The existence of global attractor for a Cahn-Hilliard/Allen-Cahn‎ ‎equation

Document Type : Research Paper


1 Department of Mathematics‎, ‎Jilin University‎, ‎Changchun 130012‎, ‎P.R. China and School of Science, Changchun University, Changchun 130022, P.R. China.

2 Department of Mathematics‎, ‎Jilin University‎, ‎Changchun 130012‎, ‎P.R. China.

3 Department of Mathematics‎, ‎Changchun Normal University‎, ‎Chang-chun‎ 130032, ‎P.R. China and Academy of Mathematics and Systems Science‎, ‎Chinese Academy of Sciences‎, ‎Beijing‎, ‎100190‎, ‎P‎.‎R‎. ‎China.


In this paper, we consider a Cahn-Hillard/Allen-Cahn equation. By using the semigroup and the classical existence theorem of global attractors, we give the existence of the global attractor in $H^k(0<=k<5)$ space of this equation, and it attracts any bounded subset of $H^k(\omega)$ in the $H^k$-norm.


Main Subjects

R. A. Adams, Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press, A subsidiary of Harcourt Brace Jovanovich, Publishers, New York-London, 1975.
D. C. Antonopoulou, G. Karali and A. Millet, Existence and regularity of solution for a stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion, J. Differential Equations 260 (2016), no. 3, 2383--2417.
J. L. Boldrini and P. N. Da Silva, A generalized solution to a Cahn-Hilliard/Allen-Cahn System, Electron. J. Differential Equations 2004 (2004), no. 126, 24 pages.
M. Gokieli and A. Ito, Global attractor for the Cahn-Hilliard/Allen-Cahn system, Non-linear Analysis 52 (2003), no. 7, 1821--1841.
M. Gokieli and L. Marcinkowski, Discrete Approximation of the Cahn-Hilliard/Allen-Cahn System with Logarithmic Entropy, Japan J. Indust. Appl. Math. 20 (2003), no. 3, 321--351.
G. Karali and M. A. Katsoulakis, The role of multiple microscopic mechanisms in cluster interface evolution, J. Differential Equations 235 (2007), no. 2, 418--438.
G. Karali and Y. Nagase, On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation, Discrete Contin. Dyn. Syst. Ser. S 7 (2014), no. 1, 127--137.
G. Karali and T. Ricciardi, On the convergence of a fourth order evolution equation to the Allen-Cahn equation, Nonlinear Anal. 72 (2010), no. 11, 4271--4281.
D. Li and C. Zhong, Global attractor for the Cahn-Hilliard system with fast growing nonlinearity, J. Differential Equations 149 (1998), no. 2, 191--210.
T. Ma and S. Wang, Stability and Bifurcation of Nonlinear Evolution Equations, Science Press, Beijing, 2006.
A. Novick-Cohen and L. P. Hari, Geometric motion for a degenerate Allen-Cahn/Cahn-Hilliard system: The partial wetting case, Phys. D 209 (2005), no. 1-4, 205--235.
A. Novick-Cohen, Triple-junction motion for an Allen-Cahn/Cahn-Hilliard system, Phys. D 137 (2000), no. 1-2, 1--24.
L. Song, Y. Zhang and T. Ma, Global attractor of a modified Swift-Hohenberg equation in Hk spaces, Nonlinear Anal. 72 (2010), no. 1, 183--191.
L. Song, Y. Zhang and T. Ma, Global attractor of the Cahn-Hilliard equation in Hk spaces, J. Math. Anal. Appl. 355 (2009), no. 1, 53--62.
L. Song, Y. He and Y. Zhang, The existence of global attractors for semilinear parabolic equation in Hk spaces, Nonlinear Anal. 68 (2008), no. 11, 3541--3549.
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988
H. Wu and S. M. Zheng, Global attractor for the 1-D thin film equation, Asymptot. Anal. 51 (2007), no. 2, 101--111.
X. Zhao and C. Liu, The existence of global attractor for a fourth-order parabolic equation, Appl. Anal. 92 (2013), no. 1, 44--59.