On subdifferential in Hadamard spaces

Document Type: Research Paper

Authors

1 {School of Mathematics‎, ‎Statistics and Computer Science‎, ‎College of Science‎, ‎University of‎ ‎Tehran‎, ‎Enghelab Avenue‎, ‎Tehran‎, ‎Iran.

2 Department of Mathematics‎, ‎Faculty of Sciences‎, ‎Alzahra University‎, ‎Tehran‎, ‎Iran.

Abstract

In this paper, we deal with the subdifferential concept on Hadamard spaces. Flat Hadamard spaces are characterized, and necessary and suficient conditions are presented to prove that the subdifferential set in Hadamard spaces is nonempty. Proximal subdifferential in Hadamard spaces is addressed and some basic properties are high-lighted. Finally, a density theorem for subdifferential set is established.

Keywords

Main Subjects


B. Ahmadi-kakavandi and M. Amini, Duality and subdifferential for convex functions on complete CAT(0) metric spaces, Nonlinear Anal. 73 (2010), no. 10, 3450--3455.

A. D. Aleksandrov, A theorem on triangles in a metric space and some of its applications, (Russian), Trudy Mat. Inst. Steklov. 38 (1951) 5--23.

C. D. Aliprantis and K. C. Border, Infinite dimensional analysis, 3rd Edition, Springer-Verlag, Berlin, 2006.

D. Azagra, J. Ferrera and F. Lopez-Mesas, Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds, J. Funct. Anal. 220 (2005), no. 2, 304--361.

D. Azagra, J. Ferrera and F. Lopez-Mesas, A maximum principle for evolution Hamilton Jacobi equations on Riemannian manifolds, J. Math. Anal. Appl. 323 (2006), no. 1, 473--480.

M. Bacak, Convex Analysis and Optimization in Hadamard Spaces, Walter de Gruyter, Berlin, 2014.

W. Ballmann, Lectures on Spaces of Nonpositive Curvature, Birkhauser Verlag, Basel, 1995.

I. D. Berg and I.G. Nikolaev, Quasilinearization and curvature of Aleksandrov spaces, Geom. Dedicata 133 (2008) 195--218.

M. Bridson and A. Haeiger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer-Verlag, Berlin, 1999.

D. Burago, Y. Burago and S. Ivanov, A course in metric geometry, in: Graduate studies in Math., 33, Amer. Math. Soc., Providence, 2001.

F. H. Clarke, Y. S. Ledyaev, R. J. Stern and P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York, 1998.

S. Dhompongsa and B. Panyanak, On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008), no. 10, 2572--2579.

J. Lurie, Notes on the Theory of Hadamard Spaces, Harvard University, http://www.math.harvard.edu/lurie/papers/hadamard.pdf.

B. S. Mordukhovich, Variational analysis and generalized differentiation I, Basic theory, Springer-Verlag, Berlin, Heidelberg, 2006.

R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

C. Zalinescu, Convex Analysis in General Vector Spaces, Publishing Co., Inc., River Edge, 2002.