SEPARATIVE IDEALS OF EXCHANGE RINGS

H. CHEN

Abstract

An ideal I of an exchange ring R is separative provided that for all $A, B \in F P(I), 2 A \cong A \oplus B \cong 2 B$ implies that $A \cong$ B. We prove that I is separative if and only if so is the ideal of all (triangular) matrices over I. Further, we investigate diagonal reduction over such ideals. Comparability of modules over such ideals are studied as well.

1. Introduction

A ring R is said to be an exchange ring if for every right R-module A and any two decompositions $A=M \oplus N=\bigoplus_{i \in I} A_{i}$, where $M_{R} \cong R$ and the index set I is finite, there exist submodules $A_{i}^{\prime} \subseteq A_{i}$ such that $A=M \oplus\left(\bigoplus_{i \in I} A_{i}^{\prime}\right)$. The class of exchange rings is very large. It includes regular rings, π-regular rings, strongly π-regular rings, semiperfect rings, left or right continuous rings, clean rings, and unit C^{*}-algebras of real rank zero. For the general theory of exchange rings, refer to [10]. Following Ara et al. [3], an ideal I of an exchange $\operatorname{ring} R$ is separative provided that for all $A, B \in F P(I), 2 A \cong A \oplus B \cong 2 B \Rightarrow A \cong B$, where $F P(I)$ denotes the class of finitely generated projective right R-modules P such that $P=P I$. An exchange ring R is separative provided that R as an ideal of itself is separative. As is well known, an exchange ring R is separative if and only if so are I and R / I (cf. [10, Theorem 34.10]). Separativity plays a key role in the direct sum decomposition theory of

[^0]exchange rings (cf. [2-3], [6] and [8-10]). We use $V(I)$ to stand for the monoid of isomorphism classes of objects from $F P(I)$. Applying [10, Lemma 34.5] to $V(I)$, one sees the following elementary result.

Theorem 1.1. Let I be an ideal of an exchange ring R. Then, the followings are equivalent:
(1) I is separative.
(2) For all $A, B, C \in F P(I), A \oplus 2 C \cong B \oplus 2 C \Rightarrow A \oplus C \cong B \oplus C$.
(3) For all $A, B, C \in F P(I), A \oplus C \cong B \oplus C$ with $C \lesssim^{\oplus} A, B \Rightarrow$ $A \cong B$.
(4) For all $A, B, C \in F P(I), A \oplus C \cong B \oplus C$ with $C \propto A, B \Rightarrow A \cong$ B.
(5) For all $A, B \in F P(I), 2 A \cong 2 B$ and $3 A \cong 3 B \Rightarrow A \cong B$.
(6) For all $A, B \in F P(I), n A \cong n B$ and $(n+1) A \cong(n+1) B(n \in$ $\mathbb{N}) \Rightarrow A \cong B$.
(7) For all $A, B, C \in F P(I), A \oplus C \cong B \oplus C \lesssim^{\oplus} R$ with $C \lesssim \lesssim^{\oplus}$ $A, B \Longrightarrow A \cong B$.

Here, we investigate new necessary and sufficient conditions under which an ideal of exchange rings is separative. For a regular ring R, we observe that the set $\left\{a \in R \mid \operatorname{End}_{R}(a R)\right.$ is separative $\}$ is a separative ideal. From this, we investigate diagonal reduction over such ideals. Furthermore, we show that such separativity can be characterized by comparability of modules.

Throughout, all rings are associative with identity and all modules are right modules. The notation $M \lesssim \oplus N$ means that M is isomorphic to a direct summand of N. For any $A, B \in F P(I)$, we write $A \propto B$ if there exists a positive integer n such that $A \lesssim{ }^{\oplus} n B$, where $n B$ denotes the direct sum of n copies of a module B. We always use \mathbb{N} to denote the set of all natural numbers.

2. Equivalent characterizations

The main purpose of this section is to give several equivalent characterizations for an ideal of exchange rings to be separative, which will be used in the sequel. We begin with a simple fact.

Lemma 2.1. Let I be an ideal of an exchange ring R, and let $C \in$ $F P(I)$. If A and B are any right R-modules such that $A \oplus C \cong B \oplus C$
with $C \lesssim{ }^{\oplus} A, B$, then we have a refinement matrix,

$$
\begin{aligned}
& \\
& A \\
& C
\end{aligned} \quad\left(\begin{array}{rl}
B & C \\
D_{1} & A_{1} \\
B_{1} & C_{1}
\end{array}\right),
$$

with $C_{1} \lesssim^{\oplus} A_{1}, B_{1}$.
Proof. Suppose that $\psi: A \oplus C \cong B \oplus C$ with $C \lesssim \oplus A, B$. Then, we have $A \oplus C=\psi^{-1}(B) \oplus \psi^{-1}(C)$. By [10, Proposition 28.6], C has the finite exchange property; hence, we have $B_{1} \subseteq \psi^{-1}(B)$ and $C_{1} \subseteq \psi^{-1}(C)$ such that $A \oplus C=A \oplus B_{1} \oplus C_{1}$. So, $C \cong B_{1} \oplus C_{1}$. It follows from $B_{1} \subseteq \psi^{-1}(B) \subseteq B_{1} \oplus A \oplus C_{1}$ that $\psi^{-1}(B)=\psi^{-1}(B) \cap$ $\left(B_{1} \oplus A \oplus C_{1}\right)=B_{1} \oplus \psi^{-1}(B) \cap\left(A \oplus C_{1}\right)$. That is, B_{1} is a direct summand of $\psi^{-1}(B)$. Likewise, C_{1} is a direct summand of $\psi^{-1}(C)$. Assume now that $\psi^{-1}(B)=B_{1} \oplus D_{1}$ and $\psi^{-1}(C)=C_{1} \oplus A_{1}$. Then, $B \cong D_{1} \oplus B_{1}, C \cong C_{1} \oplus A_{1}$. As $B_{1} \oplus D_{1} \oplus C_{1} \oplus A_{1}=B_{1} \oplus C_{1} \oplus A$, we have $A \cong D_{1} \oplus A_{1}$. Therefore, we get a refinement matrix,

$$
\begin{array}{lc}
\\
A \\
C
\end{array} \quad\left(\begin{array}{cc}
B & C \\
D_{1} & A_{1} \\
B_{1} & C_{1}
\end{array}\right)
$$

as $C \lesssim^{\oplus} B, C_{1} \lesssim^{\oplus} D_{1} \oplus B_{1}$. Since C_{1} as a direct summand of C, it has the finite exchange property. Similar to the consideration above, we have $C_{1}=C_{1}^{\prime} \oplus C_{1}^{\prime \prime}$ with $C_{1}^{\prime} \lesssim^{\oplus} B_{1}$ and $C_{1}^{\prime \prime} \lesssim{ }^{\oplus} D_{1}$. Assume that $B_{1} \cong C_{1}^{\prime} \oplus B_{1}^{\prime}$ and $D_{1} \cong C_{1}^{\prime \prime} \oplus D_{1}^{\prime}$ for right R-modules B_{1}^{\prime} and D_{1}^{\prime}. Therefore, we get a refinement matrix,

$$
\left.\begin{array}{c}
\\
A \\
C
\end{array} \quad \begin{array}{cc}
B & C \\
D_{1}^{\prime} & A_{1}^{\prime} \\
B_{1}^{\prime} & C_{1}^{\prime}
\end{array}\right),
$$

where $A_{1}^{\prime}=A_{1} \oplus C_{1}^{\prime \prime}$ and $B_{1}^{\prime}=B_{1} \oplus C_{1}^{\prime \prime}$. Clearly, $C_{1}^{\prime} \lesssim{ }^{\oplus} B_{1} \lesssim^{\oplus} B_{1}^{\prime}$. Since $C_{1}^{\prime} \lesssim{ }^{\oplus} C \lesssim \lesssim^{\oplus} A=A_{1}^{\prime} \oplus D_{1}^{\prime}$, analogous to the consideration above, we may also assume that $C_{1}^{\prime} \lesssim{ }^{\oplus} A_{1}^{\prime}$. Therefore, we get the result.

Theorem 2.2. Let I be an ideal of an exchange ring R. Then, the followings are equivalent:
(1) I is separative.
(2) For all $C \in F P(I), A \oplus C \cong B \oplus C$ with $C \lesssim^{\oplus} A, B \Rightarrow A \cong B$, for any right R-modules A and B.
(3) For all $C \in F P(I), A \oplus 2 C \cong B \oplus 2 C \Rightarrow A \oplus C \cong B \oplus C$, for any right R-modules A and B.
(4) For all $C \in F P(I), A \oplus C \cong B \oplus C$ with $C \propto A, B \Rightarrow A \cong B$, for any right R-modules A and B.

Proof. (1) \Rightarrow (2). Suppose that $A \oplus C \cong B \oplus C$ with $C \lesssim \lesssim^{\oplus} A, B$ and $C \in F P(I)$. Clearly, C has the finite exchange property. Applying Lemma 2.1, we have a refinement matrix,

$$
\left.\begin{array}{c}
\\
A \\
C
\end{array} \quad \begin{array}{cc}
B & C \\
D_{1} & A_{1} \\
B_{1} & C_{1}
\end{array}\right),
$$

such that $C_{1} \lesssim{ }^{\oplus} A_{1}, B_{1}$. Thus, $C \cong A_{1} \oplus C_{1} \cong B_{1} \oplus C_{1}$. Since $C \in$ $F P(I)$, one easily checks that $C_{1}, A_{1}, B_{1} \in F P(I)$. It follows from Theorem 1.1 that $A_{1} \cong B_{1}$. Therefore, $A \cong D_{1} \oplus A_{1} \cong D_{1} \oplus B_{1} \cong B$, as desired.
$(2) \Rightarrow(3)$. This is clear.
(3) \Rightarrow (4). Suppose that $C \in F P(I)$ and $A \oplus C \cong B \oplus C$ with $C \propto A, B$. Then, we have $k \in \mathbb{N}$ such that $C \lesssim \lesssim^{\oplus} k A, k B$. By the finite exchange property of C, we have right R-module decomposition $C=C_{1} \oplus \cdots \oplus C_{k}$ with all $C_{i} \lesssim^{\oplus} A(1 \leq i \leq k)$. Clearly, all $C_{i} \lesssim^{\oplus} C \lesssim^{\oplus}$ $k B$; hence, we have right R-module decompositions $C_{i}=C_{1 i} \oplus \cdots \oplus C_{m_{i}}$, for $1 \leq i \leq k$. Therefore, we get

$$
\bigoplus_{i=1}^{n} \bigoplus_{j=1}^{m_{i}} C_{j i} \oplus A \cong \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{m_{i}} C_{j i} \oplus B
$$

with each $C_{j i} \lesssim^{\oplus} A, B$. Consequently, we have $A \cong B$, as required.
$(4) \Rightarrow(1)$. This is trivial by Theorem 1.1.
Corollary 2.3. Let R be an exchange ring. Then, the followings are equivalent:
(1) R is separative.
(2) For all $C \in F P(R), A \oplus C \cong B \oplus C$ with $C \lesssim^{\oplus} A, B \Rightarrow A \cong B$, for any right R-modules A and B.
(3) For all $C \in F P(R), A \oplus 2 C \cong B \oplus 2 C \Rightarrow A \oplus C \cong B \oplus C$, for any right R-modules A and B.
(4) For all $C \in F P(R), A \oplus C \cong B \oplus C$ with $C \propto A, B \Rightarrow A \cong B$, for any right R-modules A and B.

Proof. It is immediate from Theorem 2.2.
Lemma 2.4. Let I be a separative ideal of an exchange ring R, and let $e \in R$ be an idempotent. Then, eIe is a separative ideal of eRe.

Proof. Given any idempotent exe $\in e I e$, we have $(e x e)(e R e)(e x e)=$ $(e x e) R(e x e)$. Since exe $\in I$, by [10, Lemma 34.4], (exe) $R(e x e)$ is a separative exchange ring. By [10, Lemma 34.4] again, we obtain the result.

Theorem 2.5. Let I be an ideal of an exchange ring R. Then, the followings are equivalent:
(1) I is separative.
(2) $M_{n}(I)$ is separative.

Proof. (1) \Rightarrow (2). Suppose that $A \oplus B \cong A \oplus C$ with $A \lesssim \oplus, C$ and $A, B, C \in F P\left(M_{n}(I)\right)$. Then, $A \underset{M_{n}(R)}{\bigotimes} R^{n \times 1} \oplus B \underset{M_{n}(R)}{\bigotimes} R^{n \times 1} \cong$ $A \bigotimes_{M_{n}(R)} R^{n \times 1} \oplus C \bigotimes_{M_{n}(R)} R^{n \times 1}$ with $A \bigotimes_{M_{n}(R)} R^{n \times 1} \lesssim \oplus B \bigotimes_{M_{n}(R)} R^{n \times 1}, C \bigotimes_{M_{n}(R)}$ $R^{n \times 1}$. Clearly, $\left(A \underset{M_{n}(R)}{\bigotimes} R^{n \times 1}\right) I \subseteq A \underset{M_{n}(R)}{\bigotimes} R^{n \times 1}$. Given any $\sum_{i=1}^{m} a_{i} \bigotimes\left(x_{1 i}\right.$, $\left.\cdots, x_{n i}\right)^{T} \in A \underset{M_{n}(R)}{ } R^{n \times 1}$, we have $b_{i j} \in A, r_{i j} \in M_{n}(I)$ such that $\sum_{i=1}^{m} a_{i} \bigotimes\left(x_{1 i}, \cdots, x_{n i}\right)^{T}=\sum_{i=1}^{m} \sum_{j=1}^{k_{i}}\left(b_{i j} r_{i j}\right) \bigotimes\left(x_{1 i}, \cdots, x_{n i}\right)^{T}=\sum_{i=1}^{m} \sum_{j=1}^{k_{i}} b_{i j} \bigotimes$ $r_{i j}\left(x_{1 i}, \cdots, x_{n i}\right)^{T}$. Set $\left(c_{1}^{i j}, \cdots, c_{n}^{i j}\right)^{T}=r_{i j}\left(x_{1 i}, \cdots, x_{n i}\right)^{T}$. Then, we see that $\sum_{i=1}^{m} a_{i} \bigotimes\left(x_{1 i}, \cdots, x_{n i}\right)^{T}=\sum_{i=1}^{m} \sum_{j=1}^{k_{i}} \sum_{m=1}^{m_{i j}}\left(b_{i j} \bigotimes(0, \cdots, 1, \cdots, 0)^{T}\right) c_{k}^{i j} \subseteq$ $\left(A \bigotimes_{M_{n}(R)} R^{n \times 1}\right) I$. That is, $A \bigotimes_{M_{n}(R)} R^{n \times 1} \in F P(I)$. Likewise, $B \bigotimes_{M_{n}(R)} R^{n \times 1}$, $C \bigotimes_{R} R^{n \times 1} \in F P(I)$. Since I is separative, we deduce that $B \bigotimes_{R} R^{n \times 1}$ $M_{n}(R) \quad M_{n}(R)$ $\cong C \underset{M_{n}(R)}{ } R^{n \times 1}$. Therefore, we have $B \cong\left(B \bigotimes_{M_{n}(R)} R^{n \times 1}\right) \bigotimes_{R} R^{1 \times n} \cong$ $\left(C \underset{M_{n}(R)}{\bigotimes} R^{n \times 1}\right) \bigotimes_{R} R^{1 \times n} \cong C$, as desired.
$(2) \Rightarrow(1)$. Choose $e=\operatorname{diag}(1,0, \cdots, 0) \in M_{n}(R)$. Then, $e M_{n}(I) e$ is a separative ideal of $e M_{n}(R) e$ from Lemma 2.4. Therefore, I is separative.

Corollary 2.6. Let I be an ideal of an exchange ring R. Then, the followings are equivalent:
(1) I is separative.
(2) For all $P \in F P(I), \operatorname{End}_{R}(P)$ is separative.

Proof. (1) $\Rightarrow(2)$. Since $P \in F P(I)$, by [10, Exercise 29.9], there exist idempotents $e_{1}, \cdots, e_{n} \in I$ such that $P \cong e_{1} R \oplus \cdots \oplus e_{n} R$. Hence,

$$
\operatorname{End}_{R}(P) \cong \operatorname{diag}\left(e_{1}, \cdots, e_{n}\right) M_{n}(R) \operatorname{diag}\left(e_{1}, \cdots, e_{n}\right)
$$

In view of Theorem 2.4, $M_{n}(I)$ is separative. Thus, $E n d_{R}(P)$ is separative, by [10, Lemma 34.4].
$(2) \Rightarrow(1)$. Given any idempotent $e \in I$, one easily checks that $e R \in$ $F P(I)$. Hence, $e R e \cong E n d_{R}(e R)$ is a separative ring. According to [10, Lemma 34.4], I is separative.

Recall that a rectangular matrix A admits diagonal reduction if there exist invertible P and Q such that $P A Q$ is a diagonal matrix (cf. [2]). As in [10, Theorem 36.9], we can characterize separative ideals of exchange rings as follows.

Proposition 2.7. Let I be an ideal of an exchange ring R. Then, the followings hold:
(1) I is a separative ideal.
(2) For all idempotents $e \in I$, every regular matrix in $M_{2}(e R e)$ admits a diagonal reduction.

Proof. (1) \Rightarrow (2). Let $e \in I$ be an idempotent. By virtue of [10, Lemma 34.4], $e R e$ is a separative exchange ring. It follows from [2, Theorem 3.4] that every regular matrix in $M_{2}(e R e)$ admits a diagonal reduction.
$(2) \Rightarrow(1)$. Let $C \in F P(I)$. By [10, Exercise 29.9], there are idempotents $e_{1}, \cdots, e_{n} \in I$ such that $C \cong e_{1} R \oplus \cdots e_{n} R$. Suppose that $A \oplus C \cong B \oplus C$ with $C \lesssim^{\oplus} A, B$. Then, $e_{1} R \oplus\left(e_{2} R \oplus \cdots e_{n} R \oplus A\right) \cong$ $e_{1} R \oplus\left(e_{2} R \oplus \cdots e_{n} R \oplus B\right)$. As $e_{1} R \lesssim{ }_{\infty} e_{2} R \oplus \cdots e_{n} R \oplus A, e_{2} R \oplus \cdots e_{n} R \oplus B$, we assume that $e_{2} R \oplus \cdots e_{n} R \oplus A \cong e_{1} R \oplus A^{\prime}$ and $e_{2} R \oplus \cdots e_{n} R \oplus B \cong$ $e_{1} R \oplus B^{\prime}$. Then, $2\left(e_{1} R\right) \oplus A^{\prime} \cong 2\left(e_{2} R\right) \oplus B^{\prime}$. Clearly, $e_{1} R$ has the finite
exchange property, and so does $2\left(e_{1} R\right)$. As in the proof of Lemma 2.1, we have a refinement matrix,

$$
\begin{array}{cc}
& A^{\prime} \\
B^{\prime} & 2\left(e_{1} R\right) \\
2\left(e_{1} R\right) & \left(\begin{array}{cc}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right) .
\end{array}
$$

Thus, we get $2\left(e_{1} R\right) \oplus C_{12} \cong\left(C_{21} \oplus C_{22}\right) \oplus C_{12} \cong C_{21} \oplus\left(C_{22} \oplus C_{12}\right) \cong$ $2\left(e_{1} R\right) \oplus C_{21}$. As a result, $2\left(e_{1} R\right) \bigotimes_{R} R e_{1} \oplus C_{12} \bigotimes_{R} R e_{1} \cong 2\left(e_{1} R\right) \bigotimes_{R} R e_{1} \oplus$ $C_{21} \bigotimes_{R} R e_{1}$. Since $e_{1} R \bigotimes_{R} R e_{1} \cong e_{1} R e_{1}$, we have $2\left(e_{1} R e_{1}\right) \oplus C_{12} \bigotimes_{R}^{R} R e_{1} \cong$ $2\left(e_{1} R e_{1}\right) \oplus C_{21} \bigotimes_{R} R e_{1}$. Clearly, $e_{1} R e_{1}$ is an exchange ring. According to [2, Proposition 3.3], $e_{1} R e_{1} \oplus C_{12} \bigotimes_{R} R e_{1} \cong e_{1} R e_{1} \oplus C_{21} \bigotimes_{R} R e_{1}$; hence, $e_{1} R e_{1} \bigotimes_{e_{1} R e_{1}} e_{1} R \oplus C_{12} \bigotimes_{R} R e_{1} \bigotimes_{e_{1} R e_{1}} e_{1} R \cong e_{1} R e_{1} \bigotimes_{e_{1} R e_{1}} e_{1} R \oplus C_{21} \bigotimes_{R} R e_{1} \bigotimes_{e_{1} R e_{1}}$ $e_{1} R$. Analogous to [2, Theorem 3.4], we get $e_{1} R \oplus C_{12} \cong e_{1} R \oplus C_{21}$. This proves that $e_{1} R \oplus A^{\prime} \cong e_{1} R \oplus B^{\prime}$; i.e., $e_{2} R \oplus \cdots e_{n} R \oplus A \cong$ $e_{2} R \oplus \cdots e_{n} R \oplus B$. By repeating this process, we conclude that $A \cong B$. Therefore, I is a separative ideal, by Theorem 2.2.

3. Extensions

Let $P \in F P(R)$. We use $a d d_{R}(P)$ to denote the category whose objects are direct summands of finite copies of P.

Lemma 3.1. Let R be a an exchange ring, $P \in F P(R)$, and $C \in$ $\operatorname{add}_{R}(P)$. If $\operatorname{End}_{R}(P)$ is separative, then for any right R-modules A and $B, A \oplus C \cong B \oplus C$ with $C \lesssim \lesssim^{\oplus} A, B$ implies that $A \cong B$.

Proof. Given $A \oplus C \cong B \oplus C$ with $C \lesssim \lesssim^{\oplus} A, B$, by hypothesis, $C \in$ $F P(R)$. Hence, C has the finite exchange property. In view of Lemma 2.1, there exists a refinement matrix,

$$
\begin{gathered}
\\
B \\
C
\end{gathered} \quad\left(\begin{array}{cc}
A & C \\
D_{1} & B_{1} \\
A_{1} & C_{1}
\end{array}\right),
$$

where $C_{1} \lesssim A_{1}, B_{1}$. Obviously, $C_{1}, A_{1}, B_{1} \in \operatorname{add}_{R}(C)$. According to [1, Lemma 12.3.19], there exist $\mathcal{F}: F P\left(E n d_{R}(C)\right) \rightarrow a d d_{R}(C)$ and
$\mathcal{G}: \operatorname{add}_{R}(C) \rightarrow F P\left(E n d_{R}(C)\right)$ such that

$$
\mathcal{F} \mathcal{G}=I_{a d d_{R}(C)} \text { and } \mathcal{G F}=I_{F P\left(E n d_{R}(C)\right)}
$$

Therefore, $\mathcal{G}\left(A_{1}\right) \oplus \mathcal{G}\left(C_{1}\right) \cong \mathcal{G}\left(B_{1}\right) \oplus \mathcal{G}\left(C_{1}\right)$ with $\mathcal{G}\left(C_{1}\right) \lesssim^{\oplus} \mathcal{G}\left(A_{1}\right), \mathcal{G}\left(B_{1}\right)$. As $\operatorname{End}_{R}(C)$ is separative, we get $\mathcal{G}\left(A_{1}\right) \cong \mathcal{G}\left(B_{1}\right)$. Thus, $\mathcal{F} \mathcal{G}\left(A_{1}\right) \cong$ $\mathcal{F G}\left(B_{1}\right)$. By [1, Lemma 12.3.19] again, $A_{1} \cong B_{1}$. Therefore, $A \cong$ $D_{1} \oplus A_{1} \cong D_{1} \oplus B_{1} \cong B$, as required.

Lemma 3.2. Let R be an exchange ring, and let $x, y \in R$ be idempotents. If $\operatorname{End}_{R}(x R)$ and $\operatorname{End}_{R}(y R)$ are separative, then so is $E n d ~(x R \oplus$ $y R)$.

Proof. Suppose that $E n d_{R}(x R)$ and $E n d_{R}(y R)$ are separative. Given $A \oplus C \cong B \oplus C$ with $C \lesssim \lesssim^{\oplus} A, B$, where $A, B, C \in F P\left(E n d_{R}(x R \oplus\right.$ $y R)$), by [1, Lemma 12.3.19], there exist $\mathcal{F}: F P\left(\operatorname{End}_{R}(x R \oplus y R)\right) \rightarrow$ $a d d_{R}(x R \oplus y R)$ and $\mathcal{G}: a d d_{R}(x R \oplus y R) \rightarrow F P\left(E n d_{R}(x R \oplus y R)\right)$ such that

$$
\mathcal{F G}=I_{a d d_{R}(x R \oplus y R)} \text { and } \mathcal{G} \mathcal{F}=I_{F P}\left(E n d_{R}(x R \oplus y R)\right)
$$

In addition, \mathcal{F} and \mathcal{G} preserve direct sums. Thus, $\mathcal{F}(A) \oplus \mathcal{F}(C) \cong$ $\mathcal{F}(B) \oplus \mathcal{F}(C)$ with $\mathcal{F}(C) \lesssim{ }^{\oplus} \mathcal{F}(A), \mathcal{F}(B)$. Clearly, $\mathcal{F}(C)$ has the finite exchange property. As in the proof of Lemma 2.1, we have some $C_{1} \in$ $a d d_{R}(x R), C_{2} \in \operatorname{add}_{R}(y R)$ such that $\mathcal{F}(C)=C_{1} \oplus C_{2}$. Thus, $C_{1} \oplus\left(C_{2} \oplus\right.$ $\mathcal{F}(A)) \cong C_{1} \oplus\left(C_{2} \oplus \mathcal{F}(B)\right)$ with $C_{1} \lesssim^{\oplus} C_{2} \oplus \mathcal{F}(A), C_{2} \oplus \mathcal{F}(B)$. In view of Lemma 3.1, $C_{2} \oplus \mathcal{F}(A) \cong C_{2} \oplus \mathcal{F}(B)$ with $C_{2} \lesssim^{\oplus} \mathcal{F}(A), \mathcal{F}(B)$. By using Lemma 3.1 again, we get $\mathcal{F}(A) \cong \mathcal{F}(B)$. This implies that $\mathcal{G \mathcal { F }}(A) \cong$ $\mathcal{G F}(B)$. Therefore, $A \cong B$, and then we conclude that $\operatorname{End}_{R}(x R \oplus y R)$ is a separative ring.

A Morita context denoted by (A, B, M, N, ψ, ϕ) consists of two rings A, B, two bimodules ${ }_{A} N_{B, B} M_{A}$ and a pair of bimodule homomorphisms $\psi: N \bigotimes_{B} M \rightarrow A$ and $\phi: M \bigotimes_{A} N \rightarrow B$ satisfying the following conditions: $\psi(n \otimes m) n^{\prime}=n \phi\left(m \otimes n^{\prime}\right), \phi(m \bigotimes n) m^{\prime}=m \psi\left(n \otimes m^{\prime}\right)$. These conditions insure that the set T of generalized matrices $\left(\begin{array}{cc}a & n \\ m & b\end{array}\right)$, $a \in A, b \in B, m \in M, n \in N$, forms a ring, called the ring of context.

Lemma 3.3. Let T be the ring of a Morita context ($A, B, M, N, \psi, \phi)$. Then, T is separative if and only if so are A and B.

Proof. Set $e=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in T$. Then, $A \cong e T e$ and $B \cong(\operatorname{diag}(1,1)-$ e) $T(\operatorname{diag}(1,1)-e)$. Therefore, we get the result by [10, Lemma 34.4] and Lemma 3.2.

Let I be an ideal of an exchange ring R. Then, the set $L T M_{n}(I)$ of all $n \times n$ lower triangular matrices over I is an ideal of the exchange ring $L T M_{n}(R)$ of all $n \times n$ lower triangular matrices over R. Also, the set $U T M_{n}(I)$ of all $n \times n$ upper triangular matrices over I is an ideal of the exchange ring $U T M_{n}(R)$ of all $n \times n$ upper triangular matrices over R. Now, we extend Theorem 2.5 to triangular ideals.

Theorem 3.4. Let I be an ideal of an exchange ring R. Then, the followings are equivalent:
(1) I is separative.
(2) $L T M_{n}(I)$ is separative.
(3) $U T M_{n}(I)$ is separative.

Proof. $(1) \Rightarrow(2)$. It suffices to assume that $n=2$. Let $\left(\begin{array}{cc}e & 0 \\ * & f\end{array}\right) \in$ $L T M_{2}(I)$ be an idempotent. Then, $e, f \in I$ are idempotents. In view of [10, Lemma 34.4], eRe and $f R f$ are both separative exchange rings. According to Lemma 3.3, $\left(\begin{array}{cc}e & 0 \\ * & f\end{array}\right) L T M_{2}(R)\left(\begin{array}{ll}e & 0 \\ * & f\end{array}\right)$ is a separative exchange ring. We infer that $L T M_{2}(I)$ is an exchange ideal of $L T M_{2}(R)$.
$(2) \Rightarrow(1)$. Choose $g=\operatorname{diag}(1,0, \cdots, 0)_{n}$. It follows from Lemma 2.4 that $g L T M_{n}(I) g$ is a separative ideal of $g L T M_{n}(R) g$; i.e., I is a separative ideal of R.
$(1) \Leftrightarrow(3)$. These are proved in the sam manner.
Lemma 3.5. Let R be a regular ring. Then,

$$
\left\{a \in R \mid \operatorname{End}_{R}(a R) \text { is separative }\right\}
$$

is a separative ideal of R.

Proof. Let $I=\left\{a \in R \mid \operatorname{End}_{R}(a R)\right.$ is separative $\}$. Let $x, y \in I$ and $z \in R$. Construct a map $\varphi: x R \rightarrow z x R$ given by $\varphi(x r)=z x r$, for any $r \in R$. Then, φ is a splitting R-epimorphism; hence, $z x R \oplus D \cong x R$, for some right R-module D. This implies that $z x R \lesssim \oplus{ }^{\oplus} x R$. Write
$x R=e R, x z R=f R$, for some idempotents $e, f \in R$. It is easy to verify that $f R \oplus(1-f) e R=e R$, and so $x z R \subseteq{ }^{\oplus} x R$. According to [10, Lemma 34.4], $E n d_{R}(x z)$ and $E n d_{R}(z x)$ are separative. Thus, $x z, z x \in I$. Write $(x+y) R=g R$ and $x R+y R=h R$, for some idempotents $g, h \in R$. Then, $g R \oplus(h-g h) R=h R$, and so $(x+y) \subseteq{ }^{\oplus} x R+y R$. As R is regular, we have a splitting exact sequence,

$$
0 \rightarrow x R \bigcap y R \rightarrow x R \oplus y R \rightarrow x R+y R \rightarrow 0
$$

and so $(x R+y R) \oplus(x R \bigcap y R) \cong x R \oplus y R$. This implies that $(x+y) R \lesssim \oplus$ $x R \oplus y R$. In view of Lemma 3.2, $E n d_{R}(x R \oplus y R)$ is separative, and so is $\operatorname{End}_{R}((x+y) R)$. Therefore, $x+y \in I$. Consequently, I is an ideal of R. For any idempotent $e \in I, e R e$ is separative. According to [10, Lemma 34.4], I is a separative ideal of R.

Theorem 3.6. Let R be a regular ring, and let $\left(a_{i j}\right) \in M_{n}(R)$. If each $E n d_{R}\left(a_{i j} R\right)$ are separative, then $\left(a_{i j}\right)$ admits a diagonal reduction.

Proof. Let $I=\left\{a \in R \mid \operatorname{End}_{R}(a R)\right.$ is separative $\}$. In view of Lemma $3.5, I$ is a separative ideal. Since each $\operatorname{End}_{R}\left(a_{i j} R\right)$ is separative, we see that each $a_{i j} \in I$. As is well known, there exists an idempotent $e \in I$ such that all $a_{i j} \in e R e$. As $e R e \cong \operatorname{End}_{R}(e R), e R e$ is separative. According to [10, Theorem 37.1], $\left(a_{i j}\right) \in M_{n}(e R e)$ admits a diagonal reduction; i.e., there exist some $U^{\prime}, V^{\prime} \in G L_{n}(e R e)$ such that $U^{\prime} A V^{\prime}=$ $\operatorname{diag}\left(r_{1}, \cdots, r_{n}\right)$, for $r_{1}, \cdots, r_{n} \in e$ Re. Let $E=\operatorname{diag}(e, \cdots, e) \in M_{n}(R)$. Then, $U:=U^{\prime}+I_{n}-E, V=V^{\prime}+I_{n}-E \in G L_{n}(R)$. Furthermore, $U A V=\operatorname{diag}\left(r_{1}, \cdots, r_{n}\right)$, as asserted.

4. Comparability of modules

In [8, Theorem 3.9], Pardo observed that every exchange rings satisfying general comparability is separative. The aim of this section is to investigate comparability of modules over separative ideals in a general case.

Lemma 4.1. Let I be an ideal of an exchange ring R. Then, the followings are equivalent:
(1) I is separative.
(2) For any $A, B, C \in F P(I), A \oplus C \cong B \oplus C$ with $C \lesssim \lesssim^{\oplus} A, B \Rightarrow$ $A e \lesssim^{\oplus} B e$ and $B(1-e) \lesssim^{\oplus} A(1-e)$, for some $e \in B(R)$.
(3) For any $A, B \in F P(I), 2 A \cong A \oplus B \cong 2 B \Rightarrow A e \lesssim^{\oplus} B e$ and $B(1-e) \lesssim \oplus A(1-e)$, for some $e \in B(R)$.
(4) For any $A, B \in F P(I), 2 A \cong 2 B$ and $3 A \cong 3 B \Rightarrow A e \lesssim{ }^{\oplus} B e$ and $B(1-e) \lesssim{ }^{\oplus} A(1-e)$, for some $e \in B(R)$.

Proof. $(1) \Rightarrow(4)$. This is trivial using Theorem 1.1.
$(4) \Rightarrow(3)$. Given any $A, B \in F P(I)$ with $2 A \cong A \oplus B \cong 2 B$, we have $2 A \cong 2 B$ and $3 A \cong 3 B$, as desired.
$(3) \Rightarrow(2)$. This is obvious.
$(2) \Rightarrow(1)$. Suppose that $A \oplus C \cong B \oplus C$ with $C \lesssim^{\oplus} A, B$ for $A, B, C \in F P(I)$. Applying Lemma 2.1, we have a refinement matrix,

$$
\left.\begin{array}{c}
\\
A \\
C
\end{array} \quad \begin{array}{cc}
B & C \\
D_{1} & A_{1} \\
B_{1} & C_{1}
\end{array}\right)
$$

such that $C_{1} \lesssim^{\oplus} A_{1}, B_{1}$. Since $A_{1} \oplus C_{1} \cong C \cong B_{1} \oplus C_{1}$, we can find some $e \in B(R)$ such that $A_{1} e \lesssim^{\oplus} B_{1} e$ and $B_{1}(1-e) \lesssim^{\oplus} A_{1}(1-e)$. As $A_{1} e \lesssim^{\oplus} B_{1} e$, we have $B_{1} e \cong A_{1} e \oplus D$, for a right R-module D. We easily check that $C e \cong C_{1} e \oplus B_{1} e \cong C_{1} e \oplus A_{1} e \oplus D \cong C e \oplus D$. It follows that $A e \cong A e \oplus D$, because $C \lesssim{ }^{\oplus} A$. Therefore, $A e \cong A e \oplus D \cong$ $D_{1} e \oplus A_{1} e \oplus D \cong D_{1} e \oplus B_{1} e \cong B e$.

On the other hand, $B_{1}(1-e) \lesssim{ }^{\oplus} A_{1}(1-e)$. Then, $A_{1}(1-e) \cong B_{1}(1-$ $e) \oplus E$, for a right R-module E. So, $C(1-e) \cong C_{1}(1-e) \oplus A_{1}(1-e) \cong$ $C_{1}(1-e) \oplus B_{1}(1-e) \oplus E \cong C(1-e) \oplus E$. It follows from $C \lesssim \lesssim^{\oplus} B$ that $B(1-e) \cong B(1-e) \oplus E$. Consequently, $B(1-e) \cong B(1-e) \oplus E \cong$ $D_{1}(1-e) \oplus B_{1}(1-e) \oplus E \cong D_{1}(1-e) \oplus A_{1}(1-e) \cong A(1-e)$. Hence, $A \cong A e \oplus A(1-e) \cong B e \oplus B(1-e) \cong B$. Therefore, I is separative by Theorem 1.1.

Theorem 4.2. Let I be an ideal of an exchange ring R. Then, the followings are equivalent:
(1) I is separative.
(2) For all $C \in F P(I), A \oplus C \cong B \oplus C$ with $C \lesssim \oplus A, B \Rightarrow A e \lesssim{ }^{\oplus} B e$ and $B(1-e) \lesssim{ }^{\oplus} A(1-e)$, for some $e \in B(R)$.
(3) For all $C \in F P(I)$, $A \oplus 2 C \cong B \oplus 2 C \Rightarrow(A \oplus C) e \lesssim^{\oplus}(B \oplus C) e$ and $(B \oplus C)(1-e) \lesssim^{\oplus}(A \oplus C)(1-e)$, for some $e \in B(R)$.
(4) For all $C \in F P(I), A \oplus C \cong B \oplus C$ with $C \propto A, B \Rightarrow A e \lesssim{ }^{\oplus} B e$ and $\left.B(1-e) \lesssim{ }^{\oplus} C\right)(1-e)$, for some $e \in B(R)$.

Proof. As in the proof of Theorem 2.2, we obtain the proof by Theorem 1.1 and Lemma 4.1.

Corollary 4.3. Let I be an ideal of an exchange ring R. Then, the followings are equivalent:
(1) I is separative.
(2) For all $C \in F P(I), A \oplus C \cong B \oplus C \lesssim$ ® R with $C \lesssim^{\oplus} A, B \Rightarrow$ $A e \lesssim{ }^{\oplus} B e$ and $B(1-e) \lesssim^{\oplus} A(1-e)$, for some $e \in B(R)$.

Proof. (1) \Rightarrow (2). This is obvious using Theorem 4.2.
(2) \Rightarrow (1). Suppose that $A \oplus C \cong B \oplus C \lesssim^{\oplus} R$ and $C \lesssim^{\oplus} A, B$, where $A, B, C \in F P(I)$. In view of Lemma 2.1, we have a refinement matrix,

$$
\begin{gathered}
\\
A \\
C
\end{gathered} \quad\left(\begin{array}{cc}
B & C \\
D_{1} & A_{1} \\
B_{1} & C_{1}
\end{array}\right),
$$

with $C_{1} \lesssim^{\oplus} A_{1}, B_{1}$. Clearly, $A_{1} \oplus C_{1} \cong A_{2} \oplus C_{1} \lesssim^{\oplus} R$. By hypothesis, we can find some $e \in B(R)$ such that $A_{1} e \lesssim{ }^{\oplus} \underset{B_{1} e}{ }$ and $B_{1}(1-e) \lesssim{ }^{\oplus}$ $A_{1}(1-e)$. As in the proof of Lemma 4.1, we get $A \cong B$, and therefore the proof is complete by Theorem 1.1.

Lemma 4.4. Let I be an ideal of a regular ring R. Then, the followings are equivalent:
(1) I is separative.
(2) For any $a \in 1+I,\left(a-a^{2}\right) R \lesssim \oplus r(a), R / a R$ implies that there exists $e \in B(R)$ such that $r(a) e \lesssim \oplus(R / a R) e$ and $(R / a R)(1-$ $e) \lesssim{ }^{\oplus} r(a)(1-e)$.

Proof. (1) \Rightarrow (2). Suppose that $a(1-a) R \lesssim^{\oplus} r(a), R / a R$ with $a \in 1+I$. Then, we can find a right R-module D such that $R=r(a) \oplus r(1-a) \oplus D$. So, $a R=\operatorname{ar}(1-a) \oplus a D=r(1-a) \oplus a D$. As a result, $r(a) \oplus D \cong$ $R / r(1-a) \cong R / a R \oplus a D$. Clearly, $D \cong a D \cong a(1-a) D$. This implies that $D \cong a(1-a) R$. Thus, we have $r(a) \oplus a(1-a) R \cong R / a R \oplus a(1-a) R$. Since $a \in 1+I$, we see that $a(1-a) R \in F P(I)$. In view of Theorem 4.2, we can find $e \in B(R)$ such that $r(a) e \lesssim \oplus(R / a R) e$ and $(R / a R)(1-e) \lesssim^{\oplus}$ $r(a)(1-e)$.
(2) \Rightarrow (1). Given $A \oplus C \cong B \oplus C \lesssim^{\oplus} R$ and $C \lesssim^{\oplus} A, B$ with $A, B, C \in F P(I)$, we write $R=A_{1} \oplus C_{1} \oplus D=A_{2} \oplus C_{2} \oplus D$, where $A_{1} \cong A, C_{1} \cong C_{2} \cong C$ and $A_{2} \cong B$. Let $a \in R$ induce an endomorphism
of R_{R}, which is zero on A_{1}, an isomorphism from C_{1} onto C_{2}, and the identity on D. One checks that $a(1-a) R \cong a(1-a) C_{1} \lesssim{ }^{\oplus} C_{1} \lesssim{ }^{\oplus} A_{1}=$ $r(a)$. In addition, we have $a(1-a) R \cong a(1-a) C_{1} \lesssim^{\oplus} C_{1} \cong C_{2} \lesssim^{\oplus} A_{2} \cong$ $2(R / a R)$. Thus, $a(1-a) R \propto r(a), R / a R$. As $(1-a) R \cong(1-a)\left(A_{1} \oplus C_{1}\right)$, we see that $(1-a) R \bigotimes_{R} R / I \cong(1-a)\left(A_{1} \oplus C_{1}\right) \bigotimes_{R} R / I=0$, we deduce that $(1-a) R=(1-a) R I$, and then $a \in 1+I$. By hypothesis, there is $e \in B(R)$ such that $A e \cong r(a) e \lesssim \oplus(R / a R) e \cong B e$ and $B(1-e) \lesssim^{\oplus}$ $A(1-e)$. In view of Corollary 4.3, I is separative.

Theorem 4.5. Let I be an ideal of a regular ring R. Then, the followings are equivalent:
(1) I is separative.
(2) For any $a \in 1+I$, $r(a) \oplus r(a) \cong r(a) \oplus R / a R \cong R / a R \oplus R / a R$ implies that there exists $e \in B(R)$ such that $r(a) e \lesssim \oplus(R / a R) e$ and $(R / a R)(1-e) \lesssim{ }^{\oplus} r(a)(1-e)$.

Proof. (1) $\Rightarrow(2)$. For any $a \in 1+I, r(a), R / a R \in F P(I)$. It follows from Theorem 1.1 that there exists $e \in B(R)$ such that $r(a) e \lesssim^{\oplus}$ $(R / a R) e$ and $(R / a R)(1-e) \lesssim^{\oplus} r(a)(1-e)$.
$(2) \Rightarrow(1)$. Suppose that $a \in 1+I$ and $\left(a-a^{2}\right) R \lesssim^{\oplus} r(a), R / a R$. Then, $r(a) \cong\left(a-a^{2}\right) R \oplus D$. As in the proof of Lemma 4.4, $r(a) \oplus a(1-$ $a) R \cong R / a R \oplus a(1-a) R$. Hence, $r(a) \oplus r(a) \cong r(a) \oplus\left(a-a^{2}\right) R \oplus D \cong$ $R / a R \oplus\left(a-a^{2}\right) R \oplus D \cong R / a R \oplus r(a)$. Likewise, $R / a R \oplus R / a R \cong$ $R / a R \oplus r(a)$. Thus, $r(a) \oplus r(a) \cong r(a) \oplus R / a R \cong R / a R \oplus R / a R$. By hypothesis, there exists $e \in B(R)$ such that $r(a) e \lesssim^{\oplus}(R / a R) e$ and $(R / a R)(1-e) \lesssim^{\oplus} r(a)(1-e)$. According to Lemma 4.4, the proof is complete.

Corollary 4.6. Let I be an ideal of a regular ring R. Then, the followings are equivalent:
(1) I is separative.
(2) For any idempotents $e, f \in I$, $e R \oplus e R \cong e R \oplus f R \cong f R \oplus f R$ implies that there exists $u \in B(R)$ such that ue $R \lesssim \oplus{ }^{\oplus} u f R$ and $(1-u) f R \lesssim \oplus(1-u) e R$.

Proof. (1) $\Rightarrow(2)$. For any idempotents $e, f \in I, e R, f R \in F P(I)$. Thus, there exists $u \in B(R)$ such that $u e R \lesssim^{\oplus} u f R$ and $(1-u) f R \lesssim^{\oplus}$ $(1-u) e R$, by Theorem 1.1.
$(2) \Rightarrow(1)$. Suppose that $r(a) \oplus r(a) \cong r(a) \oplus R / a R \cong R / a R \oplus$ $R / a R$, where $a \in 1+I$. Write $a=a x a$. Then, $r(a)=(1-x a) R$ and $R / a R \cong(1-a x) R$. Clearly, $x \in 1+I$; hence, $1-a x, 1-x a \in I$ are both idempotents. By hypothesis, $(1-a x) R e \lesssim^{\oplus}(1-x a) R e$ and $(1-x a) R(1-e) \lesssim^{\oplus}(1-a x) R(1-e)$. According to Theorem 4.5, I is separative.

Let I be an ideal of an exchange ring R. We say that I satisfies general comparability if for any regular $x, y \in I$, there exists $u \in B(R)$ such that $u x R \lesssim^{\oplus} u y R$ and $(1-u) y R \lesssim^{\oplus}(1-u) x R$. As is well known, every injective ideal of regular rings satisfies general comparability. Now, we extend [7, Proposition 8.8] to the ideals of exchange rings by means of a similar argument.

Lemma 4.7. Let I be an ideal of an exchange ring R. Then, the followings are equivalent:
(1) I satisfies general comparability.
(2) For any $A, B \in F P(I)$, there exists $e \in B(R)$ such that $A e \lesssim^{\oplus}$ $B e$ and $B(1-e) \lesssim \lesssim^{\oplus} A(1-e)$.

Proof. (2) \Rightarrow (1). Let $x, y \in I$ be regular. Then, $x R, y R \in F P(I)$. So, we have $e \in B(R)$ such that $e(x R) \lesssim^{\oplus} e(y R)$ and $(1-e)(y R) \lesssim \oplus$ $(1-e)(x R)$.
$(1) \Rightarrow(2)$. Let $A, B \in F P(I)$. Since R is an exchange ring, there exist idempotents $e_{1}^{\prime}, \cdots, e_{n}^{\prime}, e_{1}^{\prime \prime}, \cdots, e_{n}^{\prime \prime} \in I$ such that $A=e_{1}^{\prime} R \oplus \cdots \oplus e_{n}^{\prime} R$ and $B=e_{1}^{\prime \prime} R \oplus \cdots \oplus e_{n}^{\prime \prime} R$.

If $n=1$, then the result follows. Assume that the result holds for $n-1$ ($n \geq 2$). Clearly, we have decompositions $A=A_{1} \oplus A_{2}, B=B_{1} \oplus B_{2}$ with $A_{1}, B_{1} \lesssim \oplus(n-1) R, A_{2}, B_{2} \lesssim^{\oplus} R$, where $A_{1}, A_{2}, B_{1}, B_{2} \in F P(I)$. Hence, there exist $f_{1}, f_{2} \in B(R)$ such that $A_{1} f_{1} \lesssim{ }^{\oplus} B_{1} f_{1}, B_{1}\left(1-f_{1}\right) \lesssim{ }^{\oplus}$ $A_{1}\left(1-f_{1}\right), A_{2} f_{2} \lesssim{ }^{\oplus} B_{2} f_{2}, B_{2}\left(1-f_{2}\right) \lesssim{ }^{\oplus} A_{2}\left(1-f_{2}\right)$. Set $e_{1}=f_{1} f_{2}, e_{2}=$ $\left(1-f_{1}\right)\left(1-f_{2}\right)$. It is easy to verify that $A e_{1} \lesssim^{\oplus} B e_{1}, B e_{2} \lesssim^{\oplus} A e_{2}$.

Set $g_{1}=f_{1}\left(1-f_{2}\right)$ and $g_{2}=f_{2}\left(1-f_{1}\right)$. We have $A_{1} g_{1} \lesssim^{\oplus} B_{1} g_{1}, A_{2} g_{2} \lesssim^{\oplus}$ $B_{2} g_{2}, B_{1} g_{2} \lesssim{ }^{\oplus} A_{1} g_{2}$ and $B_{2} g_{1} \lesssim{ }^{\oplus} A_{2} g_{1}$. So $B_{1} g_{1} \cong A_{1} g_{1} \oplus D_{1}, B_{2} g_{2} \cong$ $A_{2} g_{2} \oplus D_{2}, A_{1} g_{2} \cong B_{1} g_{2} \oplus C_{1}$ and $A_{2} g_{1} \cong B_{2} g_{1} \oplus C_{2}$, for some right R modules C_{1}, C_{2}, D_{1} and D_{2}. Clearly, $C_{1} \oplus C_{2}, D_{1} \oplus D_{2} \lesssim^{\oplus}(n-1) R$. In addition, $C_{1} \oplus C_{2}, D_{1} \oplus D_{2} \in F P(I)$. Hence, there is $h \in B(R)$ such that $\left(C_{1} \oplus C_{2}\right) h \lesssim{ }^{\oplus}\left(D_{1} \oplus D_{2}\right) h$ and $\left(D_{1} \oplus D_{2}\right)(1-h) \lesssim{ }^{\oplus}\left(C_{1} \oplus C_{2}\right)(1-h)$.

Set $e_{3}=g h, e_{4}=g(1-h)$. Then, we see that

$$
\begin{aligned}
A e_{3} & =A_{1} g_{1} h \oplus A_{1} g_{2} h \oplus A_{2} g_{1} h \oplus A_{2} g_{2} h \\
& =A_{1} g_{1} h \oplus B_{1} g_{2} h \oplus C_{1} h \oplus B_{2} g_{1} h \oplus C_{2} h \oplus A_{2} g_{2} h \\
& \lesssim B_{1} g_{1} h \oplus B_{1} g_{2} h \oplus B_{2} g_{1} h \oplus B_{2} g_{2} h \oplus\left(D_{1} \oplus D_{2}\right) h \\
& \stackrel{\searrow}{\infty}\left(B_{1} g_{1} \oplus B_{2} g_{2} \oplus B_{1} g_{2} \oplus B_{2} g_{1}\right) h \\
& \cong B e_{3} .
\end{aligned}
$$

Analogously, we have

$$
\begin{aligned}
B e_{4} & =B_{1} g_{1}(1-h) \oplus B_{1} g_{2}(1-h) \oplus B_{2} g_{1}(1-h) \oplus B_{2} g_{2}(1-h) \\
& =\left(A_{1} g_{1} \oplus D_{1} \oplus A_{2} g_{2} \oplus D_{2} \oplus B_{1} g_{2} \oplus B_{2} g_{1}\right)(1-h) \\
& \lesssim\left(A_{1} g_{1} \oplus B_{1} g_{2} \oplus A_{2} g_{2} \oplus B_{2} g_{1} \oplus C_{1} \oplus C_{2}\right)(1-h) \\
& \cong\left(A_{1} g_{1} \oplus A_{1} g_{2} \oplus A_{2} g_{2} \oplus A_{2} g_{1}\right)(1-h) \\
& \cong A e_{5} .
\end{aligned}
$$

Set $e=e_{1}+e_{3}$. Then, $e \in B(R)$ with $1-e=e_{2}+e_{4}$. We conclude that $A e \lesssim^{\oplus} B e$ and $B(1-e) \lesssim A(1-e)$. By induction, the proof is complete.

Proposition 4.8. Let I be an ideal of an exchange ring R. If I satisfies general comparability, then it is separative.

Proof. Suppose that $A, B \in F P(I)$ and $2 A \cong A \oplus B \cong 2 B$. Since I satisfies general comparability, by Lemma 4.7, we have $A e \lesssim{ }^{\oplus} B e$ and $B(1-e) \lesssim \lesssim^{\oplus} A(1-e)$, for some $e \in B(R)$. Therefore, we get the result from Lemma 4.1.

Example 4.9. Let V be an infinite-dimensional vector space over a division ring D, and let R be a subring of $\operatorname{End}_{D}(V)$ which contains $I=\left\{x \in \operatorname{End}_{D}(V) \mid \operatorname{dim}_{D}(x V)<\infty\right\}$. Then, I is a separative ideal of R.

Proof. Let $S=\operatorname{End}_{D}(V)$. Clearly, I is an ideal of S. Given any idempotents $x, y \in I$, we have $x S \lesssim^{\oplus} y S$ or $y S \lesssim \oplus x S$, because S is a regular ring satisfying the comparability axiom. Observing that $x R=x I=x S$ and $y S=y I=y R$, we have either $x R \lesssim \oplus y R$ or $y R \lesssim \lesssim^{\oplus} x R$. Thus, I as an ideal of R satisfies general comparability. According to Proposition 4.8, I is separative of R, as asserted.

References

[1] F. Anderson and K. Fuller, Rings and Categories of Modules, Springer, Berlin, 1973.
[2] P. Ara, K. R. Goodearl, K. C. O'Meara and E. Pardo, Diagonalization of matrices over regular rings, Linear Algebra Appl. 265 (1997) 147-163.
[3] P. Ara, K. R. Goodearl, K. C. O'Meara and E. Pardo, Separative cancellation for projective modules over exchange rings, Israel J. Math. 105 (1998) 105-137.
[4] H. Chen, Related comparability over exchange rings, Comm. Algebra 27 (1999) 4209-4216.
[5] H. Chen, Separativity of regular rings in which 2 is invertible, Comm. Algebra 35 (2007) 1661-1673.
[6] H. Chen, Cancellation of small projectives over exchange rings, Comm. Algebra 37 (2009) 2145-2158.
[7] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, San Francisco, Melbourne, 1979; second ed., Krieger, Malabar, Fl., 1991.
[8] E. Pardo, Comparability, separativity, and exchange rings, Comm. Algebra 24 (1996) 2915-2929.
[9] F. Perera, Lifting units modulo exchange ideals and C^{*}-algebras with real rank zero, J. Reine. Math. 522 (2000) 51-62.
[10] A. A. Tuganbaev, Rings Close to Regular, Kluwer Academic Publishers, Dordrecht, Boston, London, 2002.

Huanyin Chen

Department of Mathematics, Hangzhou Normal University, Hangzhou 310036, People's Republic of China.
Email: huanyinchen@yahoo.cn

[^0]: MSC(2010): Primary: 16E50; Secondary: 16D30.
 Keywords: Separative ideal, exchange ring, regularity.
 Received: 15 July 2008, Accepted: 7 July 2009.
 (C) 2010 Iranian Mathematical Society.

