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Abstract. The submodules with the property of the title (a submodule

N of an R-module M is called strongly dense in M , denoted by N ≤sd

M , if for any index set I,
∏

I N ≤d
∏

I M) are introduced and fully
investigated. It is shown that for each submodule N of M there exists the
smallest subset D′ ⊆ M such that N +D′ is a strongly dense submodule

of M and D′ ∩N = 0. We also introduce a class of modules in which the
two concepts of strong essentiality and strong density coincide. It is also
shown that for any module M , dense submodules in M are strongly dense
if and only if M ≤sd Ẽ(M), where Ẽ(M) is the rational hull of M . It is

proved that R has no strongly dense left ideal if and only if no nonzero-
element of every cyclic R-module M has a strongly dense annihilator in
R. Finally, some properties and new concepts related to strong density

are studied.
Keywords: Strongly essential submodule, strongly dense submodule,
singular submodule, special submodule, column submodule.
MSC(2010): Primary: 16D10; Secondary: 16S90, 16U20.

1. Introduction

It is well-known that the concept of dense submodules in an R-module M
(i.e., a submodule N of M is called dense if for any y ∈ M and 0 ̸= x ∈ M ,
there exists r ∈ R such that rx ̸= 0 and r ∈ (N : y)), due to Findlay-Lambek
plays an important role in the context of algebra (commutative or not). For
example, if R is a commutative ring such that it has ACC on annihilator ideals,
then an ideal I is dense in R if and only if it contains a regular element (i.e.,
a non zero-divisor); see [7, Theorem 8.31]. A semiprime commutative ring
R (which is called reduced) is Goldie if and only if every dense ideal I of R
contains a regular element. We should remind the reader that in a semiprime
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On strongly dense submodules 732

ring R (not necessarily commutative) dense ideals and essential ideals coincide;
see Proposition 2.7. We should also recall that a ring R is semiprime left Goldie
if and only if for any left ideal I in R, I ≤e R if and only if I contains a regular
element; see for example [7, Theorem 11.13]. For a left module M and x ∈ M ,
x is in the torsion submodule with respect to Lambek torsion theory if and
only if Ann(x) is a dense left ideal. These objects have this important property
of being self-generating, in the sense that each dense left ideal generates other
dense objects. For example, if I is a dense left ideal in a ring R and x ∈ R,
then (I : x) is a dense left ideal of R. But if N is a dense submodule of an
R-module M , similar to essential submodules,

∏
i∈I N may not be dense in∏

i∈I M , where
∏

i∈I N denotes the direct product of copies of N over the
index set I, see also [4]. As an example, Z, is dense in Q as a Z-module, but∏

i∈I Z is not dense in
∏

i∈I Q. We recall that ⊕i∈IZ is dense in ⊕i∈IQ as a
Z-module.

An outline of this article is as follows. In Section 2, we establish the basic
properties of strongly dense submodules. Section 3, is devoted to the study of
strongly polyform and strongly monoform modules. In Section 4, we introduce
and study submodules corresponding to the concept of dense submodules.

Throughout this article, as usual, unless otherwise specified all rings are as-
sociative with identity, and all modules are assumed to be left unitary. {Eij}i,j
denotes the set of unit matrices. LetX be a subset of an R-moduleM and letN
be a submodule of M , by (N : X) we mean the left ideal {r ∈ R |rX ⊆ N }. If
X is a subset of the ring R, then Ann l(X) and Ann r(X) denote respectively the
left and right annihilator of X. According to Definition 1.1 in [4], whenever N
is strongly essential in M , we write N ≤se M . The strong singular submodule
of M , denoted by SZ(M), is defined by SZ(M) = {m ∈ M |Ann l(m) ≤se R};
see [4, Definition 2.1]. The socle type of M , denoted by ST (M), is the inter-
section of all strongly essential submodules of M ; see [4, Definition 2.2]. If M

is an R-module, then Ẽ(M) and E(M) denote respectively the rational hull
(unique maximal rational extension) and the injective envelope of M .

2. Strongly dense submodules

In [4], the concept of strongly essential submodules is introduced and studied.
If M is an R-module and N is a dense submodule of M , then M is called a
rational extension of N and we use the notation N ≤d M . An R-module M is
called rationally complete if it has no proper rational extensions.

We begin with the following definition.

Definition 2.1. A submodule N of an R-module M is called strongly dense
in M and M is called strongly rational extension of N if it satisfies one of the
following equivalent conditions:
1. For any index set I,

∏
I N ≤d

∏
I M ;



733 Ghashghaei and Namdari

2. For any two subsets Y ⊆ M and 0 ̸= X ⊆ M , there exists r ∈ R such that
rX ̸= 0 and r ∈ (N : Y ) (i.e., (N : Y )\Annl(X) ̸= ∅).

We use the notation N ≤sd M to indicate that N is a strongly dense sub-
module of M . In the above definition, in part 1, we may assume that |I| = |M |
and in part 2, without loss of generality, we always assume that X properly
contains zero. In contrast with part 2 of our definition, dense submodules enjoy
a weaker property.

Lemma 2.2. Let N be a submodule of an R-module M , if N ≤sd M then
N ≤se M .

Proof. It is clear. □

Remark 2.3. The converse of Lemma 2.2, is not true in general. For example,
for any prime number p ∈ Z and n ≥ 1, pZ/pn+1Z is strongly essential in
Z/pn+1Z but it is not strongly dense.

Example 2.4. Let X be a set of commuting indeterminates over the ring R.
Then I ≤sd R if and only if I[X] ≤sd R[X] as a left ideal.

Example 2.5. For any family of rings {Ri}i∈I , ⊕i∈IRi ≤sd

∏
i∈I Ri both as

a left and a right ideal in
∏

i∈I Ri.

Lemma 2.6. Let I be a left ideal in a ring R, I ≤d R if and only if Annr(I :
y) = 0 for any y ∈ R.

Proof. It is clear. □

Proposition 2.7. Let R be a semiprime ring, strongly dense ideals, dense
ideals, strongly essential ideals and essential ideals are all the same.

Proof. We note that the right and the left annihilator of each ideal in a semiprime
ring are the same, and if I is an essential ideal, then Ann(I) = 0. Hence I is
strongly essential by [4, Example 3]. Now suppose that I is a dense ideal in
R. Let Y and 0 ̸= X be subsets of R. Since I is essential in the semiprime
ring R, we infer that for 0 ̸= x ∈ X we have 0 ̸= (I

∩
Rx)2 ⊆ IRx. Thus there

exists i ∈ I such that iY ⊆ I and 0 ̸= iX. Hence I is strongly dense. Now
we may show that the essentiality and the density of ideals coincide. To see
this, let I be an essential ideal and y ∈ R, so Ann(I : y) ≤ Ann(I) = 0 (i.e.,
Ann(I : y) = 0), therefore I is a dense ideal by Lemma 2.6. □

Example 2.8. Consider the split-null extension Q∗Q of the rational numbers
Q (the addition in Q ∗ Q is defined componentwise and the multiplication by
the rule (a, b)(c, d) = (ad+ bc, bd)). The split-null extension, which is a ring, is
not an integral domain, and I = (Q, 0) is the unique strongly essential minimal
ideal in Q ∗Q while it is not dense.
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Proposition 2.9. Let I be a left ideal in a ring R, I ≤se R if and only if
Annl(X) ⊂ (I : X) for any subset X ⊆ R.

Proof. By [4, Definition 1.1]. □
Proposition 2.10. Let I be a left ideal in a ring R, I ≤sd R if and only if
Annr(I : X) = 0 for any subset X ⊆ R.

Proof. Suppose that I is a strongly dense left ideal and there exists a subset X
of R such that 0 ̸= y ∈ Annr(I : X) and seek a contradiction. Since I ≤sd R
there exists r ∈ R such that 0 ̸= ry and r ∈ (I : X). But 0 ̸= y ∈ Annr(I : X),
hence 0 = ry which is a contradiction. Conversely, suppose that I is not
strongly dense, then for some subsets X ⊆ R and 0 ̸= Y ⊆ R there does not
exist r ∈ R such that 0 ̸= rY and r ∈ (I : X) (i.e., if r ∈ (I : X) then 0 = rY ).
Hence 0 ̸= Y ⊆ Annr(I : X) that is a contradiction. □

Corollary 2.11. Let R be a ring such that Annr(Annl(X)) = 0 for every
subset X ⊆ R. Then every strongly essential left ideal is strongly dense.

Proof. By Proposition 2.9 and Proposition 2.10, we are done. □

Motivated by the above Corollary, in Section 3, we investigate a class of
modules (namely strongly polyform), in which, we observe that the concepts
of strong essentiality and strong density coincide.

Corollary 2.12. Let R be a ring. Then the following statements hold.

(1) If a ∈ R is a central element that is not a zero-divisor, then Ra ≤sd R.
(2) Let I be a left ideal in R, and X ⊆ R. Then I ≤sd R implies that

(I : X) ≤sd R.
(3) If R is prime then any ideal of R is strongly dense in RR and RR.
(4) Let I and J be left ideals of R. If I ≤sd R and for every subset X ⊆ I,

we have (J : X) ≤sd R, then J ≤sd R.

Proof. (1) Let X ⊆ R, since a ∈ R is a central element then a ∈ (Ra : X).
But a is not a zero-divisor, thus Annr(Ra : X) = 0. Hence Ra ≤sd R by
Proposition 2.10.

(2) Let Y ⊆ R, then Annr((I : X) : Y ) = Annr(I : Y X). Since I ≤sd R we
have Annr(I : Y X) = 0. Thus Annr((I : X) : Y ) = 0 and (I : X) ≤sd R.

(3) It is clear by Proposition 2.10.
(4) Let X ⊆ R. We claim that Annr(J : X) = 0. Suppose that 0 ̸= y ∈

Annr(J : X). Since I is strongly dense, we have (I : X)y ̸= 0, this means
that there exists r ∈ R such that rX ⊆ I and ry ̸= 0. But rX ⊆ I, hence
(J : rX) ≤sd R and (J : rX)ry ̸= 0. However, (J : rX)r ⊆ (J : X), hence
(J : X)y ̸= 0. Since this holds for all X ⊆ R, we infer that J ≤sd R. □

Proposition 2.13. Let M be an R-module. Then:
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(1) If N1 ≤sd M , N2 ≤sd M , then N1

∩
N2 ≤sd M .

(2) If N1 ≤sd M1 ⊆ M and N2 ≤sd M2 ⊆ M , then N1

∩
N2 ≤sd M1

∩
M2.

(3) Let N1 ≤ N2 ≤ M , Then N1 ≤sd M if and only if N1 ≤sd N2 and
N2 ≤sd M .

(4) If f : M ′ → M is an R-homomorphism, M ′ ⊆ M and N ≤sd M , then
f−1(N) ≤sd M ′.

(5) Assume that M is a t-nonsingular module (i.e., SZ(M) = 0). Then
N ≤sd M if and only if N ≤se M .

Proof. (1) Let Y and 0 ̸= X be subsets of M . There exists r1 ∈ R such that
0 ̸= r1X and r1 ∈ (N1 : Y ). Since N2 ≤sd M there exists r2 ∈ R such that
0 ̸= r2r1X and r2 ∈ (N2 : r1Y ) . Thus 0 ̸= r2r1X and r2r1 ∈ (N1

∩
N2 : Y ).

Hence N1

∩
N2 ≤sd M .

(2) It is clear by part (1).
(3) It is clear that if N1 ≤sd M then N1 ≤sd N2 and N2 ≤sd M . Conversely,
let N1 ≤sd N2 and N2 ≤sd M . Now suppose that Y and 0 ̸= X are two
subsets of M . There exists r1 ∈ R such that 0 ̸= r1X and r1 ∈ (N2 : Y ).
Since N2 ≤se M , there also exists r2 ∈ R such that 0 ̸= r2r1X ⊆ N2 (and
r2r1 ∈ (N2 : Y ) ). Since N1 ≤sd N2 there exists r3 ∈ R such that 0 ̸= r3r2r1X
and r3r2r1 ∈ (N1 : Y ). Hence N1 ≤sd M .

(4) Let Y and 0 ̸= X be subsets of M ′. Therefore 0 ̸= X and f(Y ) are
two subsets of M . Since N ≤sd M , there exists r ∈ R such that 0 ̸= rX and
r ∈ (N : f(Y )). Thus r ∈ (f−1(N) : Y ) and 0 ̸= rX (i.e., f−1(N) ≤sd M ′).

(5) If N ≤sd M , then by Lemma 2.2, it is clear that N ≤se M . Conversely,
suppose that Y and 0 ̸= X are two subsets of M . There exists 0 ̸= x ∈ X and
since N ≤se M we have (N : Y ) ≤se RR. But (N : Y )x ̸= 0, for otherwise
(N : Y ) ≤ Annl(x). Now would give the contradiction x ∈ SZ(M). Hence
(N : Y )X ̸= 0 and N ≤sd M .

□
Definition 2.14. Let N be a submodule of an R-module M , and X a subset
of M . A peculiar sum of N and X, denoted by N ⊕p X is defined as follows:
N ⊕p X=N + X, where N

∩
X = 0, (N : X) = Annl(X) and N + X is a

submodule of M . In particular, if N ⊕p X = M then N is called a peculiar
summand of M .

We use the notation N ⊕p X ≤ M to indicate that the sum N + X is a
peculiar sum.

Definition 2.15. An R-module M is called t-injective if the image of any
injective R-homomorphism from M to any R-module is a peculiar summand.

Definition 2.16. An R-module M is called strongly rationally complete if it
has no proper strongly rational extensions.

Proposition 2.17. Every t-injective module is strongly rationally complete.
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Proof. Let M be a t-injective module. Now suppose that M ′ is a module such
that M ≤sd M ′. Let i : M → M ′ be natural homomorphism. By definition
M is a peculiar summand of M ′. But M ≤se M ′ thus M = M ′ and we are
done. □
Proposition 2.18. Let M be a t-nonsingular module. Then M is t-injective
if and only if M is strongly rationally complete.

Proof. Let M be t-nonsingular and strongly rationally complete. Suppose that
f : M → M ′ is an injective R-homomorphism, thus Im(f) is t-nonsingular and
it is a strongly rational complete submodule of M ′. Now Im(f) is strongly
essentially closed by part (5) of Proposition 2.13, therefore Im(f) is a peculiar
summand of M ′. Hence M is t-injective. The converse is clear. □
Definition 2.19. An R-module M is called t-semisimple if each proper sub-
module N of M is a peculiar summand.

We should remind the reader that a ring R is semisimple if and only if R
has no proper essential left ideals. Motivated by Ghirati and Karamzadeh [4,
Theorem 3.3], a ring R is t-semisimple if and only if R has no proper strongly
essential left ideals.

Theorem 2.20. Let R be a ring. Then:

(1) R is t-semisimple.
(2) R has no proper strongly essential left ideals.
(3) R is isomorphic to a product of a finite number of simple rings.
(4) R is a left t-nonsingular ring and every left ideal is strongly rationally

complete.

Proof. (1) ⇔ (2) ⇔ (3) By [4, Theorem 3.3].
(1) ⇒ (4) Suppose that R is a t-semisimple ring. Let I and J be two left

R-modules such that I ≤sd J . Since I is a peculiar summand of J then I = J .
Therefore every RI is strongly rationally complete. We note that Annl(x) ≤se

R for any x ∈ SZ(RR). But R is t-semisimple, therefore Annl(x) = R and
x = 0. Hence R is a left t-nonsingular ring.

(4) ⇒ (1) Assume that R is a left t-nonsingular ring and every left ideal
is strongly rationally complete. We show that every left ideal I is a peculiar
summand of RR. By [4, Proposition 1.6], let X is the largest t-component
of I. Then I ⊕p X ≤se RR. Since RR is t-nonsingular, this implies that
I ⊕p X ≤sd RR. By hypothesis, I ⊕p X is strongly rationally complete. Hence
I ⊕p X = R, as desired.

□
The following result is now in order.

Proposition 2.21. Let S ⊆ R be rings such that SS ≤se SR, and let N ≤ M
be left R-modules.Then the following statements hold.
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(1) Let SM be t-nonsingular. Then RN ≤sd RM if and only if SN ≤sd

SM .
(2) Let SN be t-nonsingular. Then RN ≤se RM if and only if SN ≤se SM .
(3) Let SN be t-nonsingular. If SN is t-injective then RN is t-injective.
(4) If SN is t-nonsingular and strongly rationally complete, then RN is

also strongly rationally complete.

Proof. (1) If SN ≤sd SM then it is clear that RN ≤sd RM . Now suppose that

RN ≤sd RM . Let Y be a subset of M and 0 ̸= x ∈ M . There exists r1 ∈ R
such that 0 ̸= r1x and r1Y ⊆ N . Since SS ≤se SR, then R/S is t-singular and
there exists a left ideal J ≤se SS such that Jr1 ⊆ S. Now r1x /∈ SZ(RM) = 0,
hence 0 ̸= jr1x for some j ∈ J . For r2 = jr1 ∈ S, we have 0 ̸= r2x and
r2Y = jr1Y ⊆ JN ⊆ N . This means that SN ≤sd SM .

(2) If SN ≤se SM then it is clear that RN ≤se RM . Now assume that

RN ≤se RM , repeat the argument above with 0 ̸= Y = X. Hence there exists
0 ̸= r, with 0 ̸= rY = rX ⊆ N . Now by assumption SZ(SN) = 0, we are done.

(3) Suppose SN is t-injective. If RM is any strongly essential extension of

RN then by part (2), SN ≤se SM , and hence N = M . This means that RN is
also t-injective.

(4) If RN ≤sd RM , then RN ≤se RM . Since by assumption SZ(SN) = 0,
part (2) implies that SN ≤se SM . Thus we have SZ(SM) = 0, and by part
(1) SN ≤sd SM . Hence N = M as desired. □

Definition 2.22. If N is a submodule of an R-module M , then the t-dense
complement of N in M , denoted by DM (N), is the union of all subsets Y ⊆ M
such that 0 ∈ Y and (N : Y ) ⊆ Ann(x) for some 0 ̸= x ∈ M . When there is no
ambiguity we just write D(N) for DM (N).

Now let us put D′ = ∪{Y ⊆ M |(N : Y ) ⊆ Ann l(X) for some 0 ̸= X ⊆
M and Y

∩
N = 0}, and D′(N) is called the t-dense component of N in

M . Consequently for a submodule N of M , we have N + D′ = {n + t|n ∈
N and t ∈ D′} = N +DM (N).

Proposition 2.23. Let N be a submodule of an R-module M . Then D(N) is
a submodule of M and N +D′ = N +D(N) ≤sd M .

Proof. Similar to [4, Proposition 1.6]. □

3. Strongly polyform and strongly monoform modules

In this section, strongly polyform modules, strongly uniform modules and
strongly monoform modules are defined and studied.

Zelmanowitz in [13] termed a module M polyform if every essential submod-
ule of M is dense.



On strongly dense submodules 738

By Lemma 2.2, the following definition is natural.

Definition 3.1. A module M is called strongly polyform if every strongly
essential submodule is strongly dense in M .

By part (5) of Proposition 2.13, the next corollary is an immediate conse-
quence.

Corollary 3.2. Let RM be a t-nonsingular R-module, then M is strongly
polyform.

We should remind the reader that a commutative ring R is reduced if and
only if it is nonsingular if and only if it is polyform; see [7, Corollary 8.9].

Theorem 3.3. For a ring R the following statements are equivalent:

(1) R is a t-nonsingular ring.
(2) R is a strongly polyform ring.

Proof. (1) ⇒ (2) If R is a left t-nonsingular ring, then by Proposition 2.13,
every strongly essential left ideal I ≤ R is strongly dense in RR.

(2) ⇒ (1) Let 0 ̸= x ∈ SZ(RR) and we obtain a contradiction. We note that
Annl(x) ≤se RR and (Annl(x) : 1)x = 0, then Annl(x) is not strongly dense in

RR which is a contradiction. □
Corollary 3.4. Every semiprime ring R is a strongly polyform ring.

Proof. In view of [4, Proposition 2.1] and Theorem 3.3, we are done. □
The following definition is in order.

Definition 3.5. A nonzero R-module M is called strongly uniform if every
nonzero submodule of M is strongly essential in M .

Note that all nonzero submodules and all strongly essential extensions of
strongly uniform modules are strongly uniform.

Definition 3.6. Let X be a multiplicatively closed set in a ring R (1 ∈ X, ab ∈
X for all a, b ∈ X). Then X satisfies the strongly left Ore condition provided
that, for each 0 ̸= r1 ∈ R, there exists r2 ∈ R such that 0 ̸= r2R ⊆ Xr1. A
multiplicatively closed set satisfying the strongly left Ore condition is called a
strongly left Ore set. The strongly right Ore condition and strongly right Ore
sets are defined symmetrically. A strongly Ore set is a multiplicatively closed
set which is both a strongly right and a strongly left Ore set. A strongly left
Ore domain is any domain R in which the nonzero elements from a strongly
left Ore set (note, domains in this article are not necessarily commutative).

Proposition 3.7. The following conditions on a domain R are equivalent.

(1) R is a strongly left Ore set.
(2) RR is strongly uniform.
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(3) Every principal left ideal in R contains a principal right ideal.

Proof. (1) ⇔ (3) It is clear.
(2) ⇒ (3) Let I be a nonzero principal left ideal in R, since I is a strongly

essential left ideal, there exists r ∈ R such that rR ⊆ I.
(3) ⇒ (2) Let I be a nonzero left ideal in R and X ⊆ R is a subset. Since

0 ̸= I then there exists 0 ̸= b ∈ I. Now by our assumption the left ideal Rb
contains a principal right ideal rR say. Therefore rX ⊆ rR ⊆ Rb ⊆ I, this
means that I is a strongly essential left ideal.

□
We recall that an R-module M is called monoform if every nonzero submod-

ule of M is dense in M .
The following definition is now in order.

Definition 3.8. A nonzero R-module M is called strongly monoform if every
nonzero submodule of M is strongly dense in M .

Note that all nonzero submodules and all strongly rational extensions of
strongly monoform modules are strongly monoform.

Remark 3.9. We observe that every strongly monoform module is strongly
uniform. However there are examples of strongly uniform modules that are not
strongly monoform. To see this, let M = Z/4Z, considered as Z-module. Then
M is strongly uniform which is not strongly monoform.

Corollary 3.10. For any t-nonsingular R-module M , the concepts of strongly
uniform and strongly monoform coincide.

Proposition 3.11. Let I be a left ideal in a ring R. Then the following
statements hold.

(1) I ≤sd R if and only if Mn(I) ≤sd Mn(R).
(2) I ≤d R if and only if Mn(I) ≤d Mn(R).

Proof. (1) First suppose that Mn(I) ≤sd Mn(R). Let Y = {yk}k∈K and
0 ̸= X = {xk}k∈K be two arbitrary subsets in R. Now put X ′ = {Ak =
(aij)n×n|a11 = xk and aij = 0 for (i, j) ̸= (1, 1)}k∈K and Y ′ = {Bk = (bij)n×n|
b11 = yk and bij = 0 for (i, j) ̸= (1, 1)}k∈K which are two subsets in Mn(R).
Since Mn(I) ≤sd Mn(R) there exists C = (cij)n×n ∈ Mn(I) such that CY ′ ⊆
Mn(I) and 0 ̸= CX ′. Hence there exists cm1 ∈ R (1 ≤ m ≤ n) such that
cm1Y ⊆ I and 0 ̸= cm1X. This checks I ≤sd R. Conversely, suppose that
I ≤sd R. Let Y = {Bk = (bij)n×n}k∈K and 0 ̸= X = {Ak = (aij)n×n}k∈K be
two arbitrary subsets inMn(R). We put Y ′ = {bij |bij is an array in Bk for k ∈
K} and 0 ̸= X ′ = {aij |aij is an array in Ak for k ∈ K} which are two subsets
in R. So there exist r ∈ R and (s, t) such that rY ′ ⊆ I and 0 ̸= rast ∈ rX ′.
Hence rE1sY ⊆ Mn(I) and 0 ̸= rE1sX. This means that Mn(I) ≤sd Mn(R).

(2) The proof is similar to part (1).
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□
Corollary 3.12. Let R be a ring. Then R is strongly monoform (resp., mono-
form) if and only if and only if Mn(R) is strongly monoform (resp., monoform).

The following definition is borrowed from [7], see also [2].

Definition 3.13. An R-module M is called prime if, whenever N is a non-zero
submodule of M and I is an ideal of R such that IN = 0, then IM = 0.

Proposition 3.14. Let R be a commutative ring. Then an R-module M is
strongly monoform if and only if M is a strongly uniform prime module.

Definition 3.15. A left ideal I of a ring R is called strongly co-monoform if
R/I is strongly monoform.

Proposition 3.16. (1) Every maximal left ideal is strongly co-monoform.
(2) If R is a commutative ring, then the strongly co-monoform ideals of R

are exactly the prime ideals.
(3) An ideal I of an arbitrary ring R is strongly co-monoform as a left ideal

if and only if R/I is a strongly left Ore domain.

Proof. (1) and (2) are clear.
(3) It is clear by [4, Proposition 2.11], Proposition 3.7 and Corollary 3.10.

□

4. Column and special submodules

In this section, the column, the column type, the special and the strong
special submodules of an R-module are defined and studied.

Definition 4.1. Let M be an R-module. Then the special (resp., strong spe-
cial) submodule of M , denoted by S(M) (resp., SS(M)) is defined by S(M) =
{m ∈ M |Ann l(m) ≤d R} (resp., SS(M) = {m ∈ M |Ann l(m) ≤sd R}).
It is clear that S(M) and SS(M) are two submodules of M . We say that M
is special (resp., nonspecial) if S(M) = M (resp., S(M) = 0). It is t-special
(resp., t-nonspecial) if SS(M) = M (resp., SS(M) = 0).

Remark 4.2. Let N be a submodule of an R-module M and N ≤sd M (resp.,
N ≤d M), then M/N is t-special (resp., special).

Proof. Let N ≤sd M be a proper submodule N of M . Consider any x +N ∈
M/N . Recall that (N : x) is a strongly dense left ideal of R and (N : x)(x +
N) = N . Thus x+N ∈ SS(M/N) and hence M/N is t-special. □

Note that any proper factor module of a strongly monoform (resp., mono-
form) module is t-special (resp., special).

Lemma 4.3. Let M = ⊕i∈IMi be an R-module. Then S(M) = ⊕i∈IS(Mi)
and SS(M) = ⊕i∈ISS(Mi).
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In the following results, up to Proposition 4.8, some appropriate and useful
facts concerning the above concepts are given.

Proposition 4.4. (1) All submodule, factor module, and sum (direct or
not) of t-special (resp., special) modules are t-special (resp., special).

(2) All submodule, direct sum, and strongly rational extension (resp., ratio-
nal extension) of t-nonspecial (resp., nonspecial) module are t-nonspecial
(resp., nonspecial).

(3) Let N be a submodule of module M . If N and M/N are both t-
nonspecial (resp., nonspecial), then M is t-nonspecial (resp., nonspe-
cial).

Proposition 4.5. Let M be an R-module.Then M is t-nonspecial (resp., non-
special) if and only if for any t-special (resp., special) R-module N , HomR(N,M)

= 0.

Proof. First assume that M is t-nonspecial. Consider any R−homomorphism
f : N → M , where N is a t-special R-module. Since f(N) = f(SS(N)) ⊆
SS(M) = 0, we have f = 0. Conversely, if M is not t-nonspecial, then N :=
SS(M) is a nonzero t-special module, and the inclusion map N → M is a
nonzero element in HomR(N,M). □
Proposition 4.6. Let M be a t-nonspecial (resp., nonspecial) left R-module
and I, J be two strongly dense (resp., dense) left ideals, then IJM ≤sd M
(resp., IJM ≤d M).

Proof. Similar to [4, Proposition 2.8]. □
Theorem 4.7. Let R be a left nonspecial ring. Then:

(1) The factor module M/S(M) is nonspecial;
(2) If N is a submodule of R-module M such that N and M/N are both

special, then M is special;
(3) If M is special then all rational extension of M are special.

Proof. (1) Let m ∈ M be such that m ∈ S( M
S(M) ). Then Jm ⊆ S(M) for

some left ideal J ≤d RR. To show that m ∈ S(M), we must show that
Ann(m) ≤d RR. Let y ∈ R and 0 ̸= x ∈ R then there exists r ∈ R such that
ry ∈ J and 0 ̸= rx, hence we have rym ⊆ Jm ⊆ S(M), so Irym = 0 for
some I ≤d RR. But Irx ̸= 0 for otherwise 0 ̸= rx ∈ S(R). Therefore irx ̸= 0
for some i ∈ I, and irym = 0 implies that iry ⊆ Ann(m). This means that
Ann(m) ≤d RR, and we are done.

(2) Since N is special, N ≤ S(M), whence M/N maps onto M/S(M), and
so M/S(M) is special. On the other hand M/S(M) is nonspecial by part (1),
and hence M/S(M) = 0. Thus M = S(M) is special.

(3) Let M ′ be a rational extension of a left R-module M , and suppose that
M is special, by Remark 4.2 M ′/M is special, and then part (2) shows that
M ′ is special. □
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Proposition 4.8. Let R be a ring. Then the following statements hold.

(1) SS(Mn(R)) = Mn(SS(R)).
(2) S(Mn(R)) = Mn(S(R)).

Proof. (1) Put A = (aij)n×n ∈ Mn(SS(R)). Thus for any 1 ≤ i, j ≤ n we
have aij ∈ SS(R) (i.e., Ann(aij) ≤sd R). Now put I =

∩
i,j Ann(aij) so

I ≤sd R. Hence Mn(I) ≤sd Mn(R) by Proposition 3.11. But Mn(I) ≤
Ann(A) ≤ Mn(R). Thus A ∈ SS(Mn(R)). Conversely, suppose that A =
(aij) ∈ SS(Mn(R)). Therefore Ann(A) ≤sd Mn(R). By Proposition 3.11,
there exists I ≤sd R such that Ann(A) = Mn(I). Hence Mn(I).A = 0 and
for any 1 ≤ i, j ≤ n we have Iaij = 0. Thus I ≤ Ann(aij). This checks
Ann(aij) ≤sd R (i.e, aij ∈ SS(R)). Hence A ∈ Mn(SS(R)).

(2) The proof is, word-for-word, similar to part (1).
□

A ring R is called a left Kasch if every simple left R-module M can be
embedded in RR. We recall that R is a left Kasch ring if and only if the only
dense left ideal in R is R itself.
The next result seems interesting.

Theorem 4.9. Let R be a ring. Then:

(1) R has no proper strongly dense left ideal if and only if for any cyclic
left R-module M , SS(M) = 0.

(2) R is left Kasch if and only if for any cyclic left R-module M , S(M) = 0.

Proof. (1) First assume that R has no proper strongly dense left ideal. Let RM
be an R-module and m ∈ SS(M). Thus Ann(m) ≤sd RR. But by assumption
Ann(m) = R. Hence m = 0 and SS(M) = 0. Conversely, suppose that R has
a strongly dense left ideal I. Since R/I is a cyclic t-special module then I = R
by Remark 4.2. Hence the only strongly dense left ideal in R is R itself.

(2) One can easily apply the similar proof of part (1). □
Proposition 4.10. Let N be a submodule of an R-module M . If M/N is a
t-nonspecial (resp., nonspecial) module, then N is strongly rationally complete
(resp., rational complete).

Proof. Let K be a submodule of M such that N ≤sd K ≤ M and x ∈ K. Thus
(N : x) ≤sd R. Hence x+N ∈ SS(M/N) = 0. Thus x ∈ N and it follows that
N = K. □
Proposition 4.11. Let X be a set in a ring R. If R is a left t-nonspecial
(resp., nonspecial) ring, then Annl(X) is strongly rationally complete (resp.,
rationally complete) in R.

Proof. Consider any left ideal K such that Annl(X) ≤sd K and let k ∈ K.
Thus (Annl(X) : k) ≤sd R. From (Annl(X) : k)kX = 0, we have kX ⊆
SS(RR) = 0. Hence k ∈ Annl(X) and Annl(X) = K.
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□
Definition 4.12. LetM be an R-module, then the column ofM (resp., column
type), denoted by Col(M) (resp., CT (M) ), is the intersection of all dense
(resp., strongly dense) submodules of M .

In view of Proposition 3.11, we immediately have the next proposition.

Proposition 4.13. Let R be a ring. Then:
(1) CT (Mn(RR)) = Mn(CT (RR)).
(2) Col(Mn(RR)) = Mn(Col(RR)).

Example 4.14. Let R be the ring of all upper triangular matrices over a field

F . Then

(
F F
0 0

)
is only proper ideal of R that is strongly dense in RR so

CT (RR) =

(
F F
0 0

)
. Similarly CT (RR) =

(
0 F
0 F

)
.

Example 4.15. Let p ∈ Z be a prime number and put M = Z/p2Z, considered
as Z-module. Then Soc(M) = pZ/p2Z while Col(M) = M , and also Soc(M)
is an essential submodule in M which is not dense submodule.

Let us recall that in extending the concept of the socle, which is the inter-
section of essential submodules, the socle series is introduced and consequently
the Loewy modules which play an important role in module theory are consid-
ered. Similarly, in the following definition, we introduce the column series of
an R-module.

Definition 4.16. Let M be a module over an arbitrary ring R. Inductively
define a well-ordered sequence of fully invariant submodules Colα(M) of M as
follows:

Col0(M) = 0,
Colα+1(M)/Colα(M) = Col(M/Colα(M)) for every non-limit ordinal α,
Colβ(M) = ∪α≺βColα(M) for every limit ordinal β.

Clearly, Col0(M) ⊆ Col1(M) ⊆ Col2(M) ⊆ ... ⊆ Colα(M) ⊆ ... and we call
this chain column series of M .

The module M is said to weakly-Loewy module if there is an ordinal α such
that M = Colα(M), in which case, there exists the least ordinal α such that
M = Colα(M), and we call it the column length of M . Note that the column
series is always stationary, that is, for every module M there exists an ordinal
α such that Colβ(M) = Colα(M) for every β ≥ α (note, M is a set). For such
an ordinal α, set σ(M) = Colα(M). Then σ(M) is the largest weakly-Loewy
submodule of M , and M/σ(M) has zero column.

Proposition 4.17. A module M is weakly-Loewy if and only if every non-zero
homomorphic image of M has a non-zero column.
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Proof. If M is weakly-Loewy and N is a proper submodule of M , consider
the set of all the ordinal numbers α such that Colα(M) ⊆ N . It is easily
seen that this set has a greatest element β. Then M/N is a homomorphic
image of M/Colβ(M), and the image of the column Colβ+1(M)/Colβ(M) of
M/Colβ(M) in M/N is non-zero. Therefore the column of M/N is non-zero.
Conversely, if M is not weakly-Loewy, then M/σ(M) is a non-zero homomor-
phic image of M with zero column.

□
A ring R is called a Loewy (semi-Artinian) ring if every non-zero cyclic R-

module has a nonzero socle. It is clear that for every R-module M , Soc(M) ⊆
Col(M), therefore every Loewy module is a weakly-Loewy module.

Remark 4.18. Let M be a Loewy module. By induction, it is clear that if
M has finite Loewy length n then M has finite weakly-Loewy length m and
n ≥ m. We note that for a module M , the Loewy length and the weakly-Loewy
length may not be equal. For example, let p ∈ Z be a prime number and put
M = Z/p2Z. Then M as an Z-module has Loewy length 2, but M is a module
of weakly-Loewy length 1.

We recall that every dense (resp., strongly dense) submodule is essential
(resp., strongly essential). Thus DCC (resp., ACC) on essential (resp., strongly
essential) submodules in an R-module M implies DCC (resp., ACC) on dense
(resp., strongly dense) submodules.
In [1], Armendariz, has shown that an R-module M has DCC on essential
submodules if and only if M/Soc(M) is Artinian.

Proposition 4.19. An R-module M satisfies the DCC on dense (resp., strongly
dense) submodules if and only if M/Col(M) (resp., M/CT (M)) is Artinian.

Proof. Similar to [1, Proposition 1.1]. □
The next result is also immediate.

Proposition 4.20. DCC on dense (resp, strongly dense) submodules implies
DCC on essential (resp, strongly essential) submodules in R-module M if and
only if Col(M)/Soc(M) (resp, CT (M)/ST (M)) is Artinian.

Proof. By [1, Proposition 1.1] and Proposition 4.19, we are done. □
Proposition 4.21. Let R be a ring satisfying the DCC on dense ideals. Then:

(1) S(R) is a nil ideal.
(2) S(R) ⊆ J(R), which J(R) is the Jacobson ideal of R.
(3) (J(R))n ⊆ Col(R) for some integer n ≥ 1.

Proof. (1) If x ∈ S(R) then Annl(x) ≤d R. Thus Col(R) ⊆ Annl(x) ⊆
Annl(x

2) ⊆ .... But R/Col(R) is Artinian, hence it is Noetherian and thus
there is an integer k ≥ 1 for which Annl(x

k) = Annl(x
k+1) for all k. Now if
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rxk ∈ Rxk
∩

Annl(x
k) then rx2k = 0 and rxk = 0. Hence Rxk

∩
Annl(x

k) = 0.
Since Annl(x

k) is essential we have Rxk = 0 and xk = 0. Hence S(R) = 0 is a
nil ideal.

(2) Evident.
(3) Since (J(R)+Col(R))/Col(R) ⊆ J(R/Col(R)) we have (J(R)+Col(R))

/Col(R) which it is nilpotent because R/Col(R) is Artinian. Then for some
integer n ≥ 1, (J(R))n ⊆ Col(R). □

The proof of the following result is evident, by the previous observations.

Proposition 4.22. Let M and N be R-modules.

(1) Soc(M) ⊆ Col(M) ⊆ CT (M) and Soc(M) ⊆ ST (M) ⊆ CT (M).
(2) Col(RR).S(M) = 0 and CT (RR).SS(M) = 0.
(3) If f : N → M is any R−homomorphism, then f(S(N)) ⊆ S(M) and

f(SS(N)) ⊆ SS(M).
(4) If N ⊆ M , then S(N) = S(M)

∩
N and SS(N) = SS(M)

∩
N .

(5) If Col(RR) ≤d RR, then S(RR) = Annr(Col(RR)).
(6) If CT (RR) ≤sd RR, then SS(RR) = Annr(CT (RR)).

Let us assume that whenever we write “D = SD in M” it means that the
dense submodules of M are strongly dense.
The next result is similar to [4, Theorem 4.5].

Theorem 4.23. For a ring R the following statements are equivalent.

(1) For any left R-module M , M ≤sd Ẽ(M).
(2) For any left R-module M , D = SD in M .

Proof. (1) ⇒ (2) Let N be a dense submodule of a left R-module M . Since

N ≤d M ≤sd Ẽ(M), hence N ≤d Ẽ(M). Thus Ẽ(N) = Ẽ(M) and N ≤d

M ≤sd Ẽ(N), but by assumption in part (1), we have N ≤sd Ẽ(N), hence
N ≤sd M .

(2) ⇒ (1) It is clear. □
We should remind the reader that if R is a left nonsingular left Artinian

ring, then Soc(RR) is the smallest dense left ideal of R; see [7, Corollary 13.25].
But R is a left nonsingular ring, therefore R is a polyform ring ( i.e., dense
left ideals coincide with essential left ideals); see [7, Corollary 8.9]. Hence
Col(RR) = Soc(RR) is the smallest dense left ideal. We note that some class
of rings have essential socle, for example ue-rings [6] and finitely embedded
rings, see [7].

Proposition 4.24. Let R be a ring. Then the following statements hold.
(1) Soc(R) ≤d R if and only if R is nonsingular and Soc(R) ≤e R.
(2) Soc(R) ≤sd R if and only if R is t-nonsingular and Soc(R) ≤se R.
(3) Let M be an R-module. Then Col(M) ≤sd M if and only if Col(M) ≤d

M and D = SD in M .
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Proof. (1) If Soc(R) ≤d R then all essential left ideals of R are dense, thus R
is nonsingular by [7, Corollary 8.9]. The converse is clear.

(2) The proof is similar to part (1) by Theorem 3.3.
(3) Let Col(M) ≤sd M , since every dense submodule contains Col(M), thus

density and strong density are the same. The converse is clear. □

The set D of all dense left ideals of a ring R is a Gabriel topology; see [11,
pages 144, 146, 149], but the set of all essential or strongly essential left ideals
of R is not a Gabriel topology in general, because part (4) of Corollary 2.12
may not be true if we replace dense ideals by essential ideals or strongly essen-
tial ideals. The Gabriel topology on the set D consisting of dense left ideals
of R is called dense topology; see [11, page 149], and it is also called Lambek
topology by some authors; see for example [10]. We observe that the set of all
strongly dense left ideals is also a Gabriel topology by Proposition 2.13 and
Corollary 2.12, and we called it strongly dense topology.

We also remark that a Gabriel topology is closed under product.
The next corollary is immediate.

Corollary 4.25. Let R be a ring and I,J be two strongly dense left ideals, then
IJ ≤sd R.

We conclude the article with the following result which is an easy conse-
quence of Theorem 4.23.

Theorem 4.26. For a ring R, strongly dense and dense topologies coincide if
and only if R ≤sd Ẽ(R).
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