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SEPARATIVE IDEALS OF EXCHANGE RINGS

H. CHEN

Abstract. An ideal I of an exchange ring R is separative provided
that for all A, B ∈ FP (I), 2A ∼= A ⊕ B ∼= 2B implies that A ∼=
B. We prove that I is separative if and only if so is the ideal of
all (triangular) matrices over I. Further, we investigate diagonal
reduction over such ideals. Comparability of modules over such
ideals are studied as well.

1. Introduction

A ring R is said to be an exchange ring if for every right R-module
A and any two decompositions A = M ⊕N =

⊕
i∈I Ai, where MR

∼= R
and the index set I is finite, there exist submodules A′i ⊆ Ai such that
A = M ⊕

( ⊕
i∈I A

′
i

)
. The class of exchange rings is very large. It in-

cludes regular rings, π-regular rings, strongly π-regular rings, semiper-
fect rings, left or right continuous rings, clean rings, and unit C∗-algebras
of real rank zero. For the general theory of exchange rings, refer to [10].
Following Ara et al. [3], an ideal I of an exchange ring R is separative
provided that for all A,B ∈ FP (I), 2A ∼= A⊕B ∼= 2B ⇒ A ∼= B, where
FP (I) denotes the class of finitely generated projective right R-modules
P such that P = PI. An exchange ring R is separative provided that R
as an ideal of itself is separative. As is well known, an exchange ring R
is separative if and only if so are I and R/I (cf. [10, Theorem 34.10]).
Separativity plays a key role in the direct sum decomposition theory of
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exchange rings (cf. [2-3], [6] and [8-10]). We use V (I) to stand for the
monoid of isomorphism classes of objects from FP (I). Applying [10,
Lemma 34.5] to V (I), one sees the following elementary result.

Theorem 1.1. Let I be an ideal of an exchange ring R. Then, the
followings are equivalent:

(1) I is separative.
(2) For all A,B,C ∈ FP (I), A⊕ 2C ∼= B ⊕ 2C ⇒ A⊕C ∼= B ⊕C.
(3) For all A,B,C ∈ FP (I), A ⊕ C ∼= B ⊕ C with C .⊕ A,B ⇒

A ∼= B.
(4) For all A,B,C ∈ FP (I), A⊕C ∼= B⊕C with C ∝ A,B ⇒ A ∼=

B.
(5) For all A,B ∈ FP (I), 2A ∼= 2B and 3A ∼= 3B ⇒ A ∼= B.
(6) For all A,B ∈ FP (I), nA ∼= nB and (n + 1)A ∼= (n + 1)B(n ∈

N) ⇒ A ∼= B.
(7) For all A,B,C ∈ FP (I), A ⊕ C ∼= B ⊕ C .⊕ R with C .⊕

A,B =⇒ A ∼= B.

Here, we investigate new necessary and sufficient conditions under
which an ideal of exchange rings is separative. For a regular ring R, we
observe that the set {a ∈ R | EndR(aR) is separative} is a separative
ideal. From this, we investigate diagonal reduction over such ideals.
Furthermore, we show that such separativity can be characterized by
comparability of modules.

Throughout, all rings are associative with identity and all modules
are right modules. The notation M .⊕ N means that M is isomorphic
to a direct summand of N . For any A,B ∈ FP (I), we write A ∝ B if
there exists a positive integer n such that A .⊕ nB, where nB denotes
the direct sum of n copies of a module B. We always use N to denote
the set of all natural numbers.

2. Equivalent characterizations

The main purpose of this section is to give several equivalent charac-
terizations for an ideal of exchange rings to be separative, which will be
used in the sequel. We begin with a simple fact.

Lemma 2.1. Let I be an ideal of an exchange ring R, and let C ∈
FP (I). If A and B are any right R-modules such that A⊕ C ∼= B ⊕ C
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with C .⊕ A,B, then we have a refinement matrix,

B C
A
C

(
D1 A1

B1 C1

)
,

with C1 .⊕ A1, B1.

Proof. Suppose that ψ : A ⊕ C ∼= B ⊕ C with C .⊕ A,B. Then,
we have A ⊕ C = ψ−1(B) ⊕ ψ−1(C). By [10, Proposition 28.6], C
has the finite exchange property; hence, we have B1 ⊆ ψ−1(B) and
C1 ⊆ ψ−1(C) such that A ⊕ C = A ⊕ B1 ⊕ C1. So, C ∼= B1 ⊕ C1. It
follows from B1 ⊆ ψ−1(B) ⊆ B1 ⊕ A ⊕ C1 that ψ−1(B) = ψ−1(B) ∩
(B1 ⊕ A ⊕ C1) = B1 ⊕ ψ−1(B) ∩ (A ⊕ C1). That is, B1 is a direct
summand of ψ−1(B). Likewise, C1 is a direct summand of ψ−1(C).
Assume now that ψ−1(B) = B1 ⊕ D1 and ψ−1(C) = C1 ⊕ A1. Then,
B ∼= D1 ⊕B1, C ∼= C1 ⊕A1. As B1 ⊕D1 ⊕ C1 ⊕A1 = B1 ⊕ C1 ⊕A, we
have A ∼= D1 ⊕A1. Therefore, we get a refinement matrix,

B C
A
C

(
D1 A1

B1 C1

)
,

as C .⊕ B, C1 .⊕ D1 ⊕ B1. Since C1 as a direct summand of C, it
has the finite exchange property. Similar to the consideration above,
we have C1 = C ′1 ⊕ C ′′1 with C ′1 .⊕ B1 and C ′′1 .⊕ D1. Assume that
B1

∼= C ′1 ⊕ B′1 and D1
∼= C ′′1 ⊕ D′

1 for right R-modules B′1 and D′
1.

Therefore, we get a refinement matrix,

B C
A
C

(
D′

1 A′1
B′1 C ′1

)
,

where A′1 = A1 ⊕ C ′′1 and B′1 = B1 ⊕ C ′′1 . Clearly, C ′1 .⊕ B1 .⊕ B′1.
Since C ′1 .⊕ C .⊕ A = A′1 ⊕D′

1, analogous to the consideration above,
we may also assume that C ′1 .⊕ A′1. Therefore, we get the result. �

Theorem 2.2. Let I be an ideal of an exchange ring R. Then, the
followings are equivalent:

(1) I is separative.
(2) For all C ∈ FP (I), A⊕ C ∼= B ⊕ C with C .⊕ A,B ⇒ A ∼= B,

for any right R-modules A and B.
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(3) For all C ∈ FP (I), A ⊕ 2C ∼= B ⊕ 2C ⇒ A ⊕ C ∼= B ⊕ C, for
any right R-modules A and B.

(4) For all C ∈ FP (I), A ⊕ C ∼= B ⊕ C with C ∝ A,B ⇒ A ∼= B,
for any right R-modules A and B.

Proof. (1) ⇒ (2). Suppose that A ⊕ C ∼= B ⊕ C with C .⊕ A,B
and C ∈ FP (I). Clearly, C has the finite exchange property. Applying
Lemma 2.1, we have a refinement matrix,

B C
A
C

(
D1 A1

B1 C1

)
,

such that C1 .⊕ A1, B1. Thus, C ∼= A1 ⊕ C1
∼= B1 ⊕ C1. Since C ∈

FP (I), one easily checks that C1, A1, B1 ∈ FP (I). It follows from
Theorem 1.1 that A1

∼= B1. Therefore, A ∼= D1 ⊕ A1
∼= D1 ⊕ B1

∼= B,
as desired.

(2) ⇒ (3). This is clear.
(3) ⇒ (4). Suppose that C ∈ FP (I) and A ⊕ C ∼= B ⊕ C with

C ∝ A,B. Then, we have k ∈ N such that C .⊕ kA, kB. By the
finite exchange property of C, we have right R-module decomposition
C = C1⊕· · ·⊕Ck with all Ci .⊕ A (1 ≤ i ≤ k). Clearly, all Ci .⊕ C .⊕

kB; hence, we have right R-module decompositions Ci = C1i⊕· · ·⊕Cmii,
for 1 ≤ i ≤ k. Therefore, we get

n⊕
i=1

mi⊕
j=1

Cji ⊕A ∼=
n⊕

i=1

mi⊕
j=1

Cji ⊕B

with each Cji .⊕ A,B. Consequently, we have A ∼= B, as required.
(4) ⇒ (1). This is trivial by Theorem 1.1. �

Corollary 2.3. Let R be an exchange ring. Then, the followings are
equivalent:

(1) R is separative.
(2) For all C ∈ FP (R), A⊕C ∼= B ⊕C with C .⊕ A,B ⇒ A ∼= B,

for any right R-modules A and B.
(3) For all C ∈ FP (R), A ⊕ 2C ∼= B ⊕ 2C ⇒ A ⊕ C ∼= B ⊕ C, for

any right R-modules A and B.
(4) For all C ∈ FP (R), A ⊕ C ∼= B ⊕ C with C ∝ A,B ⇒ A ∼= B,

for any right R-modules A and B.
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Proof. It is immediate from Theorem 2.2. �

Lemma 2.4. Let I be a separative ideal of an exchange ring R, and let
e ∈ R be an idempotent. Then, eIe is a separative ideal of eRe.

Proof. Given any idempotent exe ∈ eIe, we have (exe)(eRe)(exe) =
(exe)R(exe). Since exe ∈ I, by [10, Lemma 34.4], (exe)R(exe) is a
separative exchange ring. By [10, Lemma 34.4] again, we obtain the
result. �

Theorem 2.5. Let I be an ideal of an exchange ring R. Then, the
followings are equivalent:

(1) I is separative.
(2) Mn(I) is separative.

Proof. (1) ⇒ (2). Suppose that A ⊕ B ∼= A ⊕ C with A .⊕ B,C
and A,B,C ∈ FP

(
Mn(I)

)
. Then, A

⊗
Mn(R)

Rn×1 ⊕ B
⊗

Mn(R)

Rn×1 ∼=

A
⊗

Mn(R)

Rn×1⊕C
⊗

Mn(R)

Rn×1 withA
⊗

Mn(R)

Rn×1 .⊕ B
⊗

Mn(R)

Rn×1, C
⊗

Mn(R)

Rn×1. Clearly, (A
⊗

Mn(R)

Rn×1)I ⊆ A
⊗

Mn(R)

Rn×1. Given any
m∑

i=1
ai

⊗
(x1i,

· · · , xni)T ∈ A
⊗

Mn(R)

Rn×1, we have bij ∈ A, rij ∈ Mn(I) such that

m∑
i=1

ai
⊗

(x1i, · · · , xni)T =
m∑

i=1

ki∑
j=1

(bijrij)
⊗

(x1i, · · · , xni)T =
m∑

i=1

ki∑
j=1

bij
⊗

rij(x1i, · · · , xni)T . Set (cij1 , · · · , c
ij
n )T = rij(x1i, · · · , xni)T . Then, we see

that
m∑

i=1
ai

⊗
(x1i, · · · , xni)T =

m∑
i=1

ki∑
j=1

mij∑
m=1

(
bij

⊗
(0, · · · , 1, · · · , 0)T

)
cijk ⊆

(A
⊗

Mn(R)

Rn×1)I. That is, A
⊗

Mn(R)

Rn×1 ∈ FP (I). Likewise, B
⊗

Mn(R)

Rn×1,

C
⊗

Mn(R)

Rn×1 ∈ FP (I). Since I is separative, we deduce thatB
⊗

Mn(R)

Rn×1

∼= C
⊗

Mn(R)

Rn×1. Therefore, we have B ∼=
(
B

⊗
Mn(R)

Rn×1
) ⊗

R

R1×n ∼=(
C

⊗
Mn(R)

Rn×1
) ⊗

R

R1×n ∼= C, as desired.
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(2) ⇒ (1). Choose e = diag(1, 0, · · · , 0) ∈Mn(R). Then, eMn(I)e is a
separative ideal of eMn(R)e from Lemma 2.4. Therefore, I is separative.

�

Corollary 2.6. Let I be an ideal of an exchange ring R. Then, the
followings are equivalent:

(1) I is separative.
(2) For all P ∈ FP (I), EndR(P ) is separative.

Proof. (1) ⇒ (2). Since P ∈ FP (I), by [10, Exercise 29.9], there exist
idempotents e1, · · · , en ∈ I such that P ∼= e1R⊕ · · · ⊕ enR. Hence,

EndR(P ) ∼= diag(e1, · · · , en)Mn(R)diag(e1, · · · , en).

In view of Theorem 2.4, Mn(I) is separative. Thus, EndR(P ) is separ-
ative, by [10, Lemma 34.4].

(2) ⇒ (1). Given any idempotent e ∈ I, one easily checks that eR ∈
FP (I). Hence, eRe ∼= EndR(eR) is a separative ring. According to [10,
Lemma 34.4], I is separative.

Recall that a rectangular matrix A admits diagonal reduction if there
exist invertible P and Q such that PAQ is a diagonal matrix (cf. [2]). As
in [10, Theorem 36.9], we can characterize separative ideals of exchange
rings as follows.

Proposition 2.7. Let I be an ideal of an exchange ring R. Then, the
followings hold:

(1) I is a separative ideal.
(2) For all idempotents e ∈ I, every regular matrix in M2(eRe) ad-

mits a diagonal reduction.

Proof. (1) ⇒ (2). Let e ∈ I be an idempotent. By virtue of [10, Lemma
34.4], eRe is a separative exchange ring. It follows from [2, Theorem 3.4]
that every regular matrix in M2(eRe) admits a diagonal reduction.

(2) ⇒ (1). Let C ∈ FP (I). By [10, Exercise 29.9], there are idem-
potents e1, · · · , en ∈ I such that C ∼= e1R ⊕ · · · enR. Suppose that
A ⊕ C ∼= B ⊕ C with C .⊕ A,B. Then, e1R ⊕ (e2R ⊕ · · · enR ⊕ A) ∼=
e1R⊕(e2R⊕· · · enR⊕B). As e1R .⊕ e2R⊕· · · enR⊕A, e2R⊕· · · enR⊕B,
we assume that e2R⊕ · · · enR⊕A ∼= e1R⊕A′ and e2R⊕ · · · enR⊕B ∼=
e1R⊕B′. Then, 2(e1R)⊕A′ ∼= 2(e2R)⊕B′. Clearly, e1R has the finite
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exchange property, and so does 2(e1R). As in the proof of Lemma 2.1,
we have a refinement matrix,

A′ 2(e1R)
B′

2(e1R)

(
C11 C12

C21 C22

)
.

Thus, we get 2(e1R)⊕ C12
∼= (C21 ⊕ C22)⊕ C12

∼= C21 ⊕ (C22 ⊕ C12) ∼=
2(e1R)⊕C21. As a result, 2(e1R)

⊗
R

Re1⊕C12
⊗
R

Re1 ∼= 2(e1R)
⊗
R

Re1⊕

C21
⊗
R

Re1. Since e1R
⊗
R

Re1 ∼= e1Re1, we have 2(e1Re1)⊕C12
⊗
R

Re1 ∼=

2(e1Re1) ⊕ C21
⊗
R

Re1. Clearly, e1Re1 is an exchange ring. According

to [2, Proposition 3.3], e1Re1⊕C12
⊗
R

Re1 ∼= e1Re1⊕C21
⊗
R

Re1; hence,

e1Re1
⊗

e1Re1

e1R⊕C12
⊗
R

Re1
⊗

e1Re1

e1R ∼= e1Re1
⊗

e1Re1

e1R⊕C21
⊗
R

Re1
⊗

e1Re1

e1R. Analogous to [2, Theorem 3.4], we get e1R ⊕ C12
∼= e1R ⊕ C21.

This proves that e1R ⊕ A′ ∼= e1R ⊕ B′; i.e., e2R ⊕ · · · enR ⊕ A ∼=
e2R⊕ · · · enR⊕B. By repeating this process, we conclude that A ∼= B.
Therefore, I is a separative ideal, by Theorem 2.2. �

3. Extensions

Let P ∈ FP (R). We use addR(P ) to denote the category whose
objects are direct summands of finite copies of P .

Lemma 3.1. Let R be a an exchange ring, P ∈ FP (R), and C ∈
addR(P ). If EndR(P ) is separative, then for any right R-modules A
and B, A⊕ C ∼= B ⊕ C with C .⊕ A,B implies that A ∼= B.

Proof. Given A ⊕ C ∼= B ⊕ C with C .⊕ A,B, by hypothesis, C ∈
FP (R). Hence, C has the finite exchange property. In view of Lemma
2.1, there exists a refinement matrix,

A C
B
C

(
D1 B1

A1 C1

)
,

where C1 .⊕ A1, B1. Obviously, C1, A1, B1 ∈ addR(C). According to
[1, Lemma 12.3.19], there exist F : FP

(
EndR(C)

)
→ addR(C) and



26 Chen

G : addR(C) → FP
(
EndR(C)

)
such that

FG = IaddR(C) and GF = I
FP

(
EndR(C)

).
Therefore, G(A1)⊕G(C1) ∼= G(B1)⊕G(C1) with G(C1) .⊕ G(A1),G(B1).
As EndR(C) is separative, we get G(A1) ∼= G(B1). Thus, FG(A1) ∼=
FG(B1). By [1, Lemma 12.3.19] again, A1

∼= B1. Therefore, A ∼=
D1 ⊕A1

∼= D1 ⊕B1
∼= B, as required. �

Lemma 3.2. Let R be an exchange ring, and let x, y ∈ R be idempo-
tents. If EndR(xR) and EndR(yR) are separative, then so is EndR(xR⊕
yR).

Proof. Suppose that EndR(xR) and EndR(yR) are separative. Given
A ⊕ C ∼= B ⊕ C with C .⊕ A,B, where A,B,C ∈ FP

(
EndR(xR ⊕

yR)
)
, by [1, Lemma 12.3.19], there exist F : FP

(
EndR(xR ⊕ yR)

)
→

addR(xR ⊕ yR) and G : addR(xR ⊕ yR) → FP
(
EndR(xR ⊕ yR)

)
such

that
FG = IaddR(xR⊕yR) and GF = I

FP
(
EndR(xR⊕yR)

).
In addition, F and G preserve direct sums. Thus, F(A) ⊕ F(C) ∼=
F(B) ⊕ F(C) with F(C) .⊕ F(A),F(B). Clearly, F(C) has the finite
exchange property. As in the proof of Lemma 2.1, we have some C1 ∈
addR(xR), C2 ∈ addR(yR) such that F(C) = C1⊕C2. Thus, C1⊕

(
C2⊕

F(A)
) ∼= C1⊕

(
C2⊕F(B)

)
with C1 .⊕ C2⊕F(A), C2⊕F(B). In view of

Lemma 3.1, C2⊕F(A) ∼= C2⊕F(B) with C2 .⊕ F(A),F(B). By using
Lemma 3.1 again, we get F(A) ∼= F(B). This implies that GF(A) ∼=
GF(B). Therefore, A ∼= B, and then we conclude that EndR(xR⊕ yR)
is a separative ring. �

A Morita context denoted by (A,B,M,N,ψ, φ) consists of two rings
A,B, two bimodules ANB,B MA and a pair of bimodule homomorphisms
ψ : N

⊗
B M → A and φ : M

⊗
AN → B satisfying the following condi-

tions: ψ(n
⊗
m)n′ = nφ(m

⊗
n′), φ(m

⊗
n)m′ = mψ(n

⊗
m′). These

conditions insure that the set T of generalized matrices
(

a n
m b

)
,

a ∈ A, b ∈ B,m ∈M,n ∈ N, forms a ring, called the ring of context.

Lemma 3.3. Let T be the ring of a Morita context (A,B,M,N,ψ, φ).
Then, T is separative if and only if so are A and B.
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Proof. Set e =
(

1 0
0 0

)
∈ T. Then, A ∼= eTe and B ∼=

(
diag(1, 1) −

e
)
T

(
diag(1, 1) − e

)
. Therefore, we get the result by [10, Lemma 34.4]

and Lemma 3.2. �

Let I be an ideal of an exchange ring R. Then, the set LTMn(I) of
all n×n lower triangular matrices over I is an ideal of the exchange ring
LTMn(R) of all n × n lower triangular matrices over R. Also, the set
UTMn(I) of all n×n upper triangular matrices over I is an ideal of the
exchange ring UTMn(R) of all n× n upper triangular matrices over R.
Now, we extend Theorem 2.5 to triangular ideals.

Theorem 3.4. Let I be an ideal of an exchange ring R. Then, the
followings are equivalent:

(1) I is separative.
(2) LTMn(I) is separative.
(3) UTMn(I) is separative.

Proof. (1) ⇒ (2). It suffices to assume that n = 2. Let
(
e 0
∗ f

)
∈

LTM2(I) be an idempotent. Then, e, f ∈ I are idempotents. In view
of [10, Lemma 34.4], eRe and fRf are both separative exchange rings.

According to Lemma 3.3,
(
e 0
∗ f

)
LTM2(R)

(
e 0
∗ f

)
is a separative

exchange ring. We infer that LTM2(I) is an exchange ideal of LTM2(R).
(2) ⇒ (1). Choose g = diag(1, 0, · · · , 0)n. It follows from Lemma

2.4 that gLTMn(I)g is a separative ideal of gLTMn(R)g; i.e., I is a
separative ideal of R.

(1) ⇔ (3). These are proved in the sam manner. �

Lemma 3.5. Let R be a regular ring. Then,

{a ∈ R | EndR(aR) is separative}
is a separative ideal of R.

Proof. Let I = {a ∈ R | EndR(aR) is separative}. Let x, y ∈ I and
z ∈ R. Construct a map ϕ : xR → zxR given by ϕ(xr) = zxr, for any
r ∈ R. Then, ϕ is a splitting R-epimorphism; hence, zxR ⊕ D ∼= xR,
for some right R-module D. This implies that zxR .⊕ xR. Write
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xR = eR, xzR = fR, for some idempotents e, f ∈ R. It is easy to verify
that fR⊕(1−f)eR = eR, and so xzR ⊆⊕ xR. According to [10, Lemma
34.4], EndR(xz) and EndR(zx) are separative. Thus, xz, zx ∈ I. Write
(x + y)R = gR and xR + yR = hR, for some idempotents g, h ∈ R.
Then, gR ⊕ (h − gh)R = hR, and so (x + y) ⊆⊕ xR + yR. As R is
regular, we have a splitting exact sequence,

0 → xR
⋂
yR→ xR⊕ yR→ xR+ yR→ 0,

and so (xR+yR)⊕(xR
⋂
yR) ∼= xR⊕yR. This implies that (x+y)R .⊕

xR ⊕ yR. In view of Lemma 3.2, EndR(xR ⊕ yR) is separative, and so
is EndR

(
(x + y)R

)
. Therefore, x + y ∈ I. Consequently, I is an ideal

of R. For any idempotent e ∈ I, eRe is separative. According to [10,
Lemma 34.4], I is a separative ideal of R. �

Theorem 3.6. Let R be a regular ring, and let (aij) ∈Mn(R). If each
EndR(aijR) are separative, then (aij) admits a diagonal reduction.

Proof. Let I = {a ∈ R | EndR(aR) is separative}. In view of Lemma
3.5, I is a separative ideal. Since each EndR(aijR) is separative, we
see that each aij ∈ I. As is well known, there exists an idempotent
e ∈ I such that all aij ∈ eRe. As eRe ∼= EndR(eR), eRe is separative.
According to [10, Theorem 37.1], (aij) ∈ Mn(eRe) admits a diagonal
reduction; i.e., there exist some U ′, V ′ ∈ GLn(eRe) such that U ′AV ′ =
diag(r1, · · · , rn), for r1, · · · , rn ∈ eRe. Let E = diag(e, · · · , e) ∈Mn(R).
Then, U := U ′ + In − E, V = V ′ + In − E ∈ GLn(R). Furthermore,
UAV = diag(r1, · · · , rn), as asserted. �

4. Comparability of modules

In [8, Theorem 3.9], Pardo observed that every exchange rings satis-
fying general comparability is separative. The aim of this section is to
investigate comparability of modules over separative ideals in a general
case.

Lemma 4.1. Let I be an ideal of an exchange ring R. Then, the fol-
lowings are equivalent:

(1) I is separative.
(2) For any A,B,C ∈ FP (I), A ⊕ C ∼= B ⊕ C with C .⊕ A,B ⇒

Ae .⊕ Be and B(1− e) .⊕ A(1− e), for some e ∈ B(R).
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(3) For any A,B ∈ FP (I), 2A ∼= A ⊕ B ∼= 2B ⇒ Ae .⊕ Be and
B(1− e) .⊕ A(1− e), for some e ∈ B(R).

(4) For any A,B ∈ FP (I), 2A ∼= 2B and 3A ∼= 3B ⇒ Ae .⊕ Be
and B(1− e) .⊕ A(1− e), for some e ∈ B(R).

Proof. (1) ⇒ (4). This is trivial using Theorem 1.1.
(4) ⇒ (3). Given any A,B ∈ FP (I) with 2A ∼= A⊕B ∼= 2B, we have

2A ∼= 2B and 3A ∼= 3B, as desired.
(3) ⇒ (2). This is obvious.
(2) ⇒ (1). Suppose that A ⊕ C ∼= B ⊕ C with C .⊕ A,B for

A,B,C ∈ FP (I). Applying Lemma 2.1, we have a refinement matrix,

B C
A
C

(
D1 A1

B1 C1

)
,

such that C1 .⊕ A1, B1. Since A1 ⊕ C1
∼= C ∼= B1 ⊕ C1, we can find

some e ∈ B(R) such that A1e .⊕ B1e and B1(1 − e) .⊕ A1(1 − e).
As A1e .⊕ B1e, we have B1e ∼= A1e⊕D, for a right R-module D. We
easily check that Ce ∼= C1e ⊕ B1e ∼= C1e ⊕ A1e ⊕ D ∼= Ce ⊕ D. It
follows that Ae ∼= Ae⊕D, because C .⊕ A. Therefore, Ae ∼= Ae⊕D ∼=
D1e⊕A1e⊕D ∼= D1e⊕B1e ∼= Be.

On the other hand, B1(1−e) .⊕ A1(1−e). Then, A1(1−e) ∼= B1(1−
e)⊕E, for a right R-module E. So, C(1− e) ∼= C1(1− e)⊕A1(1− e) ∼=
C1(1− e)⊕B1(1− e)⊕E ∼= C(1− e)⊕E. It follows from C .⊕ B that
B(1 − e) ∼= B(1 − e) ⊕ E. Consequently, B(1 − e) ∼= B(1 − e) ⊕ E ∼=
D1(1− e)⊕B1(1− e)⊕E ∼= D1(1− e)⊕A1(1− e) ∼= A(1− e). Hence,
A ∼= Ae⊕A(1− e) ∼= Be⊕B(1− e) ∼= B. Therefore, I is separative by
Theorem 1.1. �

Theorem 4.2. Let I be an ideal of an exchange ring R. Then, the
followings are equivalent:

(1) I is separative.
(2) For all C ∈ FP (I), A⊕C ∼= B⊕C with C .⊕ A,B ⇒ Ae .⊕ Be

and B(1− e) .⊕ A(1− e), for some e ∈ B(R).
(3) For all C ∈ FP (I), A⊕ 2C ∼= B⊕ 2C ⇒ (A⊕C)e .⊕ (B⊕C)e

and (B ⊕ C)(1− e) .⊕ (A⊕ C)(1− e), for some e ∈ B(R).
(4) For all C ∈ FP (I), A⊕C ∼= B⊕C with C ∝ A,B ⇒ Ae .⊕ Be

and B(1− e) .⊕ C)(1− e), for some e ∈ B(R).
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Proof. As in the proof of Theorem 2.2, we obtain the proof by Theorem
1.1 and Lemma 4.1.

Corollary 4.3. Let I be an ideal of an exchange ring R. Then, the
followings are equivalent:

(1) I is separative.
(2) For all C ∈ FP (I), A ⊕ C ∼= B ⊕ C .⊕ R with C .⊕ A,B ⇒

Ae .⊕ Be and B(1− e) .⊕ A(1− e), for some e ∈ B(R).

Proof. (1) ⇒ (2). This is obvious using Theorem 4.2.
(2) ⇒ (1). Suppose that A⊕C ∼= B⊕C .⊕ R and C .⊕ A,B, where

A,B,C ∈ FP (I). In view of Lemma 2.1, we have a refinement matrix,

B C
A
C

(
D1 A1

B1 C1

)
,

with C1 .⊕ A1, B1. Clearly, A1 ⊕ C1
∼= A2 ⊕ C1 .⊕ R. By hypothesis,

we can find some e ∈ B(R) such that A1e .⊕ B1e and B1(1 − e) .⊕

A1(1− e). As in the proof of Lemma 4.1, we get A ∼= B, and therefore
the proof is complete by Theorem 1.1. �

Lemma 4.4. Let I be an ideal of a regular ring R. Then, the followings
are equivalent:

(1) I is separative.
(2) For any a ∈ 1 + I, (a − a2)R .⊕ r(a), R/aR implies that there

exists e ∈ B(R) such that r(a)e .⊕ (R/aR)e and (R/aR)(1 −
e) .⊕ r(a)(1− e).

Proof. (1) ⇒ (2). Suppose that a(1−a)R .⊕ r(a), R/aR with a ∈ 1+I.
Then, we can find a right R-module D such that R = r(a)⊕r(1−a)⊕D.
So, aR = ar(1 − a) ⊕ aD = r(1 − a) ⊕ aD. As a result, r(a) ⊕ D ∼=
R/r(1− a) ∼= R/aR ⊕ aD. Clearly, D ∼= aD ∼= a(1− a)D. This implies
that D ∼= a(1−a)R. Thus, we have r(a)⊕a(1−a)R ∼= R/aR⊕a(1−a)R.
Since a ∈ 1+I, we see that a(1−a)R ∈ FP (I). In view of Theorem 4.2,
we can find e ∈ B(R) such that r(a)e .⊕ (R/aR)e and (R/aR)(1−e) .⊕

r(a)(1− e).
(2) ⇒ (1). Given A ⊕ C ∼= B ⊕ C .⊕ R and C .⊕ A,B with

A,B,C ∈ FP (I), we write R = A1 ⊕ C1 ⊕ D = A2 ⊕ C2 ⊕ D, where
A1

∼= A, C1
∼= C2

∼= C and A2
∼= B. Let a ∈ R induce an endomorphism
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of RR, which is zero on A1, an isomorphism from C1 onto C2, and the
identity on D. One checks that a(1−a)R ∼= a(1−a)C1 .⊕ C1 .⊕ A1 =
r(a). In addition, we have a(1−a)R ∼= a(1−a)C1 .⊕ C1

∼= C2 .⊕ A2
∼=

2(R/aR). Thus, a(1−a)R ∝ r(a), R/aR. As (1−a)R ∼= (1−a)
(
A1⊕C1

)
,

we see that (1− a)R
⊗
R

R/I ∼= (1− a)
(
A1 ⊕C1

) ⊗
R

R/I = 0, we deduce

that (1 − a)R = (1 − a)RI, and then a ∈ 1 + I. By hypothesis, there
is e ∈ B(R) such that Ae ∼= r(a)e .⊕ (R/aR)e ∼= Be and B(1 − e) .⊕

A(1− e). In view of Corollary 4.3, I is separative. �

Theorem 4.5. Let I be an ideal of a regular ring R. Then, the follow-
ings are equivalent:

(1) I is separative.
(2) For any a ∈ 1 + I, r(a)⊕ r(a) ∼= r(a)⊕R/aR ∼= R/aR⊕R/aR

implies that there exists e ∈ B(R) such that r(a)e .⊕ (R/aR)e
and (R/aR)(1− e) .⊕ r(a)(1− e).

Proof. (1) ⇒ (2). For any a ∈ 1 + I, r(a), R/aR ∈ FP (I). It fol-
lows from Theorem 1.1 that there exists e ∈ B(R) such that r(a)e .⊕

(R/aR)e and (R/aR)(1− e) .⊕ r(a)(1− e).
(2) ⇒ (1). Suppose that a ∈ 1 + I and (a − a2)R .⊕ r(a), R/aR.

Then, r(a) ∼= (a−a2)R⊕D. As in the proof of Lemma 4.4, r(a)⊕a(1−
a)R ∼= R/aR⊕ a(1− a)R. Hence, r(a)⊕ r(a) ∼= r(a)⊕ (a− a2)R⊕D ∼=
R/aR ⊕ (a − a2)R ⊕ D ∼= R/aR ⊕ r(a). Likewise, R/aR ⊕ R/aR ∼=
R/aR ⊕ r(a). Thus, r(a) ⊕ r(a) ∼= r(a) ⊕ R/aR ∼= R/aR ⊕ R/aR. By
hypothesis, there exists e ∈ B(R) such that r(a)e .⊕ (R/aR)e and
(R/aR)(1 − e) .⊕ r(a)(1 − e). According to Lemma 4.4, the proof is
complete. �

Corollary 4.6. Let I be an ideal of a regular ring R. Then, the follow-
ings are equivalent:

(1) I is separative.
(2) For any idempotents e, f ∈ I, eR ⊕ eR ∼= eR ⊕ fR ∼= fR ⊕ fR

implies that there exists u ∈ B(R) such that ueR .⊕ ufR and
(1− u)fR .⊕ (1− u)eR.

Proof. (1) ⇒ (2). For any idempotents e, f ∈ I, eR, fR ∈ FP (I).
Thus, there exists u ∈ B(R) such that ueR .⊕ ufR and (1− u)fR .⊕

(1− u)eR, by Theorem 1.1.
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(2) ⇒ (1). Suppose that r(a) ⊕ r(a) ∼= r(a) ⊕ R/aR ∼= R/aR ⊕
R/aR, where a ∈ 1 + I. Write a = axa. Then, r(a) = (1 − xa)R
and R/aR ∼= (1 − ax)R. Clearly, x ∈ 1 + I; hence, 1 − ax, 1 − xa ∈ I
are both idempotents. By hypothesis, (1 − ax)Re .⊕ (1 − xa)Re and
(1− xa)R(1− e) .⊕ (1− ax)R(1− e). According to Theorem 4.5, I is
separative. �

Let I be an ideal of an exchange ring R. We say that I satisfies general
comparability if for any regular x, y ∈ I, there exists u ∈ B(R) such that
uxR .⊕ uyR and (1 − u)yR .⊕ (1 − u)xR. As is well known, every
injective ideal of regular rings satisfies general comparability. Now, we
extend [7, Proposition 8.8] to the ideals of exchange rings by means of
a similar argument.

Lemma 4.7. Let I be an ideal of an exchange ring R. Then, the fol-
lowings are equivalent:

(1) I satisfies general comparability.
(2) For any A,B ∈ FP (I), there exists e ∈ B(R) such that Ae .⊕

Be and B(1− e) .⊕ A(1− e).

Proof. (2) ⇒ (1). Let x, y ∈ I be regular. Then, xR, yR ∈ FP (I).
So, we have e ∈ B(R) such that e(xR) .⊕ e(yR) and (1 − e)(yR) .⊕

(1− e)(xR).
(1) ⇒ (2). Let A,B ∈ FP (I). Since R is an exchange ring, there exist

idempotents e′1, · · · , e′n, e′′1, · · · , e′′n ∈ I such that A = e′1R ⊕ · · · ⊕ e′nR
and B = e′′1R⊕ · · · ⊕ e′′nR.

If n = 1, then the result follows. Assume that the result holds for n−1
(n ≥ 2). Clearly, we have decompositions A = A1 ⊕ A2, B = B1 ⊕ B2

with A1, B1 .⊕ (n − 1)R,A2, B2 .⊕ R, where A1, A2, B1, B2 ∈ FP (I).
Hence, there exist f1, f2 ∈ B(R) such that A1f1 .⊕ B1f1, B1(1−f1) .⊕

A1(1−f1), A2f2 .⊕ B2f2, B2(1−f2) .⊕ A2(1−f2). Set e1 = f1f2, e2 =
(1− f1)(1− f2). It is easy to verify that Ae1 .⊕ Be1, Be2 .⊕ Ae2.

Set g1 = f1(1−f2) and g2 = f2(1−f1). We have A1g1 .⊕B1g1, A2g2 .⊕

B2g2, B1g2 .⊕ A1g2 and B2g1 .⊕ A2g1. So B1g1 ∼= A1g1 ⊕D1, B2g2 ∼=
A2g2 ⊕D2, A1g2 ∼= B1g2 ⊕C1 and A2g1 ∼= B2g1 ⊕C2, for some right R-
modules C1, C2, D1 and D2. Clearly, C1⊕C2, D1⊕D2 .⊕ (n− 1)R. In
addition, C1⊕C2, D1⊕D2 ∈ FP (I). Hence, there is h ∈ B(R) such that
(C1 ⊕C2)h .⊕ (D1 ⊕D2)h and (D1 ⊕D2)(1− h) .⊕ (C1 ⊕C2)(1− h).
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Set e3 = gh, e4 = g(1− h). Then, we see that

Ae3 = A1g1h⊕A1g2h⊕A2g1h⊕A2g2h
= A1g1h⊕B1g2h⊕ C1h⊕B2g1h⊕ C2h⊕A2g2h
.⊕ B1g1h⊕B1g2h⊕B2g1h⊕B2g2h⊕ (D1 ⊕D2)h
.⊕ (B1g1 ⊕B2g2 ⊕B1g2 ⊕B2g1)h
∼= Be3.

Analogously, we have

Be4 = B1g1(1− h)⊕B1g2(1− h)⊕B2g1(1− h)⊕B2g2(1− h)
= (A1g1 ⊕D1 ⊕A2g2 ⊕D2 ⊕B1g2 ⊕B2g1)(1− h)
.⊕ (A1g1 ⊕B1g2 ⊕A2g2 ⊕B2g1 ⊕ C1 ⊕ C2)(1− h)
∼= (A1g1 ⊕A1g2 ⊕A2g2 ⊕A2g1)(1− h)
∼= Ae5.

Set e = e1 + e3. Then, e ∈ B(R) with 1 − e = e2 + e4. We conclude
that Ae .⊕ Be and B(1 − e) .⊕ A(1 − e). By induction, the proof is
complete. �

Proposition 4.8. Let I be an ideal of an exchange ring R. If I satisfies
general comparability, then it is separative.

Proof. Suppose that A,B ∈ FP (I) and 2A ∼= A ⊕ B ∼= 2B. Since I
satisfies general comparability, by Lemma 4.7, we have Ae .⊕ Be and
B(1− e) .⊕ A(1− e), for some e ∈ B(R). Therefore, we get the result
from Lemma 4.1. �

Example 4.9. Let V be an infinite-dimensional vector space over a
division ring D, and let R be a subring of EndD(V ) which contains
I = {x ∈ EndD(V ) | dimD(xV ) <∞}. Then, I is a separative ideal of
R.

Proof. Let S = EndD(V ). Clearly, I is an ideal of S. Given any
idempotents x, y ∈ I, we have xS .⊕ yS or yS .⊕ xS, because S
is a regular ring satisfying the comparability axiom. Observing that
xR = xI = xS and yS = yI = yR, we have either xR .⊕ yR or
yR .⊕ xR. Thus, I as an ideal of R satisfies general comparability.
According to Proposition 4.8, I is separative of R, as asserted. �
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