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Abstract. In this paper, we investigate the existence of infinitely many
solutions for a bi-nonlocal equation with sign-changing weight functions.
We use some natural constraints and the Ljusternik-Schnirelman critical
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1. Introduction

In this paper, we study the existence of infinitely many solutions for the
bi-nonlocal problem

(1.1)


−M(

∫
Ω
|∇u|pdx)△pu = λf(x)|u|q−2u

+g(x)|u|γ−2u
[
1
γ

∫
Ω
g(x)|u|γdx

]2r
, in Ω,

u = 0, on ∂Ω,

where Ω ⊂ RN is a bounded open set with smooth boundary,

△pu = div
(
|∇u|p−2∇u

)
is the p-Laplacian operator, 1 < p < N , M(s) = sα with α > 0, 1 < q < p∗ :=
Np
N−p , max{p(α+ 1), q} < γ(2r + 1) < p∗ and r, λ are positive parameters, and

the weight functions f, g ∈ C(Ω) may change sign on Ω.
Nonlocal problems arise in many applications. In [16], we can find a nonlo-
cal equation arising in population dynamic models (see also [1, 2, 11, 12] and
references therein). In this field we can mention the equation

∆um = uf
(
x,

∫
Ω

ur
)
,

Article electronically published on June 29, 2016.

Received: 7 July 2014, Accepted: 11 March 2015.

c⃝2016 Iranian Mathematical Society

611



Infinitely many solutions for a bi-nonlocal equation 612

where f denotes the crowding effect and the nonlocal term means that the
crowding effect depends on the entire population. Equations of the form

utt −
(
a

∫
Ω

|∇u|2dx+ b

)
∆u = f(x, u),

were introduced by Kirchhoff [18] to describe the transversal oscillations of a
stretched string. Motivated by mathematical difficulties caused by the nonlocal
term and physical applications of Kirchhoff type equations, many researchers
studied these kind of equations. See, for example, [2–4, 7–9, 15, 17, 22] and the
references therein. The nonlocal elliptic problem

−div

[
a

(∫
Ω

u

)
∇u

]
= f − λu, in Ω,

describes a balance of population for some species of bacteria where Ω has been
considered as a container of bacteria, u is the density of bacteria within this
container and f denotes the supply of beings by external sources. For more
details about this problem see [10] and references cited therein.

Corrêa and Figueiredo [13] considered problem (1.1) with λ = 0 or 1, f(x) =
1, g(x) = µg1(x) where g1 is sign-changing and µ is a positive parameter.

They studied several cases: γ < p(α+1)
2r+1 , γ > p(α+1)

2r+1 , p(α + 1) < q ≤ 2∗ and

p− 1 < q < p(α+1). Corrêa and Figueiredo used the Krasnolselskii genus, the
mountain-pass theorem and the concentration-compactness principle, to prove
the existence and multiplicity of solutions. In this paper, we consider problem
(1.1) with two sign-changing weight functions and under conditions different
from those used in [13]. We use the Nehari manifold method and the Ljusternik-
Schnirelman critical point theory on C1-manifolds, to prove the existence and
multiplicity of solutions. When q < p(α+ 1) the Nehari manifold need not be
a closed manifold of class C1, and therefore the Ljusternik-Schnirelman critical
point theory does not apply. To overcome this difficulty we divide the Nehari
manifold into three subsets corresponding to local minima, local maxima and
points of inflexion of fibrering maps (see [5]). Then we prove that the subset
related to local maxima of fibrering maps is a closed C1-manifold.

Throughout this paper, we assume that f+ ̸= 0 an g+ ̸= 0 where

f+ = max{f, 0}, g+ = max{g, 0}.

Let

Ω+
f := {x ∈ Ω : f(x) > 0}, Ω+

g := {x ∈ Ω : g(x) > 0}.

Our main results are as follows:

Theorem 1.1. Assume that q < p(α + 1). Then there exists λ̄ > 0 such that
for each 0 < λ < λ̄,

(i) problem (1.1) has at least two nontrivial solutions



613 Jalilian

(ii) if Ω+
g \ Ω+

f has nonempty interior, then problem (1.1) has infinitely
many solutions.

Theorem 1.2. Assume that p(α+1) < q and g ≥ 0 on Ω. Then problem (1.1)
has infinitely many solutions for each λ > 0.

In section 2, we prove Theorem 1.1 and the proof of Theorem 1.2 is given in
section 3.

2. The case q < p(α+ 1)

Consider the space X :=W 1,p
0 (Ω) endowed with the norm

||u|| :=
(∫

Ω

|∇u|pdx
) 1

p

.

and denote the norm in Lt(Ω) for t ≥ 1 by ||u||t. Also, the best Sobolev
constant of embedding X ↪→ Lt(Ω) with 1 ≤ t < p∗ is denoted by St. The
corresponding energy functional of problem (1.1) is defined on X by

Jλ(u) :=
1

p
M̂(||u||p)− λ

q

∫
Ω

f(x)|u|qdx− 1

(2r + 1)γ

[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

,

where M̂(t) =
∫ t

0
M(s)ds. It is easy to verify that Jλ ∈ C1(X,R) and critical

points of Jλ are weak solutions of problem (1.1).
The Nehari manifold associated with the functional Jλ is defined as

Nλ := {u ∈ X \ {0} : ⟨J ′
λ(u), u⟩ = 0},

where ⟨ , ⟩ denotes the usual duality pairing between X∗ and X. Then u ∈
X \ {0} is in Nλ if and only if

(2.1) ||u||pM(||u||p)− λ

∫
Ω

f(x)|u|qdx−
[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

= 0.

Let u ∈ X \ {0}, then the fibering map [14] corresponding to u is defined by
βu,λ(t) = Jλ(tu), t ∈ R+. According to the definition of βu,λ we have

βu,λ(t) =
1

p
M̂(tp||u||p)− λtq

q

∫
Ω

f(x)|u|qdx

− t(2r+1)γ

(2r + 1)γ

[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

,

β′
u,λ(t) = tp−1||u||pM(tp||u||p)

− λtq−1

∫
Ω

f(x)|u|qdx− t(2r+1)γ−1

[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

,
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β′′
u,λ(t) = (p− 1)tp−2||u||pM(tp||u||p) + pt2(p−1)||u||2pM ′(tp||u||p)

− (q − 1)λtq−2

∫
Ω

f(x)|u|qdx

− ((2r + 1)γ − 1)t(2r+1)γ−2

[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

,

and for t > 0, tu ∈ Nλ if and only if β′
u,λ(t) = 0. Now we split the Nehari

manifold according to the positive critical points of fibring maps into three
parts as follows:

N+
λ = {u ∈ Nλ : β′′

u,λ(1) > 0},
N0

λ = {u ∈ Nλ : β′′
u,λ(1) = 0},

N−
λ = {u ∈ Nλ : β′′

u,λ(1) < 0},

In the following we prove some properties of Jλ on the Nehari manifold Nλ.
Arguing as in Brown and Zhang [5] we have the following result about the local
minimizers on the Nehari manifold.

Lemma 2.1. Suppose that u0 is a local minimizer for Jλ on Nλ and that
u0 ̸∈ N0

λ. Then J ′
λ(u0) = 0.

The next result is about the Palais-Smal condition. A functional J ∈ C1(E)
is said to satisfy the Palais-Smale condition at the level c ∈ R, (the (PS)c
condition in short) if any sequence {un} ⊂ E such that

(2.2) J(un) → c, J ′(un) → 0,

admits a convergent subsequence. Any sequence satisfying (2.2) is called a
(PS)c sequence.

Lemma 2.2. Each bounded (PS)c sequence for Jλ on X has a convergent
subsequence.

Proof. The proof is similar to the proof of Lemma 3.2 in [13] and we omit
it. □

By Lemma 2.2 and the following lemma we get that Jλ satisfies the Palais-
Smale condition on X.

Lemma 2.3. The functional Jλ is coercive and bounded from below on Nλ.
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Proof. By (2.1) and the Sobolev inequality for any u ∈ Nλ we have

Jλ(u) =
1

p
M̂(||u||p)− 1

(2r + 1)γ
||u||pM(||u||p)

− λ(
1

q
− 1

(2r + 1)γ
)

∫
Ω

f(x)|u|qdx

≥ (
1

p(α+ 1)
− 1

(2r + 1)γ
)||u||p(α+1)

− λ(
1

q
− 1

(2r + 1)γ
)||f ||∞S

−q
p

q ||u||q.

Since q < p(α+ 1), Jλ is coercive and bounded from below on Nλ. □

Lemma 2.4. There exists λ0 > 0 such that for each λ ∈ (0, λ0), N
0
λ = ∅.

Proof. By the definition, if u ∈ N0
λ, then we have

β′′
u,λ(1) = (p− 1)||u||pM(||u||p) + p||u||2pM ′(||u||p)

− (q − 1)λ

∫
Ω

f(x)|u|qdx− ((2r + 1)γ − 1)

[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

=
(
p(α+ 1)− q

)
||u||p(α+1) −

(
(2r + 1)γ − q

)[ 1
γ

∫
Ω

g(x)|u|γdx
]2r+1

=
(
p(α+ 1)− (2r + 1)γ

)
||u||p(α+1)

+
(
(2r + 1)γ − q

)
λ

∫
Ω

f(x)|u|qdx

=
(
p(α+ 1)− q

)
λ

∫
Ω

f(x)|u|qdx

+
(
p(α+ 1)− (2r + 1)γ

)[ 1
γ

∫
Ω

g(x)|u|γdx
]2r+1

= 0.

Consequently, for any u ∈ N0
λ we have

||u||p(α+1) =
(2r + 1)γ − q

p(α+ 1)− q

[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

,(2.3)

λ

∫
Ω

f(x)|u|qdx =
(2r + 1)γ − p(α+ 1)

p(α+ 1)− q

[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

,(2.4)

and (
(2r + 1)γ − p(α+ 1)

)
||u||p(α+1) =

(
(2r + 1)γ − q

)
λ

∫
Ω

f(x)|u|qdx,

≤
(
(2r + 1)γ − q

)
λ||f ||∞S

−q
p

q ||u||q.
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Hence

(2.5) ||u|| ≤
(

(2r + 1)γ − q

(2r + 1)γ − p(α+ 1)
λ||f ||∞S

−q
p

q

) 1
p(α+1)−q

.

By (2.3) for u ∈ N0
λ we get that

∫
Ω
g(x)|u|γdx > 0 and by the Sobolev inequality

we obtain

(2.6)
||u||γ∫

Ω
g(x)|u|γdx

≥ S
γ
p
γ

||g||∞
.

Let Mλ := {u ∈ Nλ :
∫
Ω
g(x)|u|γdx > 0} and define the function ηλ : Mλ → R

by

ηλ(u) = C∗

(
||u||p(α+1)[

γ(2r+1)−1
p(α+1)−1

][
1
γ

∫
Ω
g(x)|u|γdx

]2r+1

) 1
γ(2r+1)−1
p(α+1)−1

−1 − λ

∫
Ω

f(x)|u|qdx,

where

C∗ = C(p, q, r, γ, α) :=
(2r + 1)γ − p(α+ 1)

p(α+ 1)− q

(
(2r + 1)γ − q

p(α+ 1)− q

)− γ(2r+1)−1
γ(2r+1)−p(α+1)

.

By (2.5) and (2.6), for u ∈ N0
λ we get

ηλ(u) = C∗

(( (2r+1)γ−q
p(α+1)−q

[
1
γ

∫
Ω
g(x)|u|γdx

](2r+1)) γ(2r+1)−1
p(α+1)−1[

1
γ

∫
Ω
g(x)|u|γdx

]2r+1

) 1
γ(2r+1)−1
p(α+1)−1

−1

− λ

∫
Ω

f(x)|u|qdx

=
(2r + 1)γ − p(α+ 1)

p(α+ 1)− q

[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

− λ

∫
Ω

f(x)|u|qdx = 0.(2.7)

Using the Sobolev inequity, (2.5) and (2.6), for u ∈ N0
λ we obtain

ηλ(u) ≥ C∗

(
||u||γ(2r+1)[

1
γ

∫
Ω
g(x)|u|γdx

]2r+1

) 1
γ(2r+1)−1
p(α+1)−1

−1 ||u|| − λ||f ||∞S
−q
p

q ||u||q

≥ ||u||q
[
C∗

( γS γ
p
γ

||g||∞
) (2r+1)(p(α+1)−1)

γ(2r+1)−p(α+1)
1

||u||q−1
− λ||f ||∞S

−q
p

q

]

≥ ||u||q
[ C∗

( γS
γ
p
γ

||g||∞

) (2r+1)(p(α+1)−1)
γ(2r+1)−p(α+1)

λ
q−1

p(α+1)−q

(
(2r+1)γ−q

(2r+1)γ−p(α+1) ||f ||∞S
−q
p

q

) q−1
p(α+1)−q

− λ||f ||∞S
−q
p

q

]
.
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Now, assume that there exists a sequence {λn} in (0,∞) such that λn → 0 and
N0

λn
̸= ∅ for all n ∈ N. Then, since q−1

p(α+1)−q > 0, we should have ηλn(u) > 0

for all u ∈ N0
λn

and n large, which contradicts (2.7). Consequently, there exists

λ0 > 0 such that N0
λ = ∅ for all λ ∈ (0, λ0). □ □

Let

λ1 =

(
p(α+ 1)− q( ||g||∞

γS
γ
p
γ

)2r+1(
γ(2r + 1)− q

)) 1
γ(2r+1)−p(α+1) γ(2r + 1)− p(α+ 1)(

γ(2r + 1)− q
)
||f ||∞S

−q
p

q

.

Proposition 2.5. Suppose that 0 < λ < min{λ0, λ1} where λ0 comes from
Lemma 2.4. For u ∈ X we have:

(i) If
∫
Ω
g(x)|u|γdx > 0 and

∫
Ω
f(x)|u|qdx ≤ 0, then the equation β′

u,λ(t) =

0 has a unique positive solution t−u such that t−u u ∈ N−
λ .

(ii) If
∫
Ω
g(x)|u|γdx > 0 and

∫
Ω
f(x)|u|qdx > 0, then the equation β′

u,λ(t) =

0 has exactly two positive solutions t−u and t+u with t+u < t−u such that
t±u u ∈ N±

λ .
(iii) If

∫
Ω
g(x)|u|γdx ≤ 0 and

∫
Ω
f(x)|u|qdx > 0, then the equation β′

u,λ(t) =

0 has exactly one positive solution t+u such that t+u u ∈ N+
λ .

Proof. (i) Since
∫
Ω
f(x)|u|qdx ≤ 0 and p(α+1) < γ(2r+1), there exists t0 > 0

small enough such that β′
u,λ(t0) > 0. From the condition

∫
Ω
g(x)|u|γdx > 0

we have β′
u,λ(t) → −∞ as t → ∞. Then β′

u,λ(t) = 0 has at least one solution

in (0,∞). Now suppose that there exist t1, t2 ∈ (0,∞) such that β′
λ,u(t1) =

β′
λ,u(t2) = 0. Then we have

t
p(α+1)
1 ||u||p(α+1) = tq1λ

∫
Ω
f(x)|u|qdx

+t
(2r+1)γ
1

[
1
γ

∫
Ω
g(x)|u|γdx

]2r+1

,

t
p(α+1)
2 ||u||p(α+1) = tq2λ

∫
Ω
f(x)|u|qdx

+t
(2r+1)γ
2

[
1
γ

∫
Ω
g(x)|u|γdx

]2r+1

,

(2.8)

hence

(t1t2)
p(α+1)−q(t

(2r+1)γ−p(α+1)
2 − t

(2r+1)γ−p(α+1)
1 )||u||p(α+1)

= (t
(2r+1)γ−q
2 − t

(2r+1)γ−q
1 )λ

∫
Ω

f(x)|u|qdx.(2.9)

Since
∫
Ω
f(x)|u|qdx ≤ 0, (2.9) implies that t1 = t2. Then there is a unique

t−u > 0 such that t−u u ∈ Nλ and so

||t−u u||p(α+1) − λ

∫
Ω

f(x)|t−u u|qdx =

[
1

γ

∫
Ω

g(x)|t−u u|γdx
]2r+1

.
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This implies that

β′′
t−u u,λ

(1) =
(
p(α+ 1)− γ(2r + 1)

)
||t−u u||p(α+1)

+
(
γ(2r + 1)− q

) ∫
Ω

f(x)|t−u u|qdx < 0.

Consequently t−u u ∈ N−
λ .

(ii) Consider u ∈ X such that assumptions appeared in Proposition 2.5 (ii)
hold. Without loss of generality we can assume that ||u|| = 1. Let

h1(t) := tp(α+1)−q − λ

∫
Ω

f(x)|u|qdx− tγ(2r+1)−q

[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

.

Then β′
u,λ(t) = tq−1h1(t). It is easy to see that the equation β′

u,λ(t) = 0

has at most two positive solutions. Using the assumptions q < p(α + 1) and∫
Ω
f(x)|u|qdx > 0, we have β′

u,λ(t) < 0 for t small enough. Also from the

conditions p(α+1) < γ(2r+1) and
∫
Ω
g(x)|u|γdx > 0 we have limt→∞ β′

u,λ(t) =

−∞. Let us to show that the equation β′
u,λ(t) = 0 has at least two positive

solutions. To this end, it is enough to prove that there exists s > 0 such that
β′
u,λ(s) > 0. Define

h(t) := tp(α+1)−q − λ||f ||∞S
− q

p
q −

( ||g||∞
γS

γ
p
γ

)2r+1
tγ(2r+1)−q

Then h(t) attains its maximum at

tmax =

(
p(α+ 1)− q( ||g||∞

γS
γ
p
γ

)2r+1(
γ(2r + 1)− q

)) 1
γ(2r+1)−p(α+1)

,

and since λ < λ1, h(tmax) > 0. Thus by the Sobolev inequality we have
β′
u,λ(tmax) = tq−1

maxh1(tmax) ≥ tq−1
maxh(tmax) > 0. Then β′

u,λ(t) = 0 has ex-

actly two positive solutions t+u and t−u which are respectively points of a local
minimum and a local maximum for βu,λ(t). Since βu,λ(t) has only two local ex-
trema, β′

u,λ(t) < 0 for t small enough and limt→∞ β′
u,λ(t) = −∞, then t+u < t−u ,

t−u u ∈ N−
λ and t+u u ∈ N+

λ .
(iii). Since q < p(α + 1) and in view of assumptions in Proposition 2.5 (iii),
we conclude that β′

u,λ(t) < 0 for t small enough and limt→∞ β′
u,λ(t) = +∞.

Then β′
u,λ(t) = 0 has at least one solution in (0,∞). Similar to the proof of

Proposition 2.5 (i), we can show that there exists a unique t+u > 0 such that
t+u u ∈ N+

λ . □
Lemma 2.6. Suppose that 0 < λ < λ0. Then

(i) N−
λ is a closed C1-manifold which is bounded away from zero;

(ii) If u ̸= 0 is a critical point of Jλ|N−
λ

then it is a critical point of Jλ;

(iii) Jλ|N−
λ

satisfies (PS)c condition for all c ∈ R.
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Proof. (i) Let u ∈ N−
λ . Then

β′′
u,λ(1) =

(
p(α+1)− q

)
||u||p(α+1)−

(
(2r+1)γ− q

)[ 1
γ

∫
Ω

g(x)|u|γdx
]2r+1

< 0.

Using the Sobolev inequality we have(
p(α+ 1)− q

)
||u||p(α+1) ≤

(
(2r + 1)γ − q

)
×

(
||g||∞S

−γ
p

γ

γ

)2r+1

||u||γ(2r+1).(2.10)

Since p(α+1) < (2r+1)γ, inequality (2.10) implies that N−
λ is bounded away

from zero. In particular, for any u ∈ N−
λ we have

(2.11) ||u|| ≥
( (

p(α+ 1)− q
)
γ2r+1(

(2r + 1)γ − q
)(
||g||∞S

−γ
p

γ

)2r+1

) 1
γ(2r+1)−p(α+1)

.

Now define φλ : X → R by

φλ(u) = ⟨J ′
λ(u), u⟩ = ||u||pM(||u||p)− λ

∫
Ω

f(x)|u|qdx(2.12)

−
[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

.

Thus φλ ∈ C1(X,R) and N−
λ = φ−1

λ (0) \ [{0} ∪N+
λ ]. Since N0

λ = ∅ and N−
λ is

bounded away from zero, we have

N−
λ ∩ [N+

λ ∪ {0}] = ∅,

and this implies that N−
λ is closed. By the definition of N−

λ ,

⟨φ′
λ(u), u⟩ = β′′

u,λ(1) < 0,

for each u ∈ N−
λ . Then each point of N−

λ is regular for φλ and this completes
the proof of Lemma 2.6 (i).
(ii) Since N0

λ = ∅ and using Lemma 2.6 (i), N−
λ is bounded away from N+

λ ∪{0}.
Then there exists an open set A ⊂ X such that N−

λ = {u ∈ A : φλ(u) = 0}.
Now, let u ∈ N−

λ be a critical point of Jλ constrained to N−
λ . Then there exists

a Lagrange multiplier δ ∈ R such that

⟨J ′
λ(u), v⟩ = δ⟨φ′

λ(u), v⟩, for every v ∈ X.

Since J ′
λ(u)|Ru ≡ 0 and ⟨φ′

λ(u), u⟩ = β′′
u,λ(1) < 0, we deduce that δ = 0. Then

u is a critical point of Jλ in X.
(iii) By Lemma 2.3 every constrained (PS)c sequence for Jλ is bounded. The
rest of the proof is similar to the proof of Lemma 3.2 in [13] and we omit it. □
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In the next lemma we prove that Jλ has different minimum energy levels on
N−

λ and N+
λ . First we need some notations. Define

c+λ = inf
u∈N+

λ

Jλ(u), c
−
λ = inf

u∈N−
λ

Jλ(u),

λ2 =

(
(2r + 1)γ − p(α+ 1)

)
qS

q
p
q(

(2r + 1)γ − q
)
p(α+ 1)||f ||∞

×
( (

p(α+ 1)− q
)
γ2r+1(

(2r + 1)γ − q
)(
||g||∞S

−γ
p

γ

)2r+1

) p(α+1)−q
γ(2r+1)−p(α+1)

.

Proposition 2.7. Assume that 0 < λ < min{λ0, λ1, λ2}. Then we have

(i) c+λ < 0.

(ii) There exists constant c0 > 0, such that c−λ ≥ c0.

Proof. (i) Let u ∈ N+
λ . Then β′′

u,λ(1) > 0 and this implies that

−
(
(2r + 1)γ − p(α+ 1)

)
||u||p(α+1) > −

(
(2r + 1)γ − q

)
λ

∫
Ω

f(x)|u|qdx.

Then

Jλ(u) =
( 1

p(α+ 1)
− 1

γ(2r + 1)

)
||u||p(α+1)

−
(1
q
− 1

γ(2r + 1)

)
λ

∫
Ω

f(x)|u|qdx

≤ −
(
(2r + 1)γ − p(α+ 1)

)(
p(α+ 1)− q

)
(2r + 1)γp(α+ 1)q

||u||p(α+1) < 0.

Consequently c+λ < 0.

(ii) Assume that u ∈ N−
λ . Then we have (2.11). By the Sobolev inequality we

get

Jλ(u) ≥
( 1

p(α+ 1)
− 1

γ(2r + 1)

)
||u||p(α+1)

−
(1
q
− 1

γ(2r + 1)

)
λ||f ||∞S

−q
p

q ||u||q

≥
( (

p(α+ 1)− q
)
γ2r+1(

(2r + 1)γ − q
)(
||g||∞S

−γ
p

γ

)2r+1

) q
γ(2r+1)−p(α+1)

×
[
(2r + 1)γ − p(α+ 1)

(2r + 1)γp(α+ 1)

( (
p(α+ 1)− q

)
γ2r+1(

(2r + 1)γ − q
)(
||g||∞S

−γ
p

γ

)2r+1

) p(α+1)−q
γ(2r+1)−p(α+1)

− λ
( (2r + 1)γ − q

(2r + 1)γq

)
||f ||∞S

−q
p

q

]
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The condition λ < λ2 completes the proof. □

In order to prove Theorem 1.1 (ii), we need to recall the Krasnoselskii genus
[20] and a result about critical points of functionals on C1-submanifolds [21].
Let

(2.13) Σ = {A ⊂ X : A is closed, A = −A}.
For A ̸= ∅ and A ∈ Σ, the Krasnoselskii genus of A is defined as the least
integer n such that there exists an odd function f ∈ C(A,Rn \ {0}) and is
denoted by γ(A). Set γ(∅) = 0 and γ(A) = ∞ if there exists no f with the
above property for any n. Now we recall a consequence of Corollary 4.1 in [21].

Theorem 2.8. Suppose that M is a closed symmetric C1-submanifold of a real
Banach space X and 0 /∈ M . Assume that J ∈ C1(M,R) is even and bounded
below. Define

cj := sup
A∈Γj

inf
u∈A

J(u),

where

Γj := {A ⊂M : A = −A, A is compact, γ(A) ≥ j}.(2.14)

If Γj ̸= ∅ for all j ≥ 1 and if J satisfies the (PS)c condition for all c ∈ R, then
all cj are critical values of J and cj → ∞ as j → ∞.

The last part of the above theorem cj → ∞, doesn’t exist in [21], but
by a deformation lemma for functionals on C1-manifolds [6] and a standard
argument ( [19] Proposition 9.33), one can show that cj → ∞.

Proof of Theorem 1.1. Assume that λ̄ = min{λ0, λ1, λ2} and 0 < λ < λ̄.
(i) Using Lemma 2.6 and Proposition 2.7, N−

λ is C1 closed manifold and Jλ
is bounded from below on N−

λ . Then by the Ekeland variational principle

[23], there exists a constrained Palais-Smale sequence {un} ⊂ N−
λ such that

Jλ(un) → c−λ .Using Lemmas 2.2 and 2.3, there exists u− ∈ X such that un →
u− up to a subsequence. Thus

Jλ(u
−) = c−λ > 0.

This implies that u− ̸= 0 and by Lemma 2.1, J ′
λ(u

−) = 0.
Since N+

λ is not a closed submanifold, we cannot use the above method to
obtain a (PS)c+λ

minimizing sequence. We continue the proof as follows.

By Proposition 2.7, we have

c+λ = inf
u∈N+

λ

Jλ(u) = inf
u∈Nλ

Jλ(u) < 0.

Using Lemma 2.3, Jλ is bounded from below on N+
λ . Hence there exists a

sequence {un} ⊂ N+
λ such that

lim
n→∞

Jλ(un) = c+λ ,
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By the compact embedding X ↪→ Ls(Ω) for 1 ≤ s < p∗ and since Jλ is coercive
(cf. Lemma 2.3), {un} is bounded. Then there exists u+ ∈ X such that
un ⇀ u+ and un → u+ in Ls(Ω) for 1 ≤ s < p∗, up to a subsequence. Now we
show that un → u+ strongly in X. Arguing by contradiction, assume that

(2.15) ||u+|| < lim inf
n→∞

||un||,

By this fact that β′′
un,λ

(1) > 0 for any n ∈ N, we have

(2.16) lim inf
n→∞

||un||p(α+1) ≤
(
(2r + 1)γ − q

)
λ

(2r + 1)γ − p(α+ 1)

∫
Ω

f(x)|u+|qdx.

Since c+λ < 0, we conclude {un} is bounded away from zero. Thus (2.16) implies
that

∫
Ω
f(x)|u+|qdx > 0. Hence u+ ̸= 0 and using Propositions 2.5 there exists

tu+ > 0 such that tu+u+ ∈ N+
λ . Then

J(tu+u+) ≥ c+λ = lim
n→∞

Jλ(un)

≥ (
1

p(α+ 1)
− 1

γ(2r + 1)
)||u+||p(α+1)

− (
1

q
− 1

γ(2r + 1)
)λ

∫
Ω

f(x)|u+|qdx,

and consequently

(
1

p(α+ 1)
− 1

γ(2r + 1)
)(t

p(α+1)
u+ − 1)||u+||p(α+1) ≥(2.17)

(
1

q
− 1

γ(2r + 1)
)(tqu+ − 1)λ

∫
Ω

f(x)|u+|qdx.

Inequalities (2.15)-(2.17) imply that 0 < tu+ ≤ 1. Using Proposition 2.7, for
any n ∈ N, the first positive critical point of βun,λ(t) is a local minimum point.
Since βun,λ(t) is decreasing on (0, 1), we have

β′
un,λ(t

+
u ) ≤ 0,

for any n ∈ N. Subsequently we get

lim inf
n→∞

(
t
p(α+1)−1
u+ ||un||p(α+1) − λtq−1

u+

∫
Ω

f(x)|un|qdx(2.18)

− t
(2r+1)γ−1
u+

[
1

γ

∫
Ω

g(x)|un|γdx
]2r+1)

= lim inf
n→∞

t
p(α+1)−1
u+ ||un||p(α+1)

−
(
tq−1
u+ λ

∫
Ω

f(x)|u|qdx+ t
(2r+1)γ−1
u+

[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1)

≤ 0.
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Since β′
tu+u+,λ(1) = 0, we obtain

t
p(α+1)−1
u+ ||u+||p(α+1) =tq−1

u+ λ

∫
Ω

f(x)|u+|qdx(2.19)

+ t
(2r+1)γ−1
u+

[
1

γ

∫
Ω

g(x)|u+|γdx
]2r+1

.

Finally (2.18) and (2.19) imply that

lim inf
n→∞

||un||p(α+1) ≤ ||u+||p(α+1),

and it contradicts (2.15). Therefor, un → u+ strongly and tu+ = 1. Subse-
quently, Jλ(u

+) = c+λ and by Lemma 2.1, J ′(u+) = 0. Since N+
λ ∩ N−

λ = ∅,
then u+ and u− are two distinct nontrivial solutions.
(ii) By Lemmas 2.2, 2.3 and 2.6, all conditions appeared in Theorem 2.8 are
satisfied if we show that Γj ̸= ∅ for j ≥ 1 where

Γj := {A ⊂ N−
λ : A = −A, A is compact, γ(A) ≥ j}.

Let Xj be a subspace spanned by j linearly independent functions vk ∈ C∞
0 (Ω)

such that supp vk ⊂ Ω+
g \ Ω+

f and assume that

Sj−1 := Xj

∩
{u ∈ X : ||u|| = 1}.

Then by Proposition 2.7, for any u ∈ Sj−1 there exists unique tu > 0 such
that tuu ∈ N−

λ . Thus ψ : Sj−1 → N−
λ given by ψ(u) = tuu, is well defined.

Since β′′
u,λ(tu) < 0, by the implicit function theorem the mapping u → tu is

continuous. Therefore, Aj := ψ(Sj−1) is homeomorphic to Sj−1. Using the
properties of genus we have γ(Aj) = γ(Sj−1) = j (see [20], Section II.5) and
this implies that Γj is not empty for j ≥ 1. □

3. The case p(α+ 1) < q

In this section, first we prove some properties of the Nehari manifold and
fibring maps. Throughout this section we assume that g ≥ 0 on Ω.

Lemma 3.1. Suppose that λ > 0. Then

(i) Nλ is a closed C1-manifold which is bounded away from zero. Moreover
Jλ(u) > 0 for all u ∈ Nλ.

(ii) u ̸= 0 is a critical point of Jλ if and only if it is a critical point of
Jλ|Nλ

, and {un} ⊂ Nλ is a (PS)c sequence for Jλ if and only if it is a
(PS)c sequence for Jλ|Nλ

(iii) Jλ|Nλ
satisfies the (PS)c condition for all c ∈ R.

Proof. (i) Let u ∈ Nλ, then then from the Sobolev inequality we have

||u||p(α+1) ≤ λ||f ||∞S
−q
p

q ||u||q +
(
||g||∞S

−γ
p

γ

γ

)2r+1

||u||γ(2r+1).
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Since p(α+1) < q < γ(2r+1), the above inequality implies that Nλ is bounded
away from 0. Now we show that it is a closed C1-manifold. Similar to the
proof of Lemma 2.6, we consider φλ : X → R defined by (2.12). Then Nλ =
φ−1
λ (0) \ {0}. Since Nλ is bounded away from 0, Nλ is closed. Now we prove

that every point of Nλ is regular for φλ. Arguing by contradiction, assume
that u ∈ Nλ with ⟨φ′

λ(u), u⟩ = 0. Then

||u||p(α+1) = λ

∫
Ω

f(x)|u|qdx+

[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

,

and

p(α+ 1)||u||p(α+1) = qλ

∫
Ω

f(x)|u|qdx+ γ(2r + 1)

[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

.

Consequently

(3.1) (p(α+ 1)− q)||u||p(α+1) = (γ(2r + 1)− q)

[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

.

Since
∫
Ω
g(x)|u|γdx ≥ 0, from (3.1) we get u = 0 and this contradicts u ∈ Nλ.

Thus every point of Nλ is regular for φλ. Also for each u ∈ Nλ we get

Jλ(u) =
( 1

p(α+ 1)
− 1

q

)
||u||p(α+1)(3.2)

+ (
1

q
− 1

γ(2r + 1)
)

[
1

γ

∫
Ω

g(x)|u|γdx
]2r+1

≥
( 1

p(α+ 1)
− 1

q

)
||u||p(α+1).

Hence, Jλ(u) ≥ 0 and it completes the proof.
(ii) The proof is similar to proof of Lemma 2.6 (ii) and we omit it.
(iii) Let {un} ⊂ Nλ be a (PS)c sequence for Jλ. Then similar to (3.2), we have

Jλ(un) ≥
( 1

p(α+ 1)
− 1

q

)
||un||p(α+1).

Thus {un} is bounded and there exists u ∈ X such that un ⇀ u and up to
a subsequence. Similar to the proof of Lemma 3.2 in [13], using the compact
embedding X ↪→ Ls(Ω) for 1 ≤ s < p∗ we can prove that un → u strongly in
X. □

In the next lemma, we study the behavior of fibering maps.

Lemma 3.2. Let λ > 0 and u ∈ X. If
∫
Ω
g(x)|u|γdx > 0, then the equation

β′
u,λ(t) = 0 has a unique positive solution tu such that tuu ∈ Nλ.
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Proof. Consider u ∈ X with
∫
Ω
g(x)|u|γdx > 0. Since p(α+1) < q < γ(2r+1),

we get limt→∞ β′
u,λ(t) = −∞ and β′

u,λ(t) > 0 for t > 0 small enough. Then

there exists tu > 0 such that β′
u,λ(tu) = 0 and tuu ∈ Nλ. If β′

u,λ(t1) =

β′
u,λ(t2) = 0, then (2.8) holds and consequently we have

(t1t2)
p(α+1)

(
t
q−p(α+1)
2 − t

q−p(α+1)
1

)
||u||p(α+1) =

(t1t2)
q
(
t
γ(2r+1)−q
1 − t

γ(2r+1)−q
2

)[ 1
γ

∫
Ω

g(x)|u|γdx
]2r+1

.

Thus from the condition
∫
Ω
g(x)|u|γdx > 0, we obtain t1 = t2. Then β

′
u,λ(t) = 0

has a unique positive solution. □

Proof of Theorem 1.2. . Let λ > 0. Using Lemma 3.1, Nλ is a closed
symmetric C1-submanifold, 0 ̸∈ Nλ and Jλ is bounded from below on Nλ.
Then by Theorem 2.8 and Lemma 3.1 (ii), the proof will be complete if we
show that Γj defined by

Γj := {A ⊂ Nλ : A = −A, A is compact, γ(A) ≥ j},

is nonempty for j ≥ 1. Similar to the proof of Theorem 1.1 (ii), let Xj be a
subspace of X spanned by j linearly independent functions vk ∈ C∞

0 (Ω) such
that supp vk ⊂ Ω+

g and assume that

Sj−1 := Xj

∩
{u ∈ X : ||u|| = 1}.

For any u ∈ Sj−1, we have
∫
Ω
g(x)|u|γdx > 0. Then by Lemma 3.2, there exists

a unique tu > 0 such that tuu ∈ Nλ. Thus Similar to the proof of Theorem 1.1
(ii), we have Γj ̸= ∅ for j ≥ 1. □
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