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Abstract. In this paper, we consider a Cahn-Hilliard/Allen-Cahn equa-

tion. By using the semigroups and the classical existence theorem of
global attractors, we give the existence of the global attractor in Hk

(0 ≤ k < 5) space of this equation, and it attracts any bounded subset of
Hk(Ω) in the Hk-norm.
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1. Introduction

In this article, we consider a scalar Cahn-Hilliard/Allen-Cahn equation

(1.1) ut = −∆[γ∆u− f(u)] + [∆u− f(u)], γ > 0, x ∈ Ω,

with the boundary condition

(1.2) u|∂Ω = ∆u|∂Ω = 0,

and the initial value condition

(1.3) u(x, 0) = u0(x), inΩ,

where Ω is a smooth bounded domain in Rn(n ≤ 2), γ > 0 is a diffusion
constant and

∫ u

0
f(s)ds is a quartic bistable potential which has zeros at ±1.

In this paper, for simplicity, we set f(u) = u3 − u.
In recent years, the Cahn-Hilliard/Allen-Cahn equation has been studied in

different aspects, such as geometric motion [11], triple-junction motion [12], the
global attractor for the related dynamical system [4], discrete approximation
with logarithmic entropy [5], the generalized solution [3].
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Equation (1.1) is introduced by Karali and Katsoulakis [6] as a simplification
of a mesoscopic model for multiple microscopic mechanisms model in surface
processes. G. Karali and Y. Nagase [7] considered a Cahn-Hilliard/Allen-Cahn
equation. They only provided existence of the solution for the deterministic
case. Then Antonopoulou, Karali and Millet [2] studied the stochastic case for
such an equation in the paper. They proved the existence of a global solu-
tion, under a specific sub-linear growth condition for the diffusion coefficient.
Path regularity in time and in space was also studied. In addition, Karali and
Ricciardi [8] constructed special sequences of solutions to a fourth order non-
linear parabolic equation of the CH/AC equation, converging to the second
order Allen-Cahn equation. They studied the equivalence of the fourth order
equation with a system of two second order elliptic equations.

The dynamic properties of the equation (1.1), such as the global asymptotical
behaviours of solutions and existence of global attractors, are important for the
study of fourth-order parabolic system. During the past years, many authors
have paid much attention to the attractors of Cahn-Hilliard equation or thin-
film equation [9, 14,17,18].

In this paper, we discuss the existence of global attractors for problem (1.1)-
(1.3). By using the estimates of semigroups and the classical existence theorem
of global attractors, we give the two main theorems about the existence of
global attractor, then we prove the problem possesses global attractor and the
existence of global attractors in the Hk space.

2. Preliminary and the main results

In this article, we assume that m(u) is the average of u, such that

m(u) =
1

|Ω|

∫
Ω

u(x)dx.

We let

Uk = {u|u ∈ H2(Ω), |m(u)| ≤ k}.
The following results on global existence of solution to the problem (1.1)-(1.3)
have been proved in [7].

Lemma 2.1. Suppose that Ω is a bounded domain in R2 with smooth boundary
∂Ω, and u0 ∈ Uk, then problem (1.1)-(1.3) admits a unique solution u such
that

u ∈ C([0, T ];H1(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ L4(Ω× (0, T )) for all T > 0.

By Lemma 2.1, we can define the operator semigroup S{(t)}t≥0 as

S(t)u0 = u(t), ∀u0 ∈ Uk, t ≥ 0,

where u(t) is the solution of (1.1)-(1.3) corresponding to initial value u0. It is
obviously that the operator semigroup {S(t)}t≥0 is continuous.
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The following lemma is the classical existence theorem of global attractor
by Temam [16].

Lemma 2.2. Assume that S(t) is the semigroup generated by Equation (1.1),
and the following conditions hold:

(1) for any bounded set A ⊂ L2(Ω), there exists a time tA ≥ 0 such that
S(t)u0 ∈ B, ∀u0 ∈ A and t > tA;

(2) for any bounded set U ⊂ L2(Ω) and some T > 0 sufficiently large, the

set ∪t≥TS(t)u is compact in X.

Then the ω-limit set A = ω(B) of B is a global attractor of Equation (1.1),
and A is connected providing B is connected.

Theorem 2.3. Assume that Ω denotes an open bounded domain in R2, then
the semi-flow associated with the solution u of the problem (1.1)-(1.3) possesses
a global attractor A in space Uk which attracts all the bounded set in Uk.

In order to consider the global attractor for Equation (1.1) in Hk space, we
introduce the definition as follows:

H = {u ∈ L2(Ω), |m(u)| ≤ k},
H 1

2
= {u ∈ H2(Ω) ∩H, u|∂Ω = 0},

H1 = {u ∈ H4(Ω) ∩H, u|∂Ω = ∆u|∂Ω = 0}.
The following lemmas can be found in [13–15].

Lemma 2.4. Let u(t, u0) = S(t)u0 (u0 ∈ H, t ≥ 0) be a solution of (1.1), and
S(t) be the semigroup generated by (1.1). Let Hα be the fractional order space
generated by L and assume

(1) for some α ≥ 0, there is a bounded set B ⊂ Hα, which means that for
any u0 ∈ Hα, there exists tu0 > 0 such that u(t, u0) ∈ B, ∀t > tu0 ;

(2) there is a β > α, for any bounded set U ⊂ Hβ, and there are T > 0
and C > 0, such that ∥u(t, u0)∥Hβ

≤ C, ∀t > T, u0 ∈ U .

Then (1.1) has a global attractor A ⊂ Hα which attracts any bounded set of
Hα in the Hα-norm.

Lemma 2.5. Let L be a sectorial operator which generates an analytic semi-
group T (t) = etL. If all eigenvalues λ of L satisfy Reλ < −λ0 for some real
number λ0 > 0, then for L α(L = −L), we have

(1) T (t) : H → Hα is a bounded for all α ∈ R, and t > 0;
(2) T (t)L αx = L T (t)(x), ∀x ∈ Hα;
(3) for each t > 0, L αT (t) is bounded, and ∥L αT (t)∥ ≤ Cαt

−αe−δt, where
some δ > 0, Cα > 0 is a constant only depending on α;

(4) The Hα - norm can be defined by ∥x∥Hα = ∥L αx∥H .

The main results is the following.
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Theorem 2.6. Assume that Ω denotes an open bounded domain in R2, then
for all k satisfying 0 ≤ k < 5, the semi-flow associated with the solution u of the
problem (1.1)-(1.3) possesses a global attractor A in space Hk which attracts
all the bounded set Hk of in the Hk-norm.

3. Proofs of main results

In this section, we prove Theorem 2.3 and 2.6. Firstly, we establish some
priori estimates for the solution u of problem (1.1)-(1.3). We always assume
that {S(t)}t≥0 is the semigroup generated by the weak solution of Equation
(1.1) with initial data u0 ∈ Uk. Then, the following lemma can be obtained.

Lemma 3.1. There exists a bounded set B whose size depends only on k and
Ω in Uk, such that for all the orbits starting from any bonded set B in Uk,
∃ t0 = t0(B) ≥ 0 s.t. ∀ t ≥ t0 , all the orbits will stay in B.

Proof. It suffices to prove that there is a positive constant C such that for large
t, the following holds

∥u(t)∥H2 ≤ C.

We prove the lemma in the following steps.
Step 1. Multiplying (1.1) with u, and integrating it over Ω, we obtain

1

2

d

dt
∥u∥2 + γ∥∆u∥2 + ∥∇u∥2 +

∫
Ω

f(u)udx = −
∫
Ω

f ′(u)|∇u|2dx.

A simple calculation shows that

f ′(u) = 3u2 − 1 ≥ −C0, C0 > 0,

hence

1

2

d

dt
∥u∥2 + γ∥∆u∥2 + ∥∇u∥2 + ∥u∥44

≤ C0

2
∥u∥2 + ∥u∥2 + C0

2
∥∆u∥2,

that is

1

2

d

dt
∥u∥2 + (γ − C0

2
)∥∆u∥2 ≤ (

C0

2
+ 1)∥u∥2.

In addition, using the Poincaré inequality, we get

∥u∥2 ≤ C1∥∇u∥2 + C2,

C1∥∇u∥2 ≤ 1

2
∥u∥2 +m∥∆u∥2,

where C1, C2 only depend on n and m. m(m > 0) is a constant, then

∥u∥2 ≤ 2m∥∆u∥2 + 2C2.



647 Tang, Liu and Zhao

Therefore,

1

2

d

dt
∥u∥2 + (

γ

2m
− C0

4m
− C0

2
− 1)∥u∥2 ≤ (γ − C0

2
)
C2

m
.

Let γ satisfy γ
2m − C0

4m − C0

2 − 1 ≥ 0, owning to the above inequality, we finally
arrive at

∥u∥2 ≤ e−( γ
2m− C0

4m−C0
2 −1)t∥u0∥2 +

2C2(2γ − C0)

2γ − C0 − 2C0m− 4m
.

Thus, for initial data in any bounded set B ⊂ Uk, there is a uniform time t1(B)
depending on B such that for t ≥ t1(B),

(3.1) ∥u∥2 ≤ 4C2(2γ − C0)

2γ − C0 − 2C0m− 4m
.

Step 2. Multiplying (1.1) with ∆u, and integrating it over Ω, we obtain

1

2

d

dt
∥∇u∥2 + γ∥∇∆u∥2 +

∫
Ω

|∆u|2dx

= −6

∫
Ω

u|∇u|2∆udx−
∫
Ω

(3u2−1)|∆u|2dx+

∫
Ω

(u3 − u)∆udx,

that is

1

2

d

dt
∥∇u∥2 + γ∥∇∆u∥2 +

∫
Ω

|∆u|2dx

≤ 3

∫
Ω

u2|∆u|2dx+ 3

∫
Ω

|∇u|4dx−
∫
Ω

3u2|∆u|2dx

+

∫
Ω

|∆u|2dx+ κ

∫
Ω

(u3 − u)2dx+ κ

∫
Ω

|∆u|2dx

≤ C3∥∇u∥44 + C3∥∆u∥2 + C3

∫
Ω

(u3 − u)2dx.

On the other hand, using Nirenberg’s inequality, we know

∥∇u∥4 ≤ C4∥∇∆u∥ 1
3+

n
12 ∥u∥ 2

3−
n
12 + C ′

4∥u∥, (n ≤ 2),

∥u∥6 ≤ C4∥∇∆u∥n
9 ∥u∥1−n

9 + C ′
4∥u∥, (n ≤ 2).

That is

C3∥∇u∥44 ≤ γ

2
∥∇∆u∥2 + C5,

C3∥u∥66 ≤ C6∥∇∆u∥2 + C ′
6.

We also have

C3∥∆u∥2 ≤ γ

2
∥∇∆u∥2 + C7,

and

C3

∫
Ω

(u3 − u)
2
dx ≤ γ

2
∥∇∆u∥2 + C8.
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Hence,
1

2

d

dt
∥∇u∥2 + γ

2
∥∇∆u∥2 ≤ C5 + C7 + C8.

On the other hand, we know

∥∇u∥2 ≤ C9∥∇∆u∥ 2
3 ≤ C ′

9∥∇∆u∥2 + C ′′
9 .

So

d

dt
∥∇u∥2 + γ

C ′
9
∥∇u∥2 ≤ 2(C5 + C7 + C8) +

γ

C ′
9
C ′′

9 ,

which gives

∥∇u∥2 ≤ e
− γ

C′
9
t
+

2(C5 + C7 + C8)C
′
9 + γC ′′

9

γ
.

Thus, for initial data in any bounded set B ⊂ Uk, there is a uniform time t2(B)
depending on B such that for t ≥ t2(B),

(3.2) ∥∇u(x, t)∥2 ≤ 2
2(C5 + C7 + C8)C

′
9 + γC ′′

9

γ
.

Step 3. Multiplying (1.1) with ∆2u and integrating it over Ω, we obtain

1

2

d

dt
∥∆u∥2 + γ∥∆2u∥2 + ∥∇∆u∥2 =

∫
Ω

∆f(u)∆2udx−
∫
Ω

f(u)∆2udx.

Hence,

1

2

d

dt
∥∆u∥2 + γ∥∆2u∥2 + ∥∇∆u∥2 ≤ C10∥∆f(u)∥2 + C11∥f(u)∥2 +

1

2
∥∆2u∥2.

On the other hand, we know

C10∥∆f(u)∥2 ≤ 2C10

(∫
Ω

|f ′(u)|2|∆u|2dx+

∫
Ω

|f ′′(u)|2|∇u|4dx
)

≤ C12

[(∫
Ω

|∆u|6dx
) 1

3

+
(∫

Ω

|∇u|6dx
) 2

3 ]
,

and

∥f(u)∥2 =

∫
Ω

(u3 − u)
2
dx ≤ C13.

Using Nirenberg’s inequality, we have

∥∇u∥6 ≤ C14∥∆2u∥n
9 ∥∇u∥1−n

9 +C ′
14∥∇u∥, (n ≤ 2),

∥∆u∥6 ≤ C15∥∆2u∥
3+n
9 ∥∇u∥1−

3+n
9 +C ′

15∥∇u∥, (n ≤ 2).

Again by Young’s inequality,

∥∆u∥26 ≤ C16∥∆2u∥ 10
9 + C ′

16 ≤ ε∥∆2u∥2 + Cε,

∥∇u∥46 ≤ C17∥∆2u∥ 8
9 + C ′

17 ≤ ε∥∆2u∥2 + Cε.
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Then,

d

dt
∥∆u∥2 + (2γ − 1)∥∆2u∥2 + 2∥∇∆u∥2

≤ 2C12[(

∫
Ω

|∆u|6)
1
3

+ (

∫
Ω

|∇u|6)
2
3

] + 2C11C13

≤ 4C12(ε∥∆2u∥2 + Cε) + 2C11C13.

Thus,

d

dt
∥∆u∥2 + (2γ − 4C12ε− 1)∥∆2u∥2 + 2∥∇∆u∥2 ≤ 4C12Cε + 2C11C13.

For ε small enough, we have

2γ − 4C12ε− 1 > 0.

And applying regularity theorem of elliptic operator, we get

d

dt
∥∆u∥2 + C18(2γ − 4C12ε− 1)(∥∆u∥2 + ∥∇∆u∥2)

≤4C12Cε + 2C11C13.(3.3)

By Grounwall’s inequality, when ∥∆u(0)∥ ≤ R, we have

∥∆u∥2 ≤ e−C18(2γ−4C12ε−1)t∥∆u0∥2 +
4C12Cε + 2C11C13

C18(2γ − 4C12ε− 1)

≤ 2
4C12Cε + 2C11C13

C18(2γ − 4C12ε− 1)
,(3.4)

for t ≥ t3(B) = 1
C18(2γ−4C12ε−1) ln

C18(2γ−4C12ε−1)R2

4C12Cε+2C11C13
.

Adding (3.1), (3.2), (3.4) together, we obtain

(3.5) ∥u(x, t)∥H2 ≤ C.

Let t0(B) = max{t1(B), t2(B), t3(B)}, then the lemma is proved. □

The above lemma implies that {S(t)}t>0 has a bounded absorbing set in
Uk. In what follows, we prove the precompactness of the orbit in Uk.

Lemma 3.2. For any initial data u0 in any bounded set B ⊂ Uk, there is
a T (B) > 0, such that ∥u(x, t)∥H3 ≤ C, ∀t ≥ T > 0, which turns out that
∪t≥Tu(t) is relatively compact in Uk.

Proof. The uniform bound of H2(Ω)-norm of u(t) has been obtained in Lemma
3.1. In the following, we derive the estimate on H3(Ω)− norm.

Acting ∆ on (1.1), we obtain

(3.6) ∆ut = −∆2(γ∆u− f(u)) + ∆(∆u− f(u)).
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Multiplying (3.6) by ∆2u and integrating on Ω, using the boundary conditions,
we obtain

1

2

d

dt
∥∇∆u∥2 + γ∥∇∆2u∥2 + ∥∆2u∥2

=

∫
Ω

∇∆f(u)∇∆2udx−
∫
Ω

∇f(u)∇∆2udx,

in which ∣∣∣∣∫
Ω

∇∆f(u)∇∆2udx

∣∣∣∣
≤

∫
Ω

|f ′(u)∇∆u∇∆2u|dx

+3

∫
Ω

|f ′′(u)∇u∆u∇∆2u|dx+

∫
Ω

|f ′′′(u)|∇u|2∇u∇∆2u|dx

≤ ε

(∫
Ω

|∇∆u∇∆2u|dx+3

∫
Ω

|∇u∆u∇∆2u|dx

+

∫
Ω

|∇u|2|∇u∇∆2u|dx
)

≤ ε′(∥∇∆u∥2 + ∥∇u∆u∥2 + ∥∇u∥66) + ε′′∥∇∆2u∥2,
and ∣∣∣∣∫

Ω

∇f(u)∇∆2udx

∣∣∣∣
=

∣∣∣∣∫
Ω

f ′(u)∇u∇∆2udx

∣∣∣∣ ≤ ε

∣∣∣∣∫
Ω

∇u∇∆2udx

∣∣∣∣
≤ ε′′(∥∇u∥2 + ∥∇∆2u∥2).

Hence,

1

2

d

dt
∥∇∆u∥2 + γ∥∇∆2u∥2 + ∥∆2u∥2

≤ ε′(∥∇∆u∥2 + ∥∇u∆u∥2 + ∥∇u∥66)

+ε′′∥∇∆2u∥2 + ε′′(∥∇u∥2 + ∥∇∆2u∥2).
On the other hand, we have

ε′∥∇u∆u∥2 ≤ C∥∇u∥2L∞∥∆u∥2 ≤ C19∥∇u∥2L∞ ,

∥∇u∥2L∞ ≤ C(∥∇∆2u∥
n
4 ∥∇u∥2−

n
4 + ∥∇u∥2) ≤ µ∥∇∆2u∥2 + Cµ,

∥∇u∥66 ≤ C(∥∇∆2u∥
n
2 ∥∇u∥6−

n
2 + ∥∇u∥6) ≤ µ∥∇∆2u∥2 + Cµ.

Therefore,

1

2

d

dt
∥∇∆u∥2 + γ∥∇∆2u∥2 + ∥∆2u∥2
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≤ ε′∥∇∆u∥2 + C19∥∇u∥2L∞

+ε′µ∥∇∆u∥2 + ε′Cµ + ε′′∥∇∆2u∥2 + C20 + ε′′∥∇∆2u∥2

≤ (ε′µ+ 2ε′′ + C19µ)∥∇∆2u∥2 + ε′∥∇∆u∥2

+C19Cµ + ε′Cµ + C20.

Thus,

1

2

d

dt
∥∇∆u∥2 + (γ − ε′µ− 2ε′′ − C19µ)∥∇∆2u∥2

≤ ε′∥∇∆u∥2 + C19Cµ + ε′Cµ + C20.(3.7)

Taking µ enough small, we have γ − ε′µ− 2ε′′ − C19µ > 0,

1

2

d

dt
∥∇∆u∥2 ≤ ε′∥∇∆u∥2 + C19Cµ + ε′Cµ + C20.(3.8)

On the other hand, integrating (3.3) between t and t+ 1, using (3.4), we have

C18(2γ − 4C12ε− 1)

∫ t+1

t

∥∇∆u∥2dτ

≤ ∥∆u(t)∥2 + 2
4C12Cε + 2C11C13

C18(2γ − 4C12ε− 1)
≤ C.(3.9)

Owning to (3.8), (3.9) and the uniform Gronwall inequality in [16], we get

∥∇∆u∥2 ≤ C, t ≥ 1.

The lemma is proved. □

Proof of Theorem 2.3. From above we conclude that Ak = ω(B), the ω-limit
set of absorbing setB is a global attractor inUk. By Lemma 3.2, this global
attractor is a bounded set inH3(Ω). Thus the proof of Theorem 2.3 is complete.

□

Corollary 3.3. Assume that Ω denotes an open bounded domain in R2, then
we have

(3.10) ∥u(t)∥∞ ≤ C,

(3.11) ∥∇u(t)∥∞ ≤ C.

Proof. Based on Lemma 3.1, we conclude (3.10). By (1.2), (1.3), (3.7), a simple
calculation shows that ∥∇∆u∥2 ≤ C.

Therefore, combination with Sobolev’s imbedding theorem [1], we have

∥∇u∥∞ ≤ C.

Then, the corollary is proved. □
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Based on [10], it is well-known that the solution u(t, u0) of problem (1.1)-
(1.3) can be written as

u(t, u0) = etLu0 +

∫ t

0

e(t−τ)LG(u)dx,

where let L = −∆2, G(u) = ∆(f(u) + u)− f(u).
Then

u(t, u0) = etLu0 +

∫ t

0

e(t−τ)L∆(f(u) + u)dτ −
∫ t

0

e(t−τ)Lf(u)dτ

= etLu0 +

∫ t

0

e(t−τ)L∆g1(u)dτ −
∫ t

0

e(t−τ)Lg2(u)dτ,(3.12)

where g1(u) = f(u) + u, g2(u) = f(u).

Lemma 3.4. Assume that Ω denotes an open bounded domain in R2, then for
any bounded set U ⊂ Hα, there exists C > 0 such that

(3.13) ∥u(t, u0)∥Hα ≤ C, ∀t ≥ 0, u0 ∈ U ⊂ Hα, 0 ≤ α <
5

4
.

Proof. For α = 1
2 , this follows Theorem 2.3, i.e., for any bounded set U ⊂ H 1

2
,

there is a constant C > 0 such that

∥u(t, u0)∥H 1
2

≤ C, ∀t ≥ 0, u0 ∈ U ⊂ H 1
2
.

Then, we prove (3.13) for any α > 1
2 . There are following steps.

Step 1. We prove that for any bounded set U ⊂ Hα(
1
2 ≤ α < 3

4 ), there
exists a constant C > 0 such that

(3.14) ∥u(t, u0)∥Hα ≤ C, ∀t ≥ 0, u0 ∈ U,
1

2
≤ α < 1.

In fact, by the compact embedding theorems of Rellich-Koapawes [1]:

Hα ↪→ W 1.2, Hα ↪→ C0
B(Ω),

we have,

∥g1(u)∥2H 1
4

=

∫
Ω

|∇g1(u)|2dx

≤
∫
Ω

|3u2∇u|2dx

≤ C

∫
Ω

(| u |2| ∇u |2)dx

≤ C(∥u∥2C0
B
∥u∥2w1.2)

≤ C∥u∥4Hα
,
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and

∥g2(u)∥2H 1
4

=

∫
Ω

|∇g2(u)|2dx

≤
∫
Ω

|∇u+ 3u2∇u|2dx

≤ C

∫
Ω

(| ∇u |2 + | u |2| ∇u |2)dx

≤ C(∥u∥2Hα
+ ∥u∥4Hα

),

which implies both g1 : Hα → H 1
4
and g2 : Hα → H 1

4
are bounded, then

∥g1(u(t, u0))∥H 1
4

< C, ∀t ≥ 0, u0 ∈ U, 1
2 ≤ α < 3

4 ,

∥g2(u(t, u0))∥H 1
4

< C, ∀t ≥ 0, u0 ∈ U, 1
2 ≤ α < 3

4 .

Then, we obtain

∥u(t, u0)∥Hα

≤ C∥u0∥Hα +

∫ t

0

∥(−L)
1
2+αe(t−τ)Lg1(u)∥Hdτ

+

∫ t

0

∥(−L)αe(t−τ)Lg2(u)∥Hdτ

≤ C∥u0∥Hα +

∫ t

0

∥(−L)
1
4+αe(t−τ)L∥ · ∥g1(u)∥H 1

4

dτ

+

∫ t

0

∥(−L)α−
1
4 et−τ∥ · ∥g2(u))∥H 1

4

dτ

≤ C∥u0∥Hα + C

∫ τ

0

τ−βe−δτdτ,

≤ C, ∀ t ≥ 0, u0 ∈ U ⊂ Hα,

where β = α+ 1
4 (0 < β < 1). Hence (3.14) is proved.

Step 2. We prove that for any bounded set U ⊂ Hα(
3
4 ≤ α < 1), there exists

a constant C > 0 such that

∥u(t, u0)∥Hα ≤ C, ∀t ≥ 0, u0 ∈ U,
3

4
≤ α < 1.(3.15)

In fact, by the compact embedding theorems of Rellich-Koapawes:

Hα ↪→ W 2,2, Hα ↪→ W 1,4, Hα ↪→ C0
B(Ω),

we deduce that

∥g1(u)∥2H 1
2

=

∫
Ω

|∆g1(u)|2dx

≤
∫
Ω

|6u(∇u)2 + 3u2∆u|2dx
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≤ C

∫
Ω

(|u|2|∇u|4 + |u|4|∆u|2)dx

≤ C

∫
Ω

((sup
x∈Ω

|u|2)|∇u|4 + (sup
x∈Ω

|u|4)|∆u|2)dx

≤ C(∥u∥2Hα
∥u∥4Hα

+ ∥u∥4Hα
∥u∥2Hα

)

≤ C∥u∥6Hα
.

∥g2(u)∥2H 1
2

=

∫
Ω

|∆g2(u)|2dx

≤
∫
Ω

|∆u+ 6u(∇u)
2
+ 3u2∆u|

2
dx

≤ C

∫
Ω

(|u|2|∇u|4 + |u|4|∆u|2 + |∆u|2)dx

≤ C(∥u∥6Hα
+ ∥u∥2Hα

).

It implies both g1 : Hα → H 1
2
and g2 : Hα → H 1

2
are bounded, then

∥g1(u(t, u0))∥H 1
2

< C, ∀t ≥ 0, u0 ∈ U,
3

4
≤ α < 1,

∥g2(u(t, u0))∥H 1
2

< C, ∀t ≥ 0, u0 ∈ U,
3

4
≤ α < 1.

Then, we obtain (3.15). In fact by Lemma 3.2 and (3.12), we obtain

∥u(t, u0)∥Hα

= ∥etLu0 −
∫ t

0

(−L)
1
2 e(t−τ)Lg1(u)dτ −

∫ t

0

e(t−τ)Lg2(u)dτ∥Hα

≤ C∥u0∥Hα +

∫ t

0

∥(−L)
1
2+α

e(t−τ)L g1(u)dτ∥Hdτ

+

∫ t

0

∥(−L)αe(t−τ)Lg2(u)dτ∥Hdτ

≤ C∥u0∥Hα +

∫ t

0

∥(−L)
α
e(t−τ)Ldτ∥H

∫ t

0

∥g1(u)dτ∥H 1
2

dτ

+

∫ t

0

∥(−L)α−
1
2 e(t−τ)Lf(u)dτ∥H

∫ t

0

∥g2(u)dτ∥H 1
2

dτ

≤ C∥u0∥Hα + C

∫ t

0

τ−βe−δtdτ ≤ C,

where β = α (0 < β < 1). Then (3.15) is proved.
Step 3. We prove that for any bounded set U ⊂ Hα (1 ≤ α < 5

4 ), there
exists a constant C > 0 such that

(3.16) ∥u(t, u0)∥Hα ≤ C, ∀t ≥ 0, u0 ∈ U ∈ Hα, 1 ≤ α <
5

4
.
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In fact, by the compact embedding theorems of Rellich-koapawes:

Hα ↪→ W 1,6, Hα ↪→ W 1,4, Hα ↪→ W 2,4, Hα ↪→ W 3,2, Hα ↪→ C0
B(Ω),

we have,

∥g1(u)∥2H 3
4

=

∫
Ω

|∇(∆g1(u))|2dx

≤C

∫
Ω

(|∇u|6 + |u|4|∇u|4 + |∆u|4 + |u|4|∇∆u|2)dx

≤C

∫
Ω

(|∇u|6 + (sup
x∈Ω

|u|4)|∇u|4 + |∆u|4 + (sup
x∈Ω

|u|4)|∇∆u|2)dx

≤C(∥u∥6w1,6 + ∥u∥4C0
B
∥u∥4w1,4 + ∥u∥4w2,4 + ∥u∥4C0

B
∥u∥2w3,2)

≤C(∥u∥2Hα
+ ∥u∥4Hα

+ ∥u∥6Hα
+ ∥u∥8Hα

),

∥g2(u)∥2H 3
4

=

∫
Ω

|∇(∆g2(u))|2dx

≤C

∫
Ω

(|∇∆u|2 + |∇u|6+|u|4|∇u|4 + |∆u|4 + |u|4|∇∆u|2)dx

≤C(∥u∥2Hα
+ ∥u∥4Hα

+ ∥u∥6Hα
+ ∥u∥8Hα

),

which implies both g1 : Hα → H 3
4
and g2 : Hα → H 3

4
are bounded,

∥g1(u(t, u0))∥H 3
4

< C, ∀t ≥ 0, u0 ∈ U, 1 ≤ α <
5

4
,

∥g2(u(t, u0))∥H 3
4

< C, ∀t ≥ 0, u0 ∈ U, 1 ≤ α <
5

4
.

Then, we obtain

∥u(t, u0)∥Hα

= ∥etLu0 −
∫ t

0

(−L)
1
2 e(t−τ)Lg1(u)dτ −

∫ t

0

e(t−τ)Lg2(u)dτ∥Hα

≤ C∥u0∥Hα +

∫ t

0

∥(−L)
1
2+αe(t−τ)Lg1(u)dτ∥Hdτ

+

∫ t

0

∥(−L)αe(t−τ)Lg2(u)dτ∥Hdτ

≤ C∥u0∥Hα +

∫ t

0

∥(−L)α−
1
4 e(t−τ)Ldτ∥H

∫ t

0

∥g1(u)dτ∥H 3
4

dτ

+

∫ t

0

∥(−L)α−
3
4 e(t−τ)Lf(u)dτ∥H

∫ t

0

∥g2(u)dτ∥H 3
4

dτ

≤ C∥u0∥Hα + C

∫ t

0

τ−βe−δtdτ

≤ C, ∀t ≥ 0, u0 ∈ U ⊂ Hα,
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where β = α− 1
4 (0 < β < 1). Hence (3.16) is proved.

Using the same method as the above, we can prove that for any bounded
set U ⊂ Hα(α ≥ 0), there is a constant C > 0 such that i.e., for all α ≥ 0 the
semigroup S(t) generated by the problem (1.1)-(1.3) is uniformly compact in
Hα. □

Lemma 3.5. Assume that Ω denotes an open bounded in R2, then for any
bounded set U ⊂ Hα (0 ≤ α < 5

4 ), there exists T > 0, and a constant C > 0,
independent of u0, such that

∥u(t, u0)∥Hα ≤ C, ∀t ≥ 0, u0 ∈ U ⊂ Hα.(3.17)

Proof. For α = 1
2 , this follows from Theorem 2.3. Then, we prove (3.17) for

any α > 1
2 . The steps is the following:

Step 1. we have

u(t, u0) = e(t−T )Lu(T, u0)−
∫ t

T

(−L)
1
2 e(t−T )Lg1(u)dτ −

∫ t

T

e(t−T )Lg2(u)dτ.

Let B ⊂ H 1
2
be the bounded absorbing set of the problem (1.1)-(1.3), the time

such that

u(t, u0) ∈ B, ∀t > t0 > 0, u0 ∈ U ⊂ Hα, α ≥ 1

2
.

On the other hand, it is known that

∥etL∥ ≤ Ce−dλ1t,

where λ1 > 0 is the first eigenvalue of the equation,{
−∆u = λu,
u|∂Ω = 0.

For any given T > 0 and u0 ∈ U ⊂ Hα(α ≥ 1
2 ). We can obtain

lim
t→∞

∥e(t−T )Lu(T, u0)∥Hα = 0.

Then,

∥u(t, u0)∥Hα

≤ ∥e(t−t0)Lu(t0, u0)∥Hα +

∫ t

t0

∥(−L)α+
1
4 e(t−T )L∥∥g1(u)∥H 1

4

dτ

+

∫ t

t0

∥(−L)
α− 1

4 e(t−T )L∥∥g2(u)∥H 1
4

dτ

≤ ∥e(t−t0)Lu(t0, u0)∥Hα + C

∫ t

t0

∥(−L)
1
4+α

e(t−T )L∥dτ

+C

∫ t

t0

∥(−L)α−
1
4 e(t−T )L∥dτ
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≤ ∥e(t−t0)Lu(t0, u0)∥Hα + C

∫ T−t0

0

τ−α− 1
4 e−δtdτ

≤ ∥e(t−t0)Lu(t0, u0)∥Hα + C.

We have that (3.17) holds for all 1
2 ≤ α < 3

4 .
Step 2. By the same method as the above steps, we can prove that for any

3
4 ≤ α < 1, 1 ≤ α < 5

4 , the problem (1.1)-(1.3) has a bounded absorbing set
in Hα. By the same method, we can obtain that (3.17) holds for all 0 ≤ α <
1
2 . □

Proof of Theorem 2.6. By Lemma 3.4 and 3.5, the proof of Theorem 2.6 is
completed. □

Remark 3.6. For problem(1.1)-(1.3), by the same method as in [13–15], we
can prove the existence of global attractor in Hkspace, where k ∈ R+.
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