial object consisting
of an arbitrary set V = V(Q) of vertices, a set E = E(G) of unordered
pairs {z,y} = zy of distinct vertices of G called edges, and a weight-
ing function w, where w : V(G) — R assigns positive real numbers
(weights) to vertices. The Cartesian product G x H of graphs G and
H has the vertex set V(G x H) = V(G) x V(H) and (a,z)(b,y) is an
edge of G x H ifa = b and zy € E(H), or ab € E(G) and z = y. If
G1,Gs, - , G, are graphs then we denote G; x --- X G, by ®;—; G;.

Throughout this paper our notation is standard and taken mainly
from [1, 2, 9, 10]. Let K,,, P,, C,, W), denote the complete graph, path,
cycle and wheel on n vertices, respectively. Also, (), is the cube of
dimension n and K, ... m, is a complete k-partite graph on parts of size
mi,....,mg. In the case of r = 2, we write G = (V; + V3, E) to denote a
bipartite graph with parts V; and V5.

2. Definitions

In this section, the notions of Szeged index, Szeged polynomial, and
weighted hyper-Sz index are introduced. Szeged index is a mathemati-
cally elegant topological index defined by Ivan Gutman [4] at the Attila
Jozsef University in Szeged, and so it was called the Szeged index, de-
noted by Sz. For more information about Szeged index we encourage
the reader to consult [4, 7, 11] and references therein.

Definition 2.1. Suppose that e = uv is an edge connecting the vertices
u and v, Ny(e|G) is the number of vertices of G lying closer to u and
N, (e|G) is the number of vertices of G lying closer to v. Then the Szeged
indez of the graph G is defined as Sz(G) = 3. — e p(q) Nule|G) Ny (e]G).

In the previous definition, we notice that vertices equidistant from
both ends of the edge e = uv are not counted.
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In 1988, Hosoya [5] introduced what he termed the Wiener polynomial
of a graph as H(G;z) = Y.hk_, d(G, k)z*, where d(G, k) is the number
of pairs of vertices in the graph G that are distance k apart, and [ is the
maximum value of k. In [8], Sagan et al., produced a treatment appar-
ently independent of Hosoya’s. Perhaps the most interesting property of
H(G, z) is that its first derivative, evaluated at x = 1, equals the Wiener
index: W(G) = H'(G,1).

In what follows, we continue the lines of [1, 2, 8, 12] to define the
Szeged polynomial and weighted hyper-Sz index of a graph.

Definition 2.2. Let G be a connected graph, and let u,v be ver-
tices of G and ¢ = ww. Then the Szeged polynomial of G is defined
as Sz(G;z) = Z gNu(elGINu(€lG) 1f @ is a vertex weighted graph
e=uv€E(G)
then the Szeged polynomial of GG is defined as follows
Sa(@a)= Y wluw(e)e VD),
e=uveE(G)

where w(u) denotes the weight of vertex u.

Definition 2.3. Let G be a vertex weighted graph. Then the weighted
hyper-Sz index G is defined as follows

Sz)(@) = Y w(w)w()[Ni(elG)N; (e|G) + Nu(e|G)Ny (¢ G)].
e=uveE(G)

3. Examples

In this section we calculate the Szeged polynomial of some well-known
graphs.

Example 3.1. Consider the complete graph K, and the cycle graph
Cyp. Then Sz(K,,z) = ()= and

n?/4
(n—1)%/4

ne n 18 even,

Sz(Cp,x) = {

n n 18 odd.

Example 3.2. In this example, the Szeged polynomial of the path P,
is computed. It is easy to see that Sz(P,.z) = 0, Sz(P,z) = = and
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Sz(P3,z) = 2x2. If n > 4 then we have

SZ(PH,:E) — plxn—l 4 p2xn—2 NI _}_xnflxl
2$n—1 + 2$2(n—2) T xn/?xn/? 2|n
— 9zn 1 4 942(n—2) 44 9p(n—1)/2x(n+1)/2 9 Xn .

Example 3.3. Suppose that W, is the wheel graph with n + 1 vertices.
Then Sz(W,, z) = Sz(Ch.z) + nz'*(®3) and by Example 3.1,

nz" 3 + pgn’/4 n is even
S’Z(Wn,$) - { nz" 3 4+ nx(n_1)2/4 n 1s odd.

Example 3.4. Consider a complete r-partite graph G = Ky, n,....n.
containing v = |V(G)| vertices. By definition of this graph, Figure 1,
V = V(G) can be partitioned into subsets V;,Vs,...,V,. of V such that
for every i, 1 < ¢ < r, there is no edge between the vertices of V;. In this
graph we have Sz(Kn, ny,..,n.s T) = 21<icjcr Nl

Figure 1. An r-partite graphs.

By the previous example, if G is a star with exactly n + 1 vertices
then Sz(G,x) = na".
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4. Main results

In this section, we prove Szeged polynomial of a graph has the same
properties as Wiener polynomial of the graph under consideration. Also,
some of the results of Sagan et al. are generalized to the case of Szeged
polynomial of a graph, see [8] for details. We recall that a graph G
is called bipartite if we can decompose the set of its vertices into two
disjoint parts A and B such that no two vertices within the same set are
adjacent. A bipartite graph is said to be balanced if |A| = |B].

Lemma 4.1. Let G be a connected graph with n vertices. Then we have
(i) Sz(G, ) has the constant term 0 and Sz(G;1) = |E(G)|,

(i) S2'(G;1) = S2(G),

(iii) if T is a tree with edges ey, ..., €n—1, then Sz(G;x) = ?:_11 ghi(n—ni)
where n; is the number of vertices of one component of T — e;. Here
T — e; is the subtree obtained from T by deleting the edge e;. Moreover,
the term with minimum degree of Sz(T;x) is kx™ ', in which k is the

number of end vertices of T'.

Proof. The proof is straightforward and follows from the definition of
Szeged polynomial. O

Corollary 4.2. If G = Ky, n,,...n, then
SZ(Kn17n2:---:nr) = Z n%”?

Proof. The proof follows from Lemma 4.1 and Example 3.4. (|

In what follows, we extend the main results of [1, 2, 13] to the Szeged
polynomial of a weighted graph.

Theorem 4.3. qu(f)(G) =25z,(G,1) + Szl (G,1).

Proof. By definition of Szeged polynomial, we have
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Szy(G,x) = Z w(w)w(v)zNe EON(EE)
e=uveE(Q)

2S7,(Giw) = D NulelG)Ny (€| Gw(ujw(v)a e 1ON (1)
e=uwveE(Q)

Sz1,(G,z) + £S5z, (G, z)

= > Nul€e|G)ANy(e|G) 2w (u)w(v)g N AN e =L,
e=uveE(Q)

Therefore, by definition of Sz (G), one can see that

26 = Y www)[Ny(e|G)Ny(e]G)? + Ny(e] G)Ny (el G)
e=uveE(QG)
= 282,(G,1)+ Sz (G, 1).

This completes the proof. O

Suppose G = (Vi + V;, E) denotes a bipartite graph whose partition
has the parts V; and V5. Then G is called balanced, if |Vi| = |V3|. In
what follows dg(z) denotes the degree of a vertex z in the graph G.

Theorem 4.4. Let G be a graph with an even number of vertices. Then
deg(Sz(G;x)) < 1/4|[V(G)|>2. Moreover, suppose G = (Vi + Vo, E) s
bipartite. Then the upper bound is attained if and only if G is balanced
and there ezists an edge e = zy of E(G) such that dg(z) = |Vi| and

da(y) = [Val.

Proof. It is well-known fact then if £+ y is constant then the maximum
value of zy is [22/4], where [x] denotes the greatest integer < z. Since
V(G) is even, deg(Sz(G;z)) < 1/4|V(G)[%. Suppose G = (Vi + Vs, E)
is bipartite. If G is balanced and there exists an edge e = uv such that
da(u) = |V1| and dg(v) = |Va| then N, (e|G)Ny(e|G) = |V1]|Va| and by
the first part of theorem deg(Sz(G;r)) = 1/4|V(G)|?>. Conversely, we
assume that deg(Sz(G;z)) = 1/4|V(G)|2. By the assumption, |V| =
V1| +|Va| and |V1||Va| = 1/4|V|2. So, |Vi| = |Va| = 1/2|V| and therefore
G is balanced. On the other hand, since deg(Sz(G;z)) = 1/4|V(G)/?,
there exists an edge e = zy of E(G) such that dg(z) = Ni(e|G) = |V
and dg(y) = Ny(e|G) = |Va|. O
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Suppose that A and B are two disjoint n-cycles, and n is odd. Con-
struct a graph G by connecting a vertex of A to a vertex of B. Then G
is not bipartite, but deg(Sz(G;z)) = 1/4|V(Q)|?.

Question. Suppose G is a graph with an even number of vertices and
deg(Sz(G; 1)) = 1/4|V(G)|?>. What we can say about the structure of
G?

Theorem 4.5. Let G be a graph with an odd number of vertices. Then
deg(Sz(G;x)) < 1/4(|V(G)|? = 1). Moreover, suppose that G = (V; +
Vo, E) is bipartite. Then the upper bound is attained if and only if ||V1]|—
\Va|| =1 and there exists an edge e = xy of E(G) such that dg(x) = |Vi|
and dg(y) = |Val.

Proof. The proof is similar to Theorem 4.4. O

A similar argument shows that for an r-partite graph G, the upper
bound is attained if and only if » = 2 and G satisfies the conditions of
Theorem 4.4 or 4.5, when |V| is even or odd. Trees and hexagonal sys-
tems are two of most important classes of bipartite graphs and Theorems
4.4 and 4.5 compute the degree of Szeged polynomial of such graphs.

In what follows we extend a result of Klavzar, Rajapakse and Gutman
[7] to Szeged polynomial.

Theorem 4.6. Let G and H be connected graphs. Then Sz(Gx H,x) =
V(G Sa(H, oV OF) 4 |V (H)[S2(G,a V1),

Proof. Suppose that P = G x H. There are only two types of edges
in P corresponding to copies of G and of H, respectively. Let (u,v) =
((a,x), (b,y)) be an arbitrary edge of P. The Szeged polynomial of P
can be written as follows:

Sz(P,z) = Z Z (a.y)| P)Nu ((a,z)(a.y)| P)
a€V(G) zyeE(H)

+ Z Z (a,z bz)\P)NU((a,:r)(b,z)\P).
z€V(H) ab€E(G)
It is clear that Ny((a,z)(a,y)|P) = |V(G)|Ng(zy/H) and
Ny((a,z)(a,y)|P) = |V(G)|Ny(zy|H). Analogous statements hold for
the edge (a,z)(b,z). Then
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Sz(P,x) = 2| V(@) N (zy | H)|V(G)| Ny (xy | H)

+ 2|V H)[Na(ab|G)|V (H)|Np (ab|G)

= |V(Q) (x\V(G)P)Nw(xy\H)Ny(xy\H)
oy€ E(H)
+ |V(H)] Z (z \V(H)P)Na(ab\G)N,,(ab\G)
abeE(G)
= V(®)|S2(H,«VOF) 4|V (H)|S2(G, 2V UDF),
This completes the proof. 0

We conclude the paper by extending the previous theorem to product
of n connected graphs.

Theorem 4.7. Let G1,Go,- -G, be connected graphs. Then
n V(G2
S2(@1Gi, 1) = iy 82(Gy,al limasd O I vi6y).

Proof. Since the product of connected graphs are connected [6], we can
use induction. In Theorem 4.6, we proved the case of n = 2. Suppose
that G = ®_ G, H = ®"+1G and the result is valid for G. Then we
have

Sz(H,z) = Sz(G x Gpi1, 1)
= V(@)I$=(C Gyt 2!V O) 4 [V (Gry1)|S2(G, 2V (O]

—H\V 282G, oIl VO £ 1V(Gry) 182G 2V (O )

= H V(Gy)|S2(Grr, allim VEI?)

n

n )2
Y (Grin)| 3 S2(G, e D= VG T v(ay)

i=1 j=1,5#1
n+1 5 n+1
= 3 852Gy, L5 VR T (@),
i=1 J=1#

as desired. O
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Corollary 4.8. If G is a connected graph then

S2(G", ) = 3 82(G, 2V P v (et
i=1

Proof. The proof follows from Theorem 4.7. O

Suppose @), denotes an n-dimensional cube. Then we apply our pre-
vious corollary to compute the Szeged polynomial and then Szeged index

of Q.

n
S2(Qnyx) = Sz(K§,z)=2""'Y Sz(Kyz'" )

i=1
= ponig"h
Thus, Sz(Q,) = S2'(Qn, 1) = n23-1),
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