ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 3, pp. 611-626

Title:

Infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions

Author(s):

Y. Jalilian

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 42 (2016), No. 3, pp. 611–626 Online ISSN: 1735-8515

INFINITELY MANY SOLUTIONS FOR A BI-NONLOCAL EQUATION WITH SIGN-CHANGING WEIGHT FUNCTIONS

Y. JALILIAN

(Communicated by Asadollah Aghajani)

ABSTRACT. In this paper, we investigate the existence of infinitely many solutions for a bi-nonlocal equation with sign-changing weight functions. We use some natural constraints and the Ljusternik-Schnirelman critical point theory on C^1 -manifolds, to prove our main results. **Keywords:** Infinitely many solutions, Nehari manifold, sign-changing weight function, bi-nonlocal equation. **MSC(2010):** Primary: 35J25; Secondary: 35M99.

1. Introduction

In this paper, we study the existence of infinitely many solutions for the bi-nonlocal problem

(1.1)
$$\begin{cases} -M(\int_{\Omega} |\nabla u|^{p} dx) \triangle_{p} u = \lambda f(x) |u|^{q-2} u \\ +g(x)|u|^{\gamma-2} u \left[\frac{1}{\gamma} \int_{\Omega} g(x)|u|^{\gamma} dx\right]^{2r}, & \text{in } \Omega, \\ u = 0, & \text{on } \partial\Omega \end{cases}$$

where $\Omega \subset \mathbb{R}^N$ is a bounded open set with smooth boundary,

$$\triangle_p u = \operatorname{div}(|\nabla u|^{p-2}\nabla u)$$

is the *p*-Laplacian operator, $1 , <math>M(s) = s^{\alpha}$ with $\alpha > 0$, $1 < q < p^* := \frac{Np}{N-p}$, $\max\{p(\alpha+1),q\} < \gamma(2r+1) < p^*$ and r, λ are positive parameters, and the weight functions $f, g \in C(\overline{\Omega})$ may change sign on Ω .

Nonlocal problems arise in many applications. In [16], we can find a nonlocal equation arising in population dynamic models (see also [1, 2, 11, 12] and references therein). In this field we can mention the equation

$$\Delta u^m = uf(x, \int_{\Omega} u^r),$$

C2016 Iranian Mathematical Society

Article electronically published on June 29, 2016. Received: 7 July 2014, Accepted: 11 March 2015.

where f denotes the crowding effect and the nonlocal term means that the crowding effect depends on the entire population. Equations of the form

$$u_{tt} - \left(a \int_{\Omega} |\nabla u|^2 dx + b\right) \Delta u = f(x, u),$$

were introduced by Kirchhoff [18] to describe the transversal oscillations of a stretched string. Motivated by mathematical difficulties caused by the nonlocal term and physical applications of Kirchhoff type equations, many researchers studied these kind of equations. See, for example, [2–4, 7–9, 15, 17, 22] and the references therein. The nonlocal elliptic problem

$$-\operatorname{div}\left[a\left(\int_{\Omega}u\right)\nabla u\right] = f - \lambda u, \text{ in } \Omega,$$

describes a balance of population for some species of bacteria where Ω has been considered as a container of bacteria, u is the density of bacteria within this container and f denotes the supply of beings by external sources. For more details about this problem see [10] and references cited therein.

Corrêa and Figueiredo [13] considered problem (1.1) with $\lambda = 0$ or 1, f(x) = 1, $g(x) = \mu g_1(x)$ where g_1 is sign-changing and μ is a positive parameter. They studied several cases: $\gamma < \frac{p(\alpha+1)}{2r+1}$, $\gamma > \frac{p(\alpha+1)}{2r+1}$, $p(\alpha+1) < q \leq 2_*$ and $p-1 < q < p(\alpha+1)$. Corrêa and Figueiredo used the Krasnolselskii genus, the mountain-pass theorem and the concentration-compactness principle, to prove the existence and multiplicity of solutions. In this paper, we consider problem (1.1) with two sign-changing weight functions and under conditions different from those used in [13]. We use the Nehari manifold method and the Ljusternik-Schnirelman critical point theory on C^1 -manifolds, to prove the existence and multiplicity of solutions. When $q < p(\alpha+1)$ the Nehari manifold need not be a closed manifold of class C^1 , and therefore the Ljusternik-Schnirelman critical point so responding to local minima, local maxima and points of inflexion of fibrering maps (see [5]). Then we prove that the subset related to local maxima of fibrering maps is a closed C^1 -manifold.

Throughout this paper, we assume that $f^+ \neq 0$ an $g^+ \neq 0$ where

$$f^+ = \max\{f, 0\}, \ g^+ = \max\{g, 0\}.$$

Let

$$\Omega_f^+ := \{ x \in \Omega : f(x) > 0 \}, \ \Omega_q^+ := \{ x \in \Omega : g(x) > 0 \}.$$

Our main results are as follows:

Theorem 1.1. Assume that $q < p(\alpha + 1)$. Then there exists $\overline{\lambda} > 0$ such that for each $0 < \lambda < \overline{\lambda}$,

(i) problem (1.1) has at least two nontrivial solutions

(ii) if $\Omega_g^+ \setminus \Omega_f^+$ has nonempty interior, then problem (1.1) has infinitely many solutions.

Theorem 1.2. Assume that $p(\alpha + 1) < q$ and $g \ge 0$ on Ω . Then problem (1.1) has infinitely many solutions for each $\lambda > 0$.

In section 2, we prove Theorem 1.1 and the proof of Theorem 1.2 is given in section 3.

2. The case $q < p(\alpha + 1)$

Consider the space $X := W_0^{1,p}(\Omega)$ endowed with the norm

$$||u|| := \left(\int_{\Omega} |\nabla u|^p dx\right)^{\frac{1}{p}}.$$

and denote the norm in $L^t(\Omega)$ for $t \ge 1$ by $||u||_t$. Also, the best Sobolev constant of embedding $X \hookrightarrow L^t(\Omega)$ with $1 \le t < p^*$ is denoted by S_t . The corresponding energy functional of problem (1.1) is defined on X by

$$J_{\lambda}(u) := \frac{1}{p} \hat{M}(||u||^{p}) - \frac{\lambda}{q} \int_{\Omega} f(x)|u|^{q} dx - \frac{1}{(2r+1)\gamma} \left[\frac{1}{\gamma} \int_{\Omega} g(x)|u|^{\gamma} dx\right]^{2r+1}$$

where $\hat{M}(t) = \int_0^t M(s) ds$. It is easy to verify that $J_{\lambda} \in C^1(X, \mathbb{R})$ and critical points of J_{λ} are weak solutions of problem (1.1).

The Nehari manifold associated with the functional J_{λ} is defined as

$$N_{\lambda} := \{ u \in X \setminus \{0\} : \langle J_{\lambda}'(u), u \rangle = 0 \}$$

where \langle , \rangle denotes the usual duality pairing between X^* and X. Then $u \in X \setminus \{0\}$ is in N_{λ} if and only if

(2.1)
$$||u||^{p} M(||u||^{p}) - \lambda \int_{\Omega} f(x)|u|^{q} dx - \left[\frac{1}{\gamma} \int_{\Omega} g(x)|u|^{\gamma} dx\right]^{2r+1} = 0$$

Let $u \in X \setminus \{0\}$, then the fibering map [14] corresponding to u is defined by $\beta_{u,\lambda}(t) = J_{\lambda}(tu), t \in \mathbb{R}^+$. According to the definition of $\beta_{u,\lambda}$ we have

$$\begin{split} \beta_{u,\lambda}(t) &= \frac{1}{p} \hat{M}(t^p ||u||^p) - \frac{\lambda t^q}{q} \int_{\Omega} f(x) |u|^q dx \\ &- \frac{t^{(2r+1)\gamma}}{(2r+1)\gamma} \bigg[\frac{1}{\gamma} \int_{\Omega} g(x) |u|^{\gamma} dx \bigg]^{2r+1}, \\ \beta'_{u,\lambda}(t) &= t^{p-1} ||u||^p M(t^p ||u||^p) \\ &- \lambda t^{q-1} \int_{\Omega} f(x) |u|^q dx - t^{(2r+1)\gamma-1} \bigg[\frac{1}{\gamma} \int_{\Omega} g(x) |u|^{\gamma} dx \bigg]^{2r+1}, \end{split}$$

Infinitely many solutions for a bi-nonlocal equation

$$\begin{split} \beta_{u,\lambda}''(t) &= (p-1)t^{p-2}||u||^p M(t^p||u||^p) + pt^{2(p-1)}||u||^{2p}M'(t^p||u||^p) \\ &- (q-1)\lambda t^{q-2}\int_{\Omega}f(x)|u|^q dx \\ &- ((2r+1)\gamma-1)t^{(2r+1)\gamma-2}\bigg[\frac{1}{\gamma}\int_{\Omega}g(x)|u|^{\gamma}dx\bigg]^{2r+1}, \end{split}$$

and for t > 0, $tu \in N_{\lambda}$ if and only if $\beta'_{u,\lambda}(t) = 0$. Now we split the Nehari manifold according to the positive critical points of fibring maps into three parts as follows:

$$N_{\lambda}^{+} = \{ u \in N_{\lambda} : \beta_{u,\lambda}^{\prime\prime}(1) > 0 \},$$

$$N_{\lambda}^{0} = \{ u \in N_{\lambda} : \beta_{u,\lambda}^{\prime\prime}(1) = 0 \},$$

$$N_{\lambda}^{-} = \{ u \in N_{\lambda} : \beta_{u,\lambda}^{\prime\prime}(1) < 0 \},$$

In the following we prove some properties of J_{λ} on the Nehari manifold N_{λ} . Arguing as in Brown and Zhang [5] we have the following result about the local minimizers on the Nehari manifold.

Lemma 2.1. Suppose that u_0 is a local minimizer for J_{λ} on N_{λ} and that $u_0 \notin N_{\lambda}^0$. Then $J'_{\lambda}(u_0) = 0$.

The next result is about the Palais-Smal condition. A functional $J \in C^1(E)$ is said to satisfy the Palais-Smale condition at the level $c \in \mathbb{R}$, (the $(PS)_c$ condition in short) if any sequence $\{u_n\} \subset E$ such that

(2.2)
$$J(u_n) \to c, \qquad J'(u_n) \to 0,$$

admits a convergent subsequence. Any sequence satisfying (2.2) is called a $(PS)_c$ sequence.

Lemma 2.2. Each bounded $(PS)_c$ sequence for J_{λ} on X has a convergent subsequence.

Proof. The proof is similar to the proof of Lemma 3.2 in [13] and we omit it. \Box

By Lemma 2.2 and the following lemma we get that J_{λ} satisfies the Palais-Smale condition on X.

Lemma 2.3. The functional J_{λ} is coercive and bounded from below on N_{λ} .

Proof. By (2.1) and the Sobolev inequality for any $u \in N_{\lambda}$ we have

$$J_{\lambda}(u) = \frac{1}{p} \hat{M}(||u||^{p}) - \frac{1}{(2r+1)\gamma} ||u||^{p} M(||u||^{p})$$
$$-\lambda(\frac{1}{q} - \frac{1}{(2r+1)\gamma}) \int_{\Omega} f(x) |u|^{q} dx$$
$$\geq (\frac{1}{p(\alpha+1)} - \frac{1}{(2r+1)\gamma}) ||u||^{p(\alpha+1)}$$
$$-\lambda(\frac{1}{q} - \frac{1}{(2r+1)\gamma}) ||f||_{\infty} S_{q}^{\frac{-q}{p}} ||u||^{q}.$$

Since $q < p(\alpha + 1)$, J_{λ} is coercive and bounded from below on N_{λ} .

Lemma 2.4. There exists $\lambda_0 > 0$ such that for each $\lambda \in (0, \lambda_0)$, $N_{\lambda}^0 = \emptyset$. *Proof.* By the definition, if $u \in N_{\lambda}^0$, then we have

$$\begin{split} \beta_{u,\lambda}''(1) &= (p-1)||u||^p M(||u||^p) + p||u||^{2p} M'(||u||^p) \\ &- (q-1)\lambda \int_{\Omega} f(x)|u|^q dx - ((2r+1)\gamma - 1) \left[\frac{1}{\gamma} \int_{\Omega} g(x)|u|^{\gamma} dx\right]^{2r+1} \\ &= \left(p(\alpha+1) - q\right)||u||^{p(\alpha+1)} - \left((2r+1)\gamma - q\right) \left[\frac{1}{\gamma} \int_{\Omega} g(x)|u|^{\gamma} dx\right]^{2r+1} \\ &= \left(p(\alpha+1) - (2r+1)\gamma\right)||u||^{p(\alpha+1)} \\ &+ \left((2r+1)\gamma - q\right)\lambda \int_{\Omega} f(x)|u|^q dx \\ &= \left(p(\alpha+1) - q\right)\lambda \int_{\Omega} f(x)|u|^q dx \\ &+ \left(p(\alpha+1) - (2r+1)\gamma\right) \left[\frac{1}{\gamma} \int_{\Omega} g(x)|u|^{\gamma} dx\right]^{2r+1} = 0. \end{split}$$

Consequently, for any $u\in N^0_\lambda$ we have

(2.3)
$$||u||^{p(\alpha+1)} = \frac{(2r+1)\gamma - q}{p(\alpha+1) - q} \left[\frac{1}{\gamma} \int_{\Omega} g(x)|u|^{\gamma} dx\right]^{2r+1},$$

(2.4)
$$\lambda \int_{\Omega} f(x) |u|^{q} dx = \frac{(2r+1)\gamma - p(\alpha+1)}{p(\alpha+1) - q} \left[\frac{1}{\gamma} \int_{\Omega} g(x) |u|^{\gamma} dx \right]^{2r+1},$$

 $\quad \text{and} \quad$

$$((2r+1)\gamma - p(\alpha+1))||u||^{p(\alpha+1)} = ((2r+1)\gamma - q)\lambda \int_{\Omega} f(x)|u|^q dx,$$

$$\leq ((2r+1)\gamma - q)\lambda||f||_{\infty}S_q^{\frac{-q}{p}}||u||^q.$$

Hence

(2.5)
$$||u|| \le \left(\frac{(2r+1)\gamma - q}{(2r+1)\gamma - p(\alpha+1)}\lambda||f||_{\infty}S_q^{\frac{-q}{p}}\right)^{\frac{1}{p(\alpha+1)-q}}.$$

By (2.3) for $u \in N^0_\lambda$ we get that $\int_\Omega g(x)|u|^\gamma dx > 0$ and by the Sobolev inequality we obtain

(2.6)
$$\frac{||u||^{\gamma}}{\int_{\Omega} g(x)|u|^{\gamma} dx} \ge \frac{S_{\gamma}^{\frac{1}{p}}}{||g||_{\infty}}.$$

Let $M_{\lambda} := \{ u \in N_{\lambda} : \int_{\Omega} g(x) |u|^{\gamma} dx > 0 \}$ and define the function $\eta_{\lambda} : M_{\lambda} \to \mathbb{R}$ by

$$\eta_{\lambda}(u) = C_* \left(\frac{||u||^{p(\alpha+1)\left[\frac{\gamma(2r+1)-1}{p(\alpha+1)-1}\right]}}{\left[\frac{1}{\gamma} \int_{\Omega} g(x) |u|^{\gamma} dx\right]^{2r+1}} \right)^{\frac{\gamma(2r+1)-1}{p(\alpha+1)-1}-1} - \lambda \int_{\Omega} f(x) |u|^{q} dx,$$

where

$$C_* = C(p,q,r,\gamma,\alpha) := \frac{(2r+1)\gamma - p(\alpha+1)}{p(\alpha+1) - q} \left(\frac{(2r+1)\gamma - q}{p(\alpha+1) - q}\right)^{-\frac{\gamma(2r+1) - 1}{\gamma(2r+1) - p(\alpha+1)}}.$$

By (2.5) and (2.6), for $u \in N_{\lambda}^0$ we get

$$\eta_{\lambda}(u) = C_{*} \left(\frac{\left(\frac{(2r+1)\gamma-q}{p(\alpha+1)-q} \left[\frac{1}{\gamma} \int_{\Omega} g(x) |u|^{\gamma} dx\right]^{(2r+1)}\right)^{\frac{\gamma(2r+1)-1}{p(\alpha+1)-1}}}{\left[\frac{1}{\gamma} \int_{\Omega} g(x) |u|^{\gamma} dx\right]^{2r+1}} \right)^{\frac{1}{\gamma(2r+1)-1}-1} \\ -\lambda \int_{\Omega} f(x) |u|^{q} dx \\ = \frac{(2r+1)\gamma - p(\alpha+1)}{p(\alpha+1)-q} \left[\frac{1}{\gamma} \int_{\Omega} g(x) |u|^{\gamma} dx\right]^{2r+1} \\ (2.7) \qquad -\lambda \int_{\Omega} f(x) |u|^{q} dx = 0.$$

Using the Sobolev inequity, (2.5) and (2.6), for $u \in N^0_{\lambda}$ we obtain

$$\begin{split} \eta_{\lambda}(u) &\geq C_{*} \left(\frac{||u||^{\gamma(2r+1)}}{\left[\frac{1}{\gamma} \int_{\Omega} g(x)|u|^{\gamma} dx\right]^{2r+1}} \right)^{\frac{\gamma(2r+1)-1}{p(\alpha+1)-1}-1} ||u|| - \lambda ||f||_{\infty} S_{q}^{\frac{-q}{p}} ||u||^{q} \\ &\geq ||u||^{q} \left[C_{*} \left(\frac{\gamma S_{\gamma}^{\frac{2}{p}}}{||g||_{\infty}} \right)^{\frac{(2r+1)(p(\alpha+1)-1)}{\gamma(2r+1)-p(\alpha+1)}} \frac{1}{||u||^{q-1}} - \lambda ||f||_{\infty} S_{q}^{\frac{-q}{p}} \right] \\ &\geq ||u||^{q} \left[\frac{C_{*} \left(\frac{\gamma S_{\gamma}^{\frac{2}{p}}}{||g||_{\infty}} \right)^{\frac{(2r+1)(p(\alpha+1)-1)}{\gamma(2r+1)-p(\alpha+1)}}}{\lambda^{\frac{q-1}{p(\alpha+1)-q}} \left(\frac{(2r+1)\gamma-q}{(2r+1)\gamma-p(\alpha+1)} ||f||_{\infty} S_{q}^{\frac{-q}{p}} \right)^{\frac{q-1}{p(\alpha+1)-q}} - \lambda ||f||_{\infty} S_{q}^{\frac{-q}{p}} \right] \end{split}$$

.

Now, assume that there exists a sequence $\{\lambda_n\}$ in $(0, \infty)$ such that $\lambda_n \to 0$ and $N^0_{\lambda_n} \neq \emptyset$ for all $n \in \mathbb{N}$. Then, since $\frac{q-1}{p(\alpha+1)-q} > 0$, we should have $\eta_{\lambda_n}(u) > 0$ for all $u \in N^0_{\lambda_n}$ and n large, which contradicts (2.7). Consequently, there exists $\lambda_0 > 0$ such that $N^0_{\lambda} = \emptyset$ for all $\lambda \in (0, \lambda_0)$. \Box

Let

$$\lambda_1 = \left(\frac{p(\alpha+1) - q}{\left(\frac{||g||_{\infty}}{\gamma S_{\gamma}^{\frac{2}{p}}}\right)^{2r+1} \left(\gamma(2r+1) - q\right)}\right)^{\frac{1}{\gamma(2r+1) - p(\alpha+1)}} \frac{\gamma(2r+1) - p(\alpha+1)}{\left(\gamma(2r+1) - q\right) ||f||_{\infty} S_q^{\frac{-q}{p}}}.$$

Proposition 2.5. Suppose that $0 < \lambda < \min\{\lambda_0, \lambda_1\}$ where λ_0 comes from Lemma 2.4. For $u \in X$ we have:

- (i) If $\int_{\Omega} g(x)|u|^{\gamma} dx > 0$ and $\int_{\Omega} f(x)|u|^{q} dx \leq 0$, then the equation $\beta'_{u,\lambda}(t) = 0$ has a unique positive solution t_{u}^{-} such that $t_{u}^{-}u \in N_{\lambda}^{-}$.
- (ii) If $\int_{\Omega} g(x)|u|^{\gamma} dx > 0$ and $\int_{\Omega} f(x)|u|^{q} dx > 0$, then the equation $\beta'_{u,\lambda}(t) = 0$ has exactly two positive solutions t_{u}^{-} and t_{u}^{+} with $t_{u}^{+} < t_{u}^{-}$ such that $t_{u}^{\pm} u \in N_{\lambda}^{\pm}$.
- (iii) If $\int_{\Omega} g(x) |u|^{\gamma} dx \leq 0$ and $\int_{\Omega} f(x) |u|^{q} dx > 0$, then the equation $\beta'_{u,\lambda}(t) = 0$ has exactly one positive solution t_{u}^{+} such that $t_{u}^{+} u \in N_{\lambda}^{+}$.

Proof. (i) Since $\int_{\Omega} f(x)|u|^q dx \leq 0$ and $p(\alpha+1) < \gamma(2r+1)$, there exists $t_0 > 0$ small enough such that $\beta'_{u,\lambda}(t_0) > 0$. From the condition $\int_{\Omega} g(x)|u|^{\gamma} dx > 0$ we have $\beta'_{u,\lambda}(t) \to -\infty$ as $t \to \infty$. Then $\beta'_{u,\lambda}(t) = 0$ has at least one solution in $(0,\infty)$. Now suppose that there exist $t_1, t_2 \in (0,\infty)$ such that $\beta'_{\lambda,u}(t_1) = \beta'_{\lambda,u}(t_2) = 0$. Then we have

(2.8)
$$\begin{cases} t_1^{p(\alpha+1)} ||u||^{p(\alpha+1)} = t_1^q \lambda \int_\Omega f(x) |u|^q dx \\ + t_1^{(2r+1)\gamma} \left[\frac{1}{\gamma} \int_\Omega g(x) |u|^\gamma dx \right]^{2r+1}, \\ t_2^{p(\alpha+1)} ||u||^{p(\alpha+1)} = t_2^q \lambda \int_\Omega f(x) |u|^q dx \\ + t_2^{(2r+1)\gamma} \left[\frac{1}{\gamma} \int_\Omega g(x) |u|^\gamma dx \right]^{2r+1}, \end{cases}$$

hence

(2.9)
$$(t_1 t_2)^{p(\alpha+1)-q} (t_2^{(2r+1)\gamma-p(\alpha+1)} - t_1^{(2r+1)\gamma-p(\alpha+1)}) ||u||^{p(\alpha+1)} \\ = (t_2^{(2r+1)\gamma-q} - t_1^{(2r+1)\gamma-q}) \lambda \int_{\Omega} f(x) |u|^q dx.$$

Since $\int_{\Omega} f(x) |u|^q dx \leq 0$, (2.9) implies that $t_1 = t_2$. Then there is a unique $t_u^- > 0$ such that $t_u^- u \in N_\lambda$ and so

$$||t_u^-u||^{p(\alpha+1)} - \lambda \int_{\Omega} f(x)|t_u^-u|^q dx = \left[\frac{1}{\gamma} \int_{\Omega} g(x)|t_u^-u|^{\gamma} dx\right]^{2r+1}.$$

This implies that

$$\begin{split} \beta_{t_u^- u, \lambda}^{\prime\prime}(1) &= \left(p(\alpha + 1) - \gamma(2r + 1) \right) ||t_u^- u||^{p(\alpha + 1)} \\ &+ \left(\gamma(2r + 1) - q \right) \int_{\Omega} f(x) |t_u^- u|^q dx < 0 \end{split}$$

Consequently $t_u^- u \in N_\lambda^-$.

(ii) Consider $u \in X$ such that assumptions appeared in Proposition 2.5 (ii) hold. Without loss of generality we can assume that ||u|| = 1. Let

$$h_1(t) := t^{p(\alpha+1)-q} - \lambda \int_{\Omega} f(x) |u|^q dx - t^{\gamma(2r+1)-q} \left[\frac{1}{\gamma} \int_{\Omega} g(x) |u|^{\gamma} dx \right]^{2r+1}$$

Then $\beta'_{u,\lambda}(t) = t^{q-1}h_1(t)$. It is easy to see that the equation $\beta'_{u,\lambda}(t) = 0$ has at most two positive solutions. Using the assumptions $q < p(\alpha + 1)$ and $\int_{\Omega} f(x)|u|^q dx > 0$, we have $\beta'_{u,\lambda}(t) < 0$ for t small enough. Also from the conditions $p(\alpha+1) < \gamma(2r+1)$ and $\int_{\Omega} g(x)|u|^{\gamma} dx > 0$ we have $\lim_{t\to\infty} \beta'_{u,\lambda}(t) =$ $-\infty$. Let us to show that the equation $\beta'_{u,\lambda}(t) = 0$ has at least two positive solutions. To this end, it is enough to prove that there exists s > 0 such that $\beta'_{u,\lambda}(s) > 0$. Define

$$h(t) := t^{p(\alpha+1)-q} - \lambda ||f||_{\infty} S_q^{-\frac{q}{p}} - \left(\frac{||g||_{\infty}}{\gamma S_{\gamma}^{\frac{p}{p}}}\right)^{2r+1} t^{\gamma(2r+1)-q}$$

Then h(t) attains its maximum at

$$t_{max} = \left(\frac{p(\alpha+1) - q}{\left(\frac{||g||_{\infty}}{\gamma S_{x}^{\frac{\gamma}{p}}}\right)^{2r+1} \left(\gamma(2r+1) - q\right)}\right)^{\frac{1}{\gamma(2r+1) - p(\alpha+1)}},$$

and since $\lambda < \lambda_1$, $h(t_{max}) > 0$. Thus by the Sobolev inequality we have $\beta'_{u,\lambda}(t_{max}) = t^{q-1}_{max}h_1(t_{max}) \ge t^{q-1}_{max}h(t_{max}) > 0$. Then $\beta'_{u,\lambda}(t) = 0$ has exactly two positive solutions t^+_u and t^-_u which are respectively points of a local minimum and a local maximum for $\beta_{u,\lambda}(t)$. Since $\beta_{u,\lambda}(t)$ has only two local extrema, $\beta'_{u,\lambda}(t) < 0$ for t small enough and $\lim_{t\to\infty} \beta'_{u,\lambda}(t) = -\infty$, then $t^+_u < t^-_u$, $t^-_u u \in N^-_\lambda$ and $t^+_u u \in N^+_\lambda$.

(iii). Since $q < p(\alpha + 1)$ and in view of assumptions in Proposition 2.5 (iii), we conclude that $\beta'_{u,\lambda}(t) < 0$ for t small enough and $\lim_{t\to\infty} \beta'_{u,\lambda}(t) = +\infty$. Then $\beta'_{u,\lambda}(t) = 0$ has at least one solution in $(0,\infty)$. Similar to the proof of Proposition 2.5 (i), we can show that there exists a unique $t_u^+ > 0$ such that $t_u^+ u \in N_\lambda^+$.

Lemma 2.6. Suppose that $0 < \lambda < \lambda_0$. Then

- (i) N_{λ}^{-} is a closed C¹-manifold which is bounded away from zero;
- (ii) If $u \neq 0$ is a critical point of $J_{\lambda}|_{N_{\lambda}^{-}}$ then it is a critical point of J_{λ} ;
- (iii) $J_{\lambda}|_{N_{\lambda}^{-}}$ satisfies $(PS)_{c}$ condition for all $c \in \mathbb{R}$.

Proof. (i) Let $u \in N_{\lambda}^{-}$. Then

$$\beta_{u,\lambda}''(1) = \left(p(\alpha+1) - q\right) ||u||^{p(\alpha+1)} - \left((2r+1)\gamma - q\right) \left[\frac{1}{\gamma} \int_{\Omega} g(x)|u|^{\gamma} dx\right]^{2r+1} < 0.$$

Using the Sobolev inequality we have

(2.10)
$$(p(\alpha+1)-q)||u||^{p(\alpha+1)} \leq ((2r+1)\gamma-q) \\ \times \left(\frac{||g||_{\infty}S_{\gamma}^{-\frac{\gamma}{p}}}{\gamma}\right)^{2r+1}||u||^{\gamma(2r+1)}.$$

Since $p(\alpha + 1) < (2r + 1)\gamma$, inequality (2.10) implies that N_{λ}^{-} is bounded away from zero. In particular, for any $u \in N_{\lambda}^{-}$ we have

(2.11)
$$||u|| \ge \left(\frac{\left(p(\alpha+1)-q\right)\gamma^{2r+1}}{\left((2r+1)\gamma-q\right)\left(||g||_{\infty}S_{\gamma}^{\frac{-\gamma}{p}}\right)^{2r+1}}\right)^{\frac{1}{\gamma(2r+1)-p(\alpha+1)}}.$$

Now define $\varphi_{\lambda} : X \to \mathbb{R}$ by

(2.12)
$$\varphi_{\lambda}(u) = \langle J_{\lambda}'(u), u \rangle = ||u||^{p} M(||u||^{p}) - \lambda \int_{\Omega} f(x)|u|^{q} dx$$
$$- \left[\frac{1}{\gamma} \int_{\Omega} g(x)|u|^{\gamma} dx\right]^{2r+1}.$$

Thus $\varphi_{\lambda} \in C^{1}(X, \mathbb{R})$ and $N_{\lambda}^{-} = \varphi_{\lambda}^{-1}(0) \setminus [\{0\} \cup N_{\lambda}^{+}]$. Since $N_{\lambda}^{0} = \emptyset$ and N_{λ}^{-} is bounded away from zero, we have

$$\overline{N_{\lambda}^{-}} \cap [\overline{N_{\lambda}^{+}} \cup \{0\}] = \emptyset,$$

and this implies that N_{λ}^{-} is closed. By the definition of N_{λ}^{-} ,

$$\langle \varphi'_{\lambda}(u), u \rangle = \beta''_{u,\lambda}(1) < 0,$$

for each $u \in N_{\lambda}^{-}$. Then each point of N_{λ}^{-} is regular for φ_{λ} and this completes the proof of Lemma 2.6 (i).

(ii) Since $N_{\lambda}^{0} = \emptyset$ and using Lemma 2.6 (i), N_{λ}^{-} is bounded away from $N_{\lambda}^{+} \cup \{0\}$. Then there exists an open set $A \subset X$ such that $N_{\lambda}^{-} = \{u \in A : \varphi_{\lambda}(u) = 0\}$. Now, let $u \in N_{\lambda}^{-}$ be a critical point of J_{λ} constrained to N_{λ}^{-} . Then there exists a Lagrange multiplier $\delta \in \mathbb{R}$ such that

$$\langle J'_{\lambda}(u), v \rangle = \delta \langle \varphi'_{\lambda}(u), v \rangle$$
, for every $v \in X$.

Since $J'_{\lambda}(u)|_{\mathbb{R}u} \equiv 0$ and $\langle \varphi'_{\lambda}(u), u \rangle = \beta''_{u,\lambda}(1) < 0$, we deduce that $\delta = 0$. Then u is a critical point of J_{λ} in X.

(iii) By Lemma 2.3 every constrained $(PS)_c$ sequence for J_{λ} is bounded. The rest of the proof is similar to the proof of Lemma 3.2 in [13] and we omit it. \Box

In the next lemma we prove that J_λ has different minimum energy levels on N_{λ}^{-} and $N_{\lambda}^{+}.$ First we need some notations. Define

$$\begin{aligned} c_{\lambda}^{+} &= \inf_{u \in N_{\lambda}^{+}} J_{\lambda}(u), \ c_{\lambda}^{-} &= \inf_{u \in N_{\lambda}^{-}} J_{\lambda}(u), \\ \lambda_{2} &= \frac{\left((2r+1)\gamma - p(\alpha+1)\right)qS_{q}^{\frac{q}{p}}}{\left((2r+1)\gamma - q\right)p(\alpha+1)||f||_{\infty}} \\ &\times \left(\frac{\left(p(\alpha+1) - q\right)\gamma^{2r+1}}{\left((2r+1)\gamma - q\right)\left(||g||_{\infty}S_{\gamma}^{\frac{-\gamma}{p}}\right)^{2r+1}}\right)^{\frac{p(\alpha+1)-q}{\gamma(2r+1)-p(\alpha+1)}}.\end{aligned}$$

Proposition 2.7. Assume that $0 < \lambda < \min{\{\lambda_0, \lambda_1, \lambda_2\}}$. Then we have

(i) $c_{\lambda}^{+} < 0.$ (ii) There exists constant $c_{0} > 0$, such that $c_{\lambda}^{-} \ge c_{0}.$

Proof. (i) Let $u \in N_{\lambda}^+$. Then $\beta_{u,\lambda}''(1) > 0$ and this implies that

$$-((2r+1)\gamma - p(\alpha+1))||u||^{p(\alpha+1)} > -((2r+1)\gamma - q)\lambda \int_{\Omega} f(x)|u|^{q} dx$$

Then

$$J_{\lambda}(u) = \left(\frac{1}{p(\alpha+1)} - \frac{1}{\gamma(2r+1)}\right) ||u||^{p(\alpha+1)} - \left(\frac{1}{q} - \frac{1}{\gamma(2r+1)}\right) \lambda \int_{\Omega} f(x) |u|^{q} dx \leq -\frac{\left((2r+1)\gamma - p(\alpha+1)\right) \left(p(\alpha+1) - q\right)}{(2r+1)\gamma p(\alpha+1)q} ||u||^{p(\alpha+1)} < 0.$$

Consequently $c_{\lambda}^+ < 0$. (ii) Assume that $u \in N_{\lambda}^-$. Then we have (2.11). By the Sobolev inequality we get

$$\begin{aligned} J_{\lambda}(u) &\geq \left(\frac{1}{p(\alpha+1)} - \frac{1}{\gamma(2r+1)}\right) ||u||^{p(\alpha+1)} \\ &- \left(\frac{1}{q} - \frac{1}{\gamma(2r+1)}\right) \lambda ||f||_{\infty} S_q^{\frac{-q}{p}} ||u||^q \\ &\geq \left(\frac{\left(p(\alpha+1) - q\right) \gamma^{2r+1}}{\left((2r+1)\gamma - q\right) \left(||g||_{\infty} S_{\gamma}^{\frac{-\gamma}{p}}\right)^{2r+1}}\right)^{\frac{q}{\gamma(2r+1) - p(\alpha+1)}} \\ &\times \left[\frac{(2r+1)\gamma - p(\alpha+1)}{(2r+1)\gamma p(\alpha+1)} \left(\frac{\left(p(\alpha+1) - q\right) \gamma^{2r+1}}{\left((2r+1)\gamma - q\right) \left(||g||_{\infty} S_{\gamma}^{\frac{-\gamma}{p}}\right)^{2r+1}}\right)^{\frac{p(\alpha+1) - q}{\gamma(2r+1) - p(\alpha+1)}} \\ &- \lambda \left(\frac{(2r+1)\gamma - q}{(2r+1)\gamma q}\right) ||f||_{\infty} S_q^{\frac{-q}{p}} \right] \end{aligned}$$

The condition $\lambda < \lambda_2$ completes the proof.

In order to prove Theorem 1.1 (ii), we need to recall the Krasnoselskii genus [20] and a result about critical points of functionals on C^1 -submanifolds [21]. Let

(2.13)
$$\Sigma = \{A \subset X : A \text{ is closed}, A = -A\}.$$

For $A \neq \emptyset$ and $A \in \Sigma$, the Krasnoselskii genus of A is defined as the least integer n such that there exists an odd function $f \in C(A, \mathbb{R}^n \setminus \{0\})$ and is denoted by $\gamma(A)$. Set $\gamma(\emptyset) = 0$ and $\gamma(A) = \infty$ if there exists no f with the above property for any n. Now we recall a consequence of Corollary 4.1 in [21].

Theorem 2.8. Suppose that M is a closed symmetric C^1 -submanifold of a real Banach space X and $0 \notin M$. Assume that $J \in C^1(M, \mathbb{R})$ is even and bounded below. Define

$$c_j := \sup_{A \in \Gamma_j} \inf_{u \in A} J(u),$$

where

(2.14) $\Gamma_j := \{ A \subset M : A = -A, A \text{ is compact}, \gamma(A) \ge j \}.$

If $\Gamma_j \neq \emptyset$ for all $j \ge 1$ and if J satisfies the $(PS)_c$ condition for all $c \in \mathbb{R}$, then all c_j are critical values of J and $c_j \to \infty$ as $j \to \infty$.

The last part of the above theorem $c_j \to \infty$, doesn't exist in [21], but by a deformation lemma for functionals on C^1 -manifolds [6] and a standard argument ([19] Proposition 9.33), one can show that $c_j \to \infty$.

Proof of Theorem 1.1. Assume that $\overline{\lambda} = \min\{\lambda_0, \lambda_1, \lambda_2\}$ and $0 < \lambda < \overline{\lambda}$. (i) Using Lemma 2.6 and Proposition 2.7, N_{λ}^- is C^1 closed manifold and J_{λ} is bounded from below on N_{λ}^- . Then by the Ekeland variational principle [23], there exists a constrained Palais-Smale sequence $\{u_n\} \subset N_{\lambda}^-$ such that $J_{\lambda}(u_n) \to c_{\lambda}^-$. Using Lemmas 2.2 and 2.3, there exists $u^- \in X$ such that $u_n \to u^-$ up to a subsequence. Thus

$$J_{\lambda}(u^{-}) = c_{\lambda}^{-} > 0.$$

This implies that $u^- \neq 0$ and by Lemma 2.1, $J'_{\lambda}(u^-) = 0$. Since N^+_{λ} is not a closed submanifold, we cannot use the above method to obtain a $(PS)_{c^+_{\lambda}}$ minimizing sequence. We continue the proof as follows. By Proposition 2.7, we have

$$c_{\lambda}^{+} = \inf_{u \in N_{\lambda}^{+}} J_{\lambda}(u) = \inf_{u \in N_{\lambda}} J_{\lambda}(u) < 0.$$

Using Lemma 2.3, J_{λ} is bounded from below on N_{λ}^+ . Hence there exists a sequence $\{u_n\} \subset N_{\lambda}^+$ such that

$$\lim_{n \to \infty} J_{\lambda}(u_n) = c_{\lambda}^+,$$

By the compact embedding $X \hookrightarrow L^s(\Omega)$ for $1 \leq s < p^*$ and since J_{λ} is coercive (cf. Lemma 2.3), $\{u_n\}$ is bounded. Then there exists $u^+ \in X$ such that $u_n \to u^+$ and $u_n \to u^+$ in $L^s(\Omega)$ for $1 \leq s < p^*$, up to a subsequence. Now we show that $u_n \to u^+$ strongly in X. Arguing by contradiction, assume that

(2.15)
$$||u^+|| < \liminf_{n \to \infty} ||u_n||,$$

By this fact that $\beta''_{u_n,\lambda}(1) > 0$ for any $n \in \mathbb{N}$, we have

(2.16)
$$\liminf_{n \to \infty} ||u_n||^{p(\alpha+1)} \le \frac{((2r+1)\gamma - q)\lambda}{(2r+1)\gamma - p(\alpha+1)} \int_{\Omega} f(x)|u^+|^q dx.$$

Since $c_{\lambda}^+ < 0$, we conclude $\{u_n\}$ is bounded away from zero. Thus (2.16) implies that $\int_{\Omega} f(x) |u^+|^q dx > 0$. Hence $u^+ \neq 0$ and using Propositions 2.5 there exists $t_{u^+} > 0$ such that $t_{u^+}u^+ \in N_{\lambda}^+$. Then

$$\begin{split} I(t_{u^{+}}u^{+}) &\geq c_{\lambda}^{+} = \lim_{n \to \infty} J_{\lambda}(u_{n}) \\ &\geq (\frac{1}{p(\alpha+1)} - \frac{1}{\gamma(2r+1)}) ||u^{+}||^{p(\alpha+1)} \\ &- (\frac{1}{q} - \frac{1}{\gamma(2r+1)}) \lambda \int_{\Omega} f(x) |u^{+}|^{q} dx, \end{split}$$

and consequently

(2.17)
$$(\frac{1}{p(\alpha+1)} - \frac{1}{\gamma(2r+1)})(t_{u^+}^{p(\alpha+1)} - 1)||u^+||^{p(\alpha+1)} \ge (\frac{1}{q} - \frac{1}{\gamma(2r+1)})(t_{u^+}^q - 1)\lambda \int_{\Omega} f(x)|u^+|^q dx.$$

Inequalities (2.15)-(2.17) imply that $0 < t_{u^+} \leq 1$. Using Proposition 2.7, for any $n \in \mathbb{N}$, the first positive critical point of $\beta_{u_n,\lambda}(t)$ is a local minimum point. Since $\beta_{u_n,\lambda}(t)$ is decreasing on (0, 1), we have

$$\beta'_{u_n,\lambda}(t_u^+) \le 0,$$

for any $n \in \mathbb{N}$. Subsequently we get

$$(2.18) \quad \liminf_{n \to \infty} \left(t_{u^+}^{p(\alpha+1)-1} ||u_n||^{p(\alpha+1)} - \lambda t_{u^+}^{q-1} \int_{\Omega} f(x) |u_n|^q dx - t_{u^+}^{(2r+1)\gamma-1} \left[\frac{1}{\gamma} \int_{\Omega} g(x) |u_n|^\gamma dx \right]^{2r+1} \right) \\ = \liminf_{n \to \infty} t_{u^+}^{p(\alpha+1)-1} ||u_n||^{p(\alpha+1)} - \left(t_{u^+}^{q-1} \lambda \int_{\Omega} f(x) |u|^q dx + t_{u^+}^{(2r+1)\gamma-1} \left[\frac{1}{\gamma} \int_{\Omega} g(x) |u|^\gamma dx \right]^{2r+1} \right) \le 0.$$

Since $\beta'_{t_{u^+}u^+,\lambda}(1) = 0$, we obtain

(2.19)
$$t_{u^{+}}^{p(\alpha+1)-1}||u^{+}||^{p(\alpha+1)} = t_{u^{+}}^{q-1}\lambda \int_{\Omega} f(x)|u^{+}|^{q}dx + t_{u^{+}}^{(2r+1)\gamma-1} \left[\frac{1}{\gamma}\int_{\Omega} g(x)|u^{+}|^{\gamma}dx\right]^{2r+1}.$$

Finally (2.18) and (2.19) imply that

$$\liminf_{n \to \infty} ||u_n||^{p(\alpha+1)} \le ||u^+||^{p(\alpha+1)},$$

and it contradicts (2.15). Therefor, $u_n \to u^+$ strongly and $t_{u^+} = 1$. Subsequently, $J_{\lambda}(u^+) = c_{\lambda}^+$ and by Lemma 2.1, $J'(u^+) = 0$. Since $N_{\lambda}^+ \cap N_{\lambda}^- = \emptyset$, then u^+ and u^- are two distinct nontrivial solutions.

(ii) By Lemmas 2.2, 2.3 and 2.6, all conditions appeared in Theorem 2.8 are satisfied if we show that $\Gamma_j \neq \emptyset$ for $j \ge 1$ where

$$\Gamma_j := \{ A \subset N_{\lambda}^- : A = -A, A \text{ is compact}, \gamma(A) \ge j \}.$$

Let X_j be a subspace spanned by j linearly independent functions $v_k \in C_0^{\infty}(\Omega)$ such that supp $v_k \subset \Omega_q^+ \setminus \Omega_f^+$ and assume that

$$S^{j-1} := X_j \bigcap \{ u \in X : ||u|| = 1 \}.$$

Then by Proposition 2.7, for any $u \in S^{j-1}$ there exists unique $t_u > 0$ such that $t_u u \in N_{\lambda}^-$. Thus $\psi : S^{j-1} \to N_{\lambda}^-$ given by $\psi(u) = t_u u$, is well defined. Since $\beta_{u,\lambda}'(t_u) < 0$, by the implicit function theorem the mapping $u \to t_u$ is continuous. Therefore, $A_j := \psi(S^{j-1})$ is homeomorphic to S^{j-1} . Using the properties of genus we have $\gamma(A_j) = \gamma(S^{j-1}) = j$ (see [20], Section II.5) and this implies that Γ_j is not empty for $j \geq 1$.

3. The case $p(\alpha + 1) < q$

In this section, first we prove some properties of the Nehari manifold and fibring maps. Throughout this section we assume that $g \ge 0$ on Ω .

Lemma 3.1. Suppose that $\lambda > 0$. Then

- (i) N_{λ} is a closed C^1 -manifold which is bounded away from zero. Moreover $J_{\lambda}(u) > 0$ for all $u \in N_{\lambda}$.
- (ii) $u \neq 0$ is a critical point of J_{λ} if and only if it is a critical point of $J_{\lambda}|_{N_{\lambda}}$, and $\{u_n\} \subset N_{\lambda}$ is a $(PS)_c$ sequence for J_{λ} if and only if it is a $(PS)_c$ sequence for $J_{\lambda}|_{N_{\lambda}}$
- (iii) $J_{\lambda}|_{N_{\lambda}}$ satisfies the $(PS)_c$ condition for all $c \in \mathbb{R}$.

Proof. (i) Let $u \in N_{\lambda}$, then then from the Sobolev inequality we have

$$||u||^{p(\alpha+1)} \leq \lambda ||f||_{\infty} S_q^{\frac{-q}{p}} ||u||^q + \left(\frac{||g||_{\infty} S_{\gamma}^{\frac{-1}{p}}}{\gamma}\right)^{2r+1} ||u||^{\gamma(2r+1)}.$$

Since $p(\alpha+1) < q < \gamma(2r+1)$, the above inequality implies that N_{λ} is bounded away from 0. Now we show that it is a closed C^1 -manifold. Similar to the proof of Lemma 2.6, we consider $\varphi_{\lambda} : X \to \mathbb{R}$ defined by (2.12). Then $N_{\lambda} = \varphi_{\lambda}^{-1}(0) \setminus \{0\}$. Since N_{λ} is bounded away from 0, N_{λ} is closed. Now we prove that every point of N_{λ} is regular for φ_{λ} . Arguing by contradiction, assume that $u \in N_{\lambda}$ with $\langle \varphi_{\lambda}'(u), u \rangle = 0$. Then

$$||u||^{p(\alpha+1)} = \lambda \int_{\Omega} f(x)|u|^q dx + \left[\frac{1}{\gamma} \int_{\Omega} g(x)|u|^{\gamma} dx\right]^{2r+1},$$

and

$$p(\alpha+1)||u||^{p(\alpha+1)} = q\lambda \int_{\Omega} f(x)|u|^{q} dx + \gamma(2r+1) \left[\frac{1}{\gamma} \int_{\Omega} g(x)|u|^{\gamma} dx\right]^{2r+1}.$$

Consequently

(3.1)
$$(p(\alpha+1)-q)||u||^{p(\alpha+1)} = (\gamma(2r+1)-q)\left[\frac{1}{\gamma}\int_{\Omega}g(x)|u|^{\gamma}dx\right]^{2r+1}.$$

Since $\int_{\Omega} g(x)|u|^{\gamma} dx \ge 0$, from (3.1) we get u = 0 and this contradicts $u \in N_{\lambda}$. Thus every point of N_{λ} is regular for φ_{λ} . Also for each $u \in N_{\lambda}$ we get

(3.2)
$$J_{\lambda}(u) = \left(\frac{1}{p(\alpha+1)} - \frac{1}{q}\right) ||u||^{p(\alpha+1)} \\ + \left(\frac{1}{q} - \frac{1}{\gamma(2r+1)}\right) \left[\frac{1}{\gamma} \int_{\Omega} g(x) |u|^{\gamma} dx\right]^{2r+1} \\ \ge \left(\frac{1}{p(\alpha+1)} - \frac{1}{q}\right) ||u||^{p(\alpha+1)}.$$

Hence, $J_{\lambda}(u) \geq 0$ and it completes the proof.

(ii) The proof is similar to proof of Lemma 2.6 (ii) and we omit it.

(iii) Let $\{u_n\} \subset N_{\lambda}$ be a $(PS)_c$ sequence for J_{λ} . Then similar to (3.2), we have

$$J_{\lambda}(u_n) \ge \left(\frac{1}{p(\alpha+1)} - \frac{1}{q}\right) ||u_n||^{p(\alpha+1)}.$$

Thus $\{u_n\}$ is bounded and there exists $u \in X$ such that $u_n \rightharpoonup u$ and up to a subsequence. Similar to the proof of Lemma 3.2 in [13], using the compact embedding $X \hookrightarrow L^s(\Omega)$ for $1 \leq s < p^*$ we can prove that $u_n \to u$ strongly in X.

In the next lemma, we study the behavior of fibering maps.

Lemma 3.2. Let $\lambda > 0$ and $u \in X$. If $\int_{\Omega} g(x)|u|^{\gamma} dx > 0$, then the equation $\beta'_{u,\lambda}(t) = 0$ has a unique positive solution t_u such that $t_u u \in N_{\lambda}$.

Proof. Consider $u \in X$ with $\int_{\Omega} g(x)|u|^{\gamma} dx > 0$. Since $p(\alpha+1) < q < \gamma(2r+1)$, we get $\lim_{t\to\infty} \beta'_{u,\lambda}(t) = -\infty$ and $\beta'_{u,\lambda}(t) > 0$ for t > 0 small enough. Then there exists $t_u > 0$ such that $\beta'_{u,\lambda}(t_u) = 0$ and $t_u u \in N_{\lambda}$. If $\beta'_{u,\lambda}(t_1) = \beta'_{u,\lambda}(t_2) = 0$, then (2.8) holds and consequently we have

$$(t_1 t_2)^{p(\alpha+1)} \left(t_2^{q-p(\alpha+1)} - t_1^{q-p(\alpha+1)} \right) ||u||^{p(\alpha+1)} = (t_1 t_2)^q \left(t_1^{\gamma(2r+1)-q} - t_2^{\gamma(2r+1)-q} \right) \left[\frac{1}{\gamma} \int_{\Omega} g(x) |u|^{\gamma} dx \right]^{2r+1}$$

Thus from the condition $\int_{\Omega} g(x) |u|^{\gamma} dx > 0$, we obtain $t_1 = t_2$. Then $\beta'_{u,\lambda}(t) = 0$ has a unique positive solution.

Proof of Theorem 1.2. Let $\lambda > 0$. Using Lemma 3.1, N_{λ} is a closed symmetric C^1 -submanifold, $0 \notin N_{\lambda}$ and J_{λ} is bounded from below on N_{λ} . Then by Theorem 2.8 and Lemma 3.1 (ii), the proof will be complete if we show that Γ_j defined by

$$\Gamma_j := \{ A \subset N_\lambda : A = -A, A \text{ is compact}, \gamma(A) \ge j \},\$$

is nonempty for $j \geq 1$. Similar to the proof of Theorem 1.1 (ii), let X_j be a subspace of X spanned by j linearly independent functions $v_k \in C_0^{\infty}(\Omega)$ such that supp $v_k \subset \Omega_q^+$ and assume that

$$S^{j-1} := X_j \bigcap \{ u \in X : ||u|| = 1 \}.$$

For any $u \in S^{j-1}$, we have $\int_{\Omega} g(x) |u|^{\gamma} dx > 0$. Then by Lemma 3.2, there exists a unique $t_u > 0$ such that $t_u u \in N_{\lambda}$. Thus Similar to the proof of Theorem 1.1 (ii), we have $\Gamma_j \neq \emptyset$ for $j \ge 1$.

References

- C. O. Alves and F. J. S. A. Corrêa, On existence of solutions for a class of problem involving a nonlinear operator, *Comm. Appl. Nonlinear Anal.* 8 (2001), no. 2, 43–56.
- [2] C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, *Comput. Math. Appl.* 49 (2005), no. 1, 85–93.
- [3] G. Anello, A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problem, J. Math. Anal. Appl. 373 (2011), no. 1, 248–251.
- [4] G. Anello, On a perturbed Dirichlet problem for a nonlocal differential equation of Kirchhoff type, Bound. Value Probl. 2011 (2011), Article ID 891430, 10 pages.
- [5] K. J. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differential Equations 193 (2003), no. 2, 481–499.
- [6] A. Bonnet, A deformation lemma on a C¹ manifold, Manuscripta Math. 81 (1993), no. 3-4, 339–359.
- [7] C. Y. Chen, Y. C. Kuo and T. F. Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions, J. Differential Equations 250 (2011), no, 4, 1876–1908.

- [9] B. Cheng, New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems, J. Math. Anal. Appl. 394 (2012), no. 2, 488–495.
- [10] M. Chipot and J. F. Rodriguse, On a class of nonlocal nonlinear elliptic problems, *RAIRO Modél. Math. Anal. Numér.* 29 (1992), no. 3, 447–468.
- [11] F. J. S. A. Corra, M. Delgado and A. Suarez, Some non-local population models with non-linear diffusion, *Rev. Integr. Temas Mat.* 28 (2010), no. 1, 37–49.
- [12] F. J. S. A. Corrêa and S. D. B. Menezes, Existence of solutions to nonlocal and singular elliptic problems via Galerkin method, *Electron. J. Differential Equations* **2004** (2004), no. 19, 1–10.
- [13] F. J. S. A. Corrêa and G. M. Figueiredo, Existence and multiplicity of nontrivial solutions for a bi-nonlocal equation, Adv. Differential Equations 18 (2013), no. 5-6, 587–608.
- [14] P. Drábek and S. I. Pohozaev, Positive solutions for the p-Laplacian: application of the fibrering method, Proc. Roy. Soc. Edinburgh Sect. A 127 (1997), no. 4, 703–726.
- [15] G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl. 401 (2013), no. 2, 706– 713.
- [16] J. Furter and M. Grinfeld, Local vs. nonlocal interactions in population dynamics, J. Math. Biol. 27 (1989), no. 1, 65–80.
- [17] X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in \mathbb{R}^3 , J. Differential Equations **252** (2012), no. 2, 1813–1834.
- [18] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
- [19] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Series Math., 65, Amer. Math. Soc., Providence, 1986.
- [20] M. Struwe, Variational Methods, Springer-Verlag, Berlin, 2008.
- [21] A. Szulkin, Ljusternik-Schnirelmann theory on C¹-manifolds, Ann. Inst. H. Poincare Anal. Non Lineaire 5 (1988) 119–139.
- [22] L. Wang, On a quasilinear Schrödinger-Kirchhoff-type equation with radial potentials, Nonlinear Anal. 83 (2013) 58–68.
- [23] M. Willem, Minimax Theorems, BirkhäuserBoston, Inc., Boston, 1996.

(Yaghoub Jalilian) DEPARTMENT OF MATHEMATICS, RAZI UNIVERSITY, KERMANSHAH, IRAN.

E-mail address: y.jalilian@razi.ac.ir