Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 3, pp. 761-777

Title:

Applications of subordination theory to starlike functions
Author(s):
K. Sharma and V. Ravichandran

Published by Iranian Mathematical Society

APPLICATIONS OF SUBORDINATION THEORY TO STARLIKE FUNCTIONS

K. SHARMA AND V. RAVICHANDRAN*

(Communicated by Ali Abkar)

Abstract

Let p be an analytic function defined on the open unit disc \mathbb{D} with $p(0)=1$. The conditions on α and β are derived for $p(z)$ to be subordinate to $1+4 z / 3+2 z^{2} / 3=: \varphi_{C}(z)$ when $(1-\alpha) p(z)+\alpha p^{2}(z)+$ $\beta z p^{\prime}(z) / p(z)$ is subordinate to e^{z}. Similar problems were investigated for $p(z)$ to lie in a region bounded by lemniscate of Bernoulli $\left|w^{2}-1\right|=1$ when the functions $(1-\alpha) p(z)+\alpha p^{2}(z)+\beta z p^{\prime}(z),(1-\alpha) p(z)+\alpha p^{2}(z)+$ $\beta z p^{\prime}(z) / p(z)$ or $p(z)+\beta z p^{\prime}(z) / p^{2}(z)$ are subordinates to $\varphi_{C}(z)$. Related results for p to be in the parabolic region bounded by the $\operatorname{Re} w=|w-1|$ are investigated. Keywords: convex and starlike functions, cardioid, parabolic starlike, lemniscate of Bernoulli, subordination. MSC(2010): Primary: 30C80; Secondary: 30C45.

1. Introduction

Let \mathcal{A} be the class of all functions f analytic in the unit disc $\mathbb{D}:=\{z \in \mathbb{C}$: $|z|<1\}$ and normalized by the conditions $f(0)=0$ and $f^{\prime}(0)=1$. Let \mathcal{S} be the subclass of \mathcal{A} consisting of univalent functions. For an analytic function φ with positive real part in \mathbb{D} with $\varphi(0)=1$ and $\varphi^{\prime}(0)>0$, let

$$
\mathcal{S}^{*}(\varphi):=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \varphi(z)\right\}
$$

and

$$
\mathcal{C}(\varphi):=\left\{f \in \mathcal{A}: 1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \varphi(z)\right\} .
$$

These classes unify various classes of starlike and convex functions. Shanmugam [18] studied the convolution properties of these classes when φ is convex while Ma and Minda [8] investigated the growth, distortion and coefficient estimates under less restrictive assumption that φ is starlike and $\varphi(\mathbb{D})$ is symmetric with

[^0]respect to the real axis. Notice that, for $-1 \leq B<A \leq 1$, the class $\mathcal{S}^{*}[A, B]:=$ $\mathcal{S}^{*}((1+A z) /(1+B z))$ is the class of Janowski starlike functions [6,13]. For $0 \leq \alpha<1$, the class $\mathcal{S}^{*}[1-2 \alpha,-1]=: \mathcal{S}^{*}(\alpha)$ is the familiar class of starlike functions of order α, introduced by Robertson [16]. The classes $\mathcal{S}^{*}:=\mathcal{S}^{*}(0)$ and $\mathcal{C}:=\mathcal{C}(0)$ are the classes of starlike and convex functions respectively. If the function $\varphi_{P A R}: \mathbb{D} \rightarrow \mathbb{C}$ is given by
\[

$$
\begin{equation*}
\varphi_{P A R}(z):=1+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{z}}{1-\sqrt{z}}\right)^{2}, \quad \operatorname{Im} \sqrt{z} \geq 0 \tag{1.1}
\end{equation*}
$$

\]

then $\varphi_{P A R}(\mathbb{D})=\left\{w=u+i v: v^{2}<2 u-1\right\}=\{w: \operatorname{Re} w>|w-1|\}=: \Omega_{P}$. The class $\mathcal{C}\left(\varphi_{P A R}\right)$ is the class of uniformly convex functions introduced by Goodman [4]. The corresponding class $\mathcal{S}_{P}:=\mathcal{S}^{*}\left(\varphi_{P A R}\right)$ of parabolic starlike functions, introduced by Rønning [17], consists of function $f \in \mathcal{A}$ satisfying

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|, \quad z \in \mathbb{D}
$$

Sokól and Stankiewicz [23] have introduced and studied the class $\mathcal{S}_{L}^{*}=\mathcal{S}^{*}(\sqrt{1+z})$; the class \mathcal{S}_{L}^{*} consists of functions $f \in \mathcal{A}$ such that $z f^{\prime}(z) / f(z)$ lies in the region bounded by the right-half of the lemniscate of Bernoulli given by $\Omega_{L}:=$ $\left\{w \in \mathbb{C}:\left|w^{2}-1\right|<1\right\}$. There has been several works $[1,3,5,14,19,21,22]$ related to these classes. Similarly, the class $\mathcal{S}_{C}^{*}:=\mathcal{S}^{*}\left(\varphi_{C}\right)$, where $\varphi_{C}(z)=$ $1+4 z / 3+2 z^{2} / 3$ was introduced and studied recently in [15, 20]. Precisely, $f \in \mathcal{S}_{C}^{*}$ provided $z f^{\prime}(z) / f(z)$ lies in the region bounded by the cardioid

$$
\Omega_{C}:=\left\{w=u+i v:\left(9 u^{2}+9 v^{2}-18 u+5\right)^{2}-16\left(9 u^{2}+9 v^{2}-6 u+1\right)=0\right\} .
$$

Another class $\mathcal{S}_{e}^{*}:=\mathcal{S}^{*}\left(e^{z}\right)$, introduced recently by Mendiratta et al. [10], consists of functions $f \in \mathcal{A}$ satisfying the condition $\left|\log \left(z f^{\prime}(z) / f(z)\right)\right|<1$.

A convex function is starlike of order $1 / 2$; analytically,

$$
p(z)+z p^{\prime}(z) / p(z) \prec(1+z) /(1-z) \Longrightarrow p(z) \prec 1 /(1-z) .
$$

Similarly, a sufficient condition for a function p to be a function with positive real part is that $p(z)+z p^{\prime}(z) / p(z) \prec \mathcal{R}(z)$, where \mathcal{R} is the open door mapping given by

$$
\mathcal{R}(z):=\frac{1+z}{1-z}+\frac{2 z}{1-z^{2}}
$$

Several authors have investigated similar results for functions to belong to certain regions in right half plane. For example, Ali et al. [2] determined the condition on β for $p(z) \prec \sqrt{1+z}$ when $1+\beta z p^{\prime}(z) / p^{n}(z)$ with $n=0,1,2$ or $(1-\beta) p(z)+\beta p^{2}(z)+\beta z p^{\prime}(z)$ is subordinate to $\sqrt{1+z}$. For related results, see $[1-3,7,12,22]$. We investigate a similar problem for regions that were considered recently by many authors, including parabolic and lemniscate regions associated with the classes \mathcal{S}_{P} and \mathcal{S}_{L}^{*}, respectively. Precisely we determine conditions on α and β so that $p(z) \prec \varphi_{C}(z)$ when $(1-\alpha) p(z)+$
$\alpha p^{2}(z)+\beta z p^{\prime}(z) / p(z) \prec e^{z}$. Conditions on α and β are also determined so that $(1-\alpha) p(z)+\alpha p^{2}(z)+\beta z p^{\prime}(z)$ or $(1-\alpha) p(z)+\alpha p^{2}(z)+\beta z p^{\prime}(z) / p(z)$ or $p(z)+\beta z p^{\prime}(z) / p^{2}(z) \prec \varphi_{C}(z)$ implies $p(z) \prec \sqrt{1+z}$. We also find condition on β so that $1+\beta z p^{\prime}(z)$ is subordinate to $\varphi_{C}(z)$ or $\sqrt{1+z}$ implies $p(z) \prec \varphi_{P A R}(z)$. Our results yield several sufficient conditions for $f \in \mathcal{A}$ to belong to the class $\mathcal{S}_{P}, \mathcal{S}_{C}^{*}$ or \mathcal{S}_{L}^{*}.

We need the following lemmas to prove our results.
Lemma 1.1. [11, Corollary 3.4h, p.135] Let q be univalent in \mathbb{D}, and let φ be analytic in a domain D containing $q(\mathbb{D})$. Let $z q^{\prime}(z) \varphi(q(z))$ be starlike. If p is analytic in $\mathbb{D}, p(0)=q(0)$ and $z p^{\prime}(z) \varphi(p(z)) \prec z q^{\prime}(z) \varphi(q(z))$, then $p \prec q$ and q is the best dominant.
Lemma 1.2. [11, Theorem 3.4i, p.134] Let q be univalent in \mathbb{D} and let φ and ν be analytic in a domain D containing $q(\mathbb{D})$ with $\varphi(w) \neq 0$ when $w \in q(\mathbb{D})$. Set $Q(z):=z q^{\prime}(z) \varphi(q(z)), h(z):=\nu(q(z))+Q(z)$. Suppose that (i) either h is convex or $Q(z)$ is starlike univalent in \mathbb{D} and (ii) $\operatorname{Re}\left(z h^{\prime}(z) / Q(z)\right)>0$ for $z \in \mathbb{D}$. Let p be analytic in \mathbb{D} with $p(0)=q(0)$ and $p(\mathbb{D}) \subset \mathbb{D}$. If p satisfies

$$
\begin{equation*}
\nu(p(z))+z p^{\prime}(z) \varphi(p(z)) \prec \nu(q(z))+z q^{\prime}(z) \varphi(q(z)) \tag{1.2}
\end{equation*}
$$

then $p \prec q$ and q is the best dominant.

2. Results associated with starlikeness

Let p be an analytic function in \mathbb{D} with $p(0)=1$. In the first result, we find the conditions on α and β so that $p(z) \in \Omega_{C}$, whenever $(1-\alpha) p(z)+\alpha p^{2}(z)+$ $\beta z p^{\prime}(z) / p(z) \prec e^{z}$.
Theorem 2.1. Let the function p be analytic in \mathbb{D} with $p(0)=1$. Let $\alpha, \beta \in \mathbb{R}$ such that either (i) $3(e-3) /(2 e)<\alpha<(e-3) / 6, \beta>9(e-3-6 \alpha) / 8$, or (ii) $(e-3) / 6 \leq \alpha \leq 0, \beta>0$ holds. If the function p satisfies

$$
(1-\alpha) p(z)+\alpha p^{2}(z)+\beta \frac{z p^{\prime}(z)}{p(z)} \prec e^{z}
$$

then $p(z) \prec \varphi_{C}(z)$.
Proof. The function $q: \mathbb{D} \rightarrow \mathbb{C}$ defined by $q(z)=\varphi_{C}(z)=1+4\left(z+z^{2} / 2\right) / 3$ is univalent in \mathbb{D}. Let $h: \mathbb{D} \rightarrow \mathbb{C}$ be defined by

$$
\begin{align*}
h(z) & :=(1-\alpha) q(z)+\alpha q^{2}(z)+\beta \frac{z q^{\prime}(z)}{q(z)} \\
1) & =(1-\alpha)\left(1+\frac{4 z}{3}+\frac{2 z^{2}}{3}\right)+\alpha\left(1+\frac{4 z}{3}+\frac{2 z^{2}}{3}\right)^{2}+\frac{4 \beta z(1+z)}{3+4 z+2 z^{2}} \tag{2.1}
\end{align*}
$$

$$
\text { of is by showing that }(a)
$$

$$
\begin{equation*}
(1-\alpha) p(z)+\alpha p^{2}(z)+\beta \frac{z p^{\prime}(z)}{p(z)} \prec(1-\alpha) q(z)+\alpha q^{2}(z)+\beta \frac{z q^{\prime}(z)}{q(z)} \tag{2.2}
\end{equation*}
$$

implies that $p(z) \prec q(z)$ and (b) the subordination $\psi(z):=e^{z} \prec h(z)$ holds.
(a) The subordination (2.2) is the same as (1.2) if we define the functions ν, φ by $\nu(w)=(1-\alpha) w+\alpha w^{2}$ and $\varphi(w)=\beta / w$. The function ν is analytic in \mathbb{C}. Since $\beta>0, \varphi$ is analytic in $\mathbb{C} \backslash\{0\}$ and $\varphi(w) \neq 0$. Consider the functions Q and h defined as follows:

$$
\begin{equation*}
Q(z):=z q^{\prime}(z) \varphi(q(z))=\frac{\beta z q^{\prime}(z)}{q(z)}=\frac{4 \beta z(1+z)}{3+4 z+2 z^{2}} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
h(z)=\nu(q(z))+Q(z)=(1-\alpha) q(z)+\alpha q^{2}(z)+Q(z) . \tag{2.4}
\end{equation*}
$$

The equation (2.3) gives

$$
\frac{z Q^{\prime}(z)}{Q(z)}=\frac{z}{1+z}+\frac{3-2 z^{2}}{3+4 z+2 z^{2}}=: K(z)
$$

Substituting $x=\cos t(t \in[-\pi, \pi])$, we have

$$
\operatorname{Re}\left(K\left(e^{i t}\right)\right)=\frac{1}{2}+\frac{5+4 \cos t}{29+40 \cos t+12 \cos 2 t}=\frac{1}{2}+\frac{5+4 x}{24 x^{2}+40 x+17} \geq \frac{11}{18}>0
$$

This together with the minimum principle for harmonic functions shows that the function Q is starlike univalent in \mathbb{D}. Using (2.3) and (2.4), we get

$$
\frac{z h^{\prime}(z)}{Q(z)}=\frac{1-\alpha}{\beta} q(z)+\frac{2 \alpha}{\beta} q^{2}(z)+\frac{z Q^{\prime}(z)}{Q(z)}=M(z)+K(z)
$$

where

$$
M(z)=((1-\alpha) / \beta) q(z)+(2 \alpha / \beta) q^{2}(z)
$$

We show that $\operatorname{Re}\left(z h^{\prime}(z) / Q(z)\right)>0, z \in \mathbb{D}$ when $\alpha, \beta \in \mathbb{R}$ satisfy the conditions in (i) or (ii) in the hypothesis. For $t \in[-\pi, \pi]$, we have

$$
\begin{aligned}
\operatorname{Re}\left(M\left(e^{i t}\right)\right)= & (9+9 \alpha+12(1+3 \alpha) \cos t \\
& +(6+50 \alpha) \cos 2 t+32 \alpha \cos 3 t+8 \alpha \cos 4 t) / 9 \beta=: H(\cos t)
\end{aligned}
$$

We need to prove that $H(x) \geq 0$ in the interval $-1 \leq x \leq 1$ for cases (i) and (ii), where

$$
H(x)=\left(3-33 \alpha+12(1-5 \alpha) x+12(1+3 \alpha) x^{2}+128 \alpha x^{3}+64 \alpha x^{4}\right) / 9 \beta
$$

Since, $H(1)=(3+15 \alpha) / \beta$ and $H(-1)=(3-\alpha) / 9 \beta, H(1)$ and $H(-1)$ both are non- negative for $-1 / 5 \leq \alpha \leq 3, \beta>0$. A calculation shows that $H^{\prime}(x)=0$ if

$$
\begin{aligned}
x=x_{0}=- & \frac{1}{2}-\frac{1152 \alpha-5760 \alpha^{2}}{4608\left(2^{\frac{1}{3}} \alpha\left(16 \alpha^{3}+\sqrt{2} \sqrt{\alpha^{3}-15 \alpha^{4}+75 \alpha^{5}+3 \alpha^{6}}\right)^{\frac{1}{3}}\right)} \\
& +\frac{\left(16 \alpha^{3}+\sqrt{2} \sqrt{\alpha^{3}-15 \alpha^{4}+75 \alpha^{5}+3 \alpha^{6}}\right)^{\frac{1}{3}}}{4\left(2^{\frac{2}{3}} \alpha\right)}
\end{aligned}
$$

and

$$
H^{\prime \prime}(x)=\left(768 x \alpha+8\left(-16+96 x^{2}\right) \alpha+4(6+50 \alpha)\right) / 9 \beta
$$

Clearly for both the cases (i) and $(i i), H^{\prime \prime}\left(x_{0}\right)<0, H(1) \geq 0$ and $H(-1) \geq 0$. Therefore, $H(x) \geq \min (H(1), H(-1)) \geq 0$ for $-1 \leq x \leq 1$. This shows that $\operatorname{Re}\left(z h^{\prime}(z) / Q(z)\right)>0, z \in \mathbb{D}$ and therefore, $h(z)-1$ is close-to-convex function and hence univalent in \mathbb{D}. If the subordination (2.2) holds, Lemma 1.2 shows that $p(z) \prec q(z)$.
(b) We now show that $\psi(z):=e^{z} \prec h(z)$ holds. The subordination $\psi(z) \prec$ $h(z)$ holds if $\partial h(\mathbb{D}) \subset \mathbb{C} \backslash \overline{\psi(\mathbb{D})}=\{w \in \mathbb{C}:|\log w|>1\}$. Set $w=u+i v=h\left(e^{i t}\right)$, where $t \in[-\pi, \pi]$. Then, the inequality $|\log w|>1$ reduces to

$$
\begin{equation*}
f(t):=\left(\log \left(u^{2}+v^{2}\right)\right)^{2}+4(\arg (u+i v))^{2}-4>0 \tag{2.5}
\end{equation*}
$$

By definition of h given in (2.1), we get

$$
\begin{aligned}
u= & \frac{1}{9(29+40 \cos t+12 \cos 2 t)}(537+372 \alpha+216 \beta \\
& +4(225+239 \alpha+81 \beta) \cos t+2(261+611 \alpha+54 \beta) \cos 2 t \\
& +96(2+11 \alpha) \cos 3 t+4(9+142 \alpha) \cos 4 t \\
& +176 \alpha \cos 5 t+24 \alpha \cos 6 t)
\end{aligned}
$$

and

$$
\begin{aligned}
v= & \frac{1}{9(29+40 \cos t+12 \cos 2 t)}(4(147+511 \alpha+45 \beta \\
& \quad+(225+907 \alpha+54 \beta) \cos t+8(12+77 \alpha) \cos 2 t \\
& \quad+2(9+148 \alpha) \cos 3 t+88 \alpha \cos 4 t+12 \alpha \cos 5 t) \sin t)
\end{aligned}
$$

Since $f(t)$ is an even function of t, it is enough to show that $f(t)>0$ for $t \in[0, \pi]$. It can be easily verified that for both the cases (i) and (ii), the function $f(t)$ attains its minimum value either at $t=0$ or $t=\pi$. So, we need to show that both $f(0)$ and $f(\pi)$ are positive in either cases. Note that

$$
\begin{equation*}
f(0)=-4+4(\arg (27+54 \alpha+8 \beta))^{2}+\left(\log \left((27+54 \alpha+8 \beta)^{2} / 81\right)\right)^{2} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f(\pi)=-4+4(\arg (3-2 \alpha))^{2}+\left(\log \left((3-2 \alpha)^{2} / 81\right)\right)^{2} \tag{2.7}
\end{equation*}
$$

For the case (i), the relation $\beta>9(e-3-6 \alpha) / 8$ gives $27+54 \alpha+8 \beta>9 e$ so that $\arg (27+54 \alpha+8 \beta)=0$ and $\left(\log \left((27+54 \alpha+8 \beta)^{2} / 81\right)\right)^{2}>(2 \log e)^{2}=4$. Thus, the use of (2.6) yields $f(0)>0$. The conditions $\alpha<(e-3) / 6$ and $3(e-$ $3) /(2 e)<\alpha$ lead to $3-2 \alpha>4-e / 3>0$ and $(3-2 \alpha)^{2} / 81<1 / e^{2}$ respectively which further implies that $\arg (3-2 \alpha)=0$ and $\left(\log \left((3-2 \alpha)^{2} / 81\right)\right)^{2}>4$ respectively. Hence, by using (2.7), we get $f(\pi)>0$.

For the case (ii), the condition $(e-3) / 6 \leq \alpha$ gives $27+54 \alpha+8 \beta>8 \beta+$ $9 e>9 e$. So, proceeding as in the case (i), we get $f(0)>0$. Using the fact that $\alpha \leq 0$, we get $3-2 \alpha>0$ and hence $\arg (3-2 \alpha)=0$. Observe that
$\alpha \geq(e-3) / 6>3(e-3) /(2 e)$. Thus, again proceeding as in the case (i), we get $f(\pi)>0$. This completes the proof.

By taking $p(z)=z f^{\prime}(z) / f(z), p(z)=z^{2} f^{\prime}(z) / f^{2}(z)$ and $p(z)=f^{\prime}(z)$, the above theorem gives the following:

Example 2.2. Let $\alpha, \beta \in \mathbb{R}$ such that either (i) $3(e-3) /(2 e)<\alpha<(e-3) / 6$, $\beta>9(e-3-6 \alpha) / 8$, or (ii) $(e-3) / 6 \leq \alpha \leq 0, \beta>0$ holds.
(1) If the function $f \in \mathcal{A}$ satisfies the subordination

$$
(1-\alpha-\beta) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{2}+\beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec e^{z}
$$

then $f \in \mathcal{S}_{C}^{*}$.
(2) If the function $f \in \mathcal{A}$ satisfies the subordination
$\left((1-\alpha)+\alpha \frac{z^{2} f^{\prime}(z)}{f^{2}(z)}\right) \frac{z^{2} f^{\prime}(z)}{f^{2}(z)}+\beta\left(\frac{(z f(z))^{\prime \prime}}{f^{\prime}(z)}-\frac{2 z f^{\prime}(z)}{f(z)}\right) \prec e^{z}$
then $z^{2} f^{\prime}(z) / f^{2}(z) \prec \varphi_{C}(z)$.
(3) If the function $f \in \mathcal{A}$ satisfies the subordination

$$
\left((1-\alpha)+\alpha f^{\prime}(z)\right) f^{\prime}(z)+\beta \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec e^{z}
$$

then $f^{\prime}(z) \prec \varphi_{C}(z)$.
In the next two theorems, we compute the conditions on β so that $p(z) \in \Omega_{L}$, whenever

$$
(1-\alpha) p(z)+\alpha p^{2}(z)+\beta z p^{\prime}(z) \quad \text { or } \quad(1-\alpha) p(z)+\alpha p^{2}(z)+\beta \frac{z p^{\prime}(z)}{p(z)} \in \Omega_{C}
$$

where p is an analytic function defined on \mathbb{D} with $p(0)=1$.
Theorem 2.3. Let $\alpha, \beta \in \mathbb{R}$ satisfying $-1 /(2 \sqrt{2}-1) \leq \alpha \leq 1$ and $\beta>$ $-2(2-3 \sqrt{2}-2 \alpha+2 \sqrt{2} \alpha)$. If the function p is analytic in \mathbb{D} with $p(0)=1$ and satisfies $(1-\alpha) p(z)+\alpha p^{2}(z)+\beta z p^{\prime}(z) \prec \varphi_{C}(z)$ then $p(z) \prec \sqrt{1+z}$.

Proof. Let q be the convex univalent function defined by $q(z)=\sqrt{1+z}$. Then it is clear that $\beta z q^{\prime}(z)$ is starlike. We will prove the result by showing that (a)

$$
\begin{equation*}
(1-\alpha) p(z)+\alpha p^{2}(z)+\beta z p^{\prime}(z) \prec(1-\alpha) q(z)+\alpha q^{2}(z)+\beta z q^{\prime}(z) \tag{2.8}
\end{equation*}
$$

implies that $p(z) \prec q(z)$ and (b)

$$
\begin{align*}
\varphi_{C}(z):= & 1+\frac{4 z}{3}+\frac{2 z^{2}}{3} \prec(1-\alpha) q(z)+\alpha q^{2}(z)+\beta z q^{\prime}(z) \\
& =(1-\alpha) \sqrt{1+z}+\alpha(1+z)+\frac{\beta z}{2 \sqrt{1+z}}=: h(z) . \tag{2.9}
\end{align*}
$$

(a) To prove (2.8), define $\nu(w)=(1-\alpha) w+\alpha w^{2}$ and $\varphi(w)=\beta$. The function ν is analytic in \mathbb{C}. Since $\beta>0, \varphi$ is analytic in $\mathbb{C} \backslash\{0\}$ and $\varphi(w) \neq 0$. The function Q defined by

$$
\begin{equation*}
Q(z):=z q^{\prime}(z) \varphi(q(z))=\beta z q^{\prime}(z)=\frac{\beta z}{2 \sqrt{1+z}} \tag{2.10}
\end{equation*}
$$

is starlike of order $3 / 4$ and for the function h defined by

$$
\begin{equation*}
h(z):=\nu(q(z))+Q(z)=(1-\alpha) q(z)+\alpha q^{2}(z)+Q(z) \tag{2.11}
\end{equation*}
$$

we have

$$
\frac{z h^{\prime}(z)}{Q(z)}=\frac{1-\alpha}{\beta}+\frac{2 \alpha}{\beta} q(z)+\frac{z Q^{\prime}(z)}{Q(z)}
$$

Using the fact that $0<\operatorname{Re} q(z)<\sqrt{2}, z \in \mathbb{D}$, we have the following two cases:
Case 1: $0 \leq \alpha \leq 1$. In this case, we have

$$
\operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)>\frac{1-\alpha}{\beta}+\frac{3}{4}>0
$$

Case 2: $-1 /(2 \sqrt{2}-1) \leq \alpha<0$. In this case, we have

$$
\operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)>\frac{1-\alpha}{\beta}+\frac{2 \sqrt{2} \alpha}{\beta}+\frac{3}{4}>0
$$

This shows that $\operatorname{Re}\left(z h^{\prime}(z) / Q(z)\right)>0, z \in \mathbb{D}$ and therefore, $h(z)-1$ is close-to-convex function and hence univalent in \mathbb{D}. If the subordination (2.8) holds, Lemma 1.2 shows that $p(z) \prec q(z)$.
(b) We now show that (2.9) holds. Clearly,

$$
\varphi_{C}(\mathbb{D})=\{w \in \mathbb{C}:|-2+\sqrt{6 w-2}|<2\}
$$

The subordination $\varphi_{C}(z) \prec h(z)$ holds if $\partial h(\mathbb{D}) \subset \mathbb{C} \backslash \overline{\varphi_{C}(\mathbb{D})}$. Thus, by using the definition of h as given in (2.9), the subordination $\varphi_{C}(z) \prec h(z)$ holds if for $t \in[-\pi, \pi]$, we have

$$
\begin{equation*}
\left|\sqrt{-2+6(1-\alpha) \sqrt{1+e^{i t}}+6 \alpha\left(1+e^{i t}\right)+\frac{3 \beta e^{i t}}{\sqrt{1+e^{i t}}}}-2\right|>2 \tag{2.12}
\end{equation*}
$$

By writing

$$
\begin{equation*}
w=-2+6(1-\alpha) \sqrt{1+e^{i t}}+6 \alpha\left(1+e^{i t}\right)+3 \beta e^{i t}\left(1+e^{i t}\right)^{-\frac{1}{2}} \tag{2.13}
\end{equation*}
$$

we see that the condition (2.12) holds if $|\sqrt{w}-2|>2$ or equivalently if $|w|>$ $4 \operatorname{Re}(\sqrt{w})$. On further simplification after substituting $w=u+i v,(2.12)$ holds if

$$
\begin{equation*}
\left(u^{2}+v^{2}-8 u\right)^{2}-64\left(u^{2}+v^{2}\right)>0 \tag{2.14}
\end{equation*}
$$

Using (2.13), we get

$$
\begin{align*}
u= & -2+6(1-\alpha) \sqrt{2 \cos (t / 2)} \cos (t / 4)+6 \alpha(1+\cos t) \\
& +3 \beta \cos (3 t / 4)(2 \cos (t / 2))^{-\frac{1}{2}} \tag{2.15}
\end{align*}
$$

and

$$
\begin{align*}
v= & 6(1-\alpha) \sqrt{2 \cos (t / 2)} \sin (t / 4)+6 \alpha \sin t \\
& +3 \beta \sin (3 t / 4)(2 \cos (t / 2))^{-\frac{1}{2}} . \tag{2.16}
\end{align*}
$$

Using (2.15) and (2.16) in (2.14), we get

$$
\begin{aligned}
g(t):= & -64\left(\left(-2+6 \sqrt{2}(1-\alpha) \cos (t / 4) \sqrt{\cos (t / 2)}+\frac{3 \beta \cos (3 t / 4)}{\sqrt{2} \sqrt{\cos (t / 2)}}\right.\right. \\
& +6 \alpha(1+\cos t))^{2}+\left(6 \sqrt{2}(1-\alpha) \sqrt{\cos (t / 2)} \sin (t / 4)+\frac{3 \beta \cos (3 t / 4)}{\sqrt{2} \sqrt{\cos (t / 2)}}\right. \\
& \left.+6 \alpha \sin t)^{2}\right)+(-8(-2+6 \sqrt{2}(1-\alpha) \cos (t / 4) \sqrt{\cos (t / 2)} \\
& \left.+\frac{3 \beta \cos (3 t / 4)}{\sqrt{2} \sqrt{\cos (t / 2)}}+6 \alpha(1+\cos t)\right) \\
& +\left(-2+6 \sqrt{2}(1-\alpha) \cos (t / 4) \sqrt{\cos (t / 2)}+\frac{3 \beta \cos (3 t / 4)}{\sqrt{2} \sqrt{\cos (t / 2)}}\right. \\
& +6 \alpha(1+\cos t))^{2}+(6 \sqrt{2}(1-\alpha) \sqrt{\cos (t / 2)} \sin (t / 4) \\
& \left.\left.+\frac{3 \beta \sin (3 t / 4)}{\sqrt{2} \sqrt{\cos (t / 2)}}+6 \alpha \sin t\right)^{2}\right)^{2}>0 .
\end{aligned}
$$

Observe that $g(t)=g(-t)$ for all $t \in[-\pi, \pi]$ and $g(t)$ attains its minimum value at $t=0$. A calculation shows that

$$
\begin{align*}
g(0)= & \frac{3}{16}(4-12 \sqrt{2}+12(-2+\sqrt{2}) \alpha-3 \sqrt{2} \beta)^{3} \tag{2.17}\\
& \times(12-4 \sqrt{2}+4(-2+\sqrt{2}) \alpha-\sqrt{2} \beta)
\end{align*}
$$

Note that the condition $\beta>-2(2-3 \sqrt{2}-2 \alpha+2 \sqrt{2} \alpha)$ is equivalent to $12-$ $4 \sqrt{2}+4(-2+\sqrt{2}) \alpha-\sqrt{2} \beta<0$ and $4-12 \sqrt{2}+12(-2+\sqrt{2}) \alpha-3 \sqrt{2} \beta<0$. Thus, the use of (2.17) yields $g(0)>0$ which implies that $g(t)>0$ for all $t \in[0, \pi]$. Hence the result follows.

Theorem 2.4. Let $\alpha, \beta \in \mathbb{R}$ satisfying $0 \leq \alpha \leq 1$ and $\beta>4(3-\sqrt{2}+(\sqrt{2}-$ 2) α). If p is an analytic function defined on \mathbb{D} with $p(0)=1$ satisfying

$$
(1-\alpha) p(z)+\alpha p^{2}(z)+\beta \frac{z p^{\prime}(z)}{p(z)} \prec \varphi_{C}(z)
$$

then $p(z) \prec \sqrt{1+z}$.

Proof. Define the function $q: \mathbb{D} \rightarrow \mathbb{C}$ by $q(z)=\sqrt{1+z}$. Proceeding as in Theorem 2.3, the result is proved by showing that (a)

$$
\begin{equation*}
(1-\alpha) p(z)+\alpha p^{2}(z)+\beta \frac{z p^{\prime}(z)}{p(z)} \prec(1-\alpha) q(z)+\alpha q^{2}(z)+\beta \frac{z q^{\prime}(z)}{q(z)} \tag{2.18}
\end{equation*}
$$

implies that $p(z) \prec q(z)$ and (b)

$$
\begin{align*}
\varphi_{C}(z):= & 1+\frac{4 z}{3}+\frac{2 z^{2}}{3} \prec(1-\alpha) q(z)+\alpha q^{2}(z)+\frac{\beta z q^{\prime}(z)}{q(z)} \tag{2.19}\\
& =(1-\alpha) \sqrt{1+z}+\alpha(1+z)+\frac{\beta z}{2(1+z)}=: h(z)
\end{align*}
$$

(a) Let us define $\nu(w)=(1-\alpha) w+\alpha w^{2}$ and $\varphi(w)=\beta / w$. Clearly $\beta>0$. The functions ν and φ are analytic in $\mathbb{C} \backslash\{0\}$ which includes $q(\mathbb{D})$ and $\varphi(w) \neq 0$. Next, define the functions Q and h by

$$
\begin{equation*}
Q(z):=z q^{\prime}(z) \varphi(q(z))=\frac{\beta z q^{\prime}(z)}{q(z)}=\frac{\beta z}{2(1+z)} \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
h(z):=\nu(q(z))+Q(z)=(1-\alpha) q(z)+\alpha q^{2}(z)+Q(z) . \tag{2.21}
\end{equation*}
$$

Since Q is a Möbius transformation, the function Q is convex. Further using (2.20) and (2.21), we get

$$
\frac{z h^{\prime}(z)}{Q(z)}=\frac{1-\alpha}{\beta} q(z)+\frac{2 \alpha}{\beta} q^{2}(z)+\frac{z Q^{\prime}(z)}{Q(z)}
$$

Since $0<\operatorname{Re} q(z)<\sqrt{2}$ and $0<\operatorname{Re} q^{2}(z)<2, z \in \mathbb{D}$, we have

$$
\operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)>\sqrt{2}\left(\frac{1-\alpha}{\beta}\right)+\frac{4 \alpha}{\beta}>0
$$

Therefore, $h(z)-1$ is close-to-convex function and hence univalent in \mathbb{D}. If the subordination (2.18) holds, Lemma 1.2 shows that $p(z) \prec q(z)$.
(b) We now claim that (2.19) holds. Note that

$$
\varphi_{C}(\mathbb{D})=\{w \in \mathbb{C}:|-2+\sqrt{6 w-2}|<2\} .
$$

The subordination $\varphi_{C}(z) \prec h(z)$ holds if $\partial h(\mathbb{D}) \subset \mathbb{C} \backslash \overline{\varphi_{C}(\mathbb{D})}$. Using the definition of h given in (2.19), the subordination $\varphi_{C}(z) \prec h(z)$ holds if for $t \in[-\pi, \pi]$, the following condition holds

$$
\begin{equation*}
\left|\sqrt{-2+6(1-\alpha) \sqrt{1+e^{i t}}+6 \alpha\left(1+e^{i t}\right)+\frac{3 \beta e^{i t}}{1+e^{i t}}}-2\right|>2 \tag{2.22}
\end{equation*}
$$

Let

$$
\begin{equation*}
w=u+i v=-2+6(1-\alpha) \sqrt{1+e^{i t}}+6 \alpha\left(1+e^{i t}\right)+\frac{3 \beta e^{i t}}{1+e^{i t}} \tag{2.23}
\end{equation*}
$$

Proceeding as in Theorem 2.3, the condition (2.22) holds if (2.14) holds. From (2.23), we get

$$
u=-2+6(1-\alpha) \sqrt{2 \cos (t / 2)} \cos (t / 4)+6 \alpha(1+\cos t)+\frac{3 \beta}{2}
$$

and

$$
v=6(1-\alpha) \sqrt{2 \cos (t / 2)} \sin (t / 4)+6 \alpha \sin t+\frac{3 \beta}{2} \tan t / 2
$$

Using these above expressions for u and v, the condition (2.14) takes the following form

$$
\begin{aligned}
k(t):= & -64((-2+(3 \beta) / 2+6 \sqrt{2}(1-\alpha) \cos (t / 4) \sqrt{\cos (t / 2)} \\
& +6 \alpha(1+\cos t))^{2}+(6 \sqrt{2}(1-\alpha) \sqrt{\cos (t / 2)} \sin (t / 4)+6 \alpha \sin t \\
& \left.+(3 / 2) \beta \tan (t / 2))^{2}\right)+(-8(-2+(3 \beta) / 2 \\
& +6 \sqrt{2}(1-\alpha) \cos (t / 4) \sqrt{\cos (t / 2)}+6 \alpha(1+\cos t))+(-2+(3 \beta) / 2 \\
& +6 \sqrt{2}(1-\alpha) \cos (t / 4) \sqrt{\cos (t / 2)}+6 \alpha(1+\cos t))^{2} \\
& \left.+(6 \sqrt{2}(1-\alpha) \sqrt{\cos (t / 2)} \sin (t / 4)+6 \alpha \sin t+(3 / 2) \beta \tan (t / 2))^{2}\right)^{2} \\
& >0 .
\end{aligned}
$$

Note that $k(t)=k(-t)$, so it is enough to show that $k(t)>0$ for $t \in[0, \pi]$. Also note that $k(t)$ is an increasing function of t. A calculation shows that

$$
\begin{align*}
k(0)= & \frac{3}{16}(4-12 \sqrt{2}+12(-2+\sqrt{2}) \alpha-3 \beta)^{3} \tag{2.24}\\
& \times(12-4 \sqrt{2}+4(-2+\sqrt{2}) \alpha-\beta)
\end{align*}
$$

Consider the given relation $\beta>4(3-\sqrt{2}-2 \alpha+\sqrt{2} \alpha)$ which is same as $12-4 \sqrt{2}+4(-2+\sqrt{2}) \alpha-\beta<0$ and $4-12 \sqrt{2}+12(-2+\sqrt{2}) \alpha-3 \beta<0$. By using (2.24), we get $k(0)$ is positive which implies that $k(t)$ is positive for all $t \in[0, \pi]$. This completes the proof.

Next result depicts the condition on β so that $p(z) \in \Omega_{L}$, whenever $p(z)+$ $\beta z p^{\prime}(z) / p^{2}(z) \in \Omega_{C}$.

Theorem 2.5. Let $\beta \in \mathbb{R}$ satisfying $\beta>4(-2+3 \sqrt{2})$. If p is an analytic function defined on \mathbb{D} with $p(0)=1$ satisfying

$$
p(z)+\beta \frac{z p^{\prime}(z)}{p^{2}(z)} \prec \varphi_{C}(z)
$$

then $p(z) \prec \sqrt{1+z}$.

Proof. Define the function $q: \mathbb{D} \rightarrow \mathbb{C}$ by $q(z)=\sqrt{1+z}$. Proceeding as in Theorem 2.3, we will prove the result by showing that (a)

$$
\begin{equation*}
p(z)+\beta \frac{z p^{\prime}(z)}{p^{2}(z)} \prec q(z)+\beta \frac{z q^{\prime}(z)}{q^{2}(z)} \tag{2.25}
\end{equation*}
$$

implies that $p(z) \prec q(z)$ and (b)

$$
\begin{align*}
\varphi_{C}(z):= & 1+\frac{4 z}{3}+\frac{2 z^{2}}{3} \prec q(z)+\beta \frac{z q^{\prime}(z)}{q^{2}(z)} \tag{2.26}\\
& =\sqrt{1+z}+\frac{\beta z}{2(1+z)^{\frac{3}{2}}}=: h(z) .
\end{align*}
$$

(a) The subordination (2.25) is same as (1.2) if we define $\nu(w)=w$ and $\varphi(w)=\beta / w^{2}$. Clearly, the functions ν and φ are analytic in $\mathbb{C} \backslash\{0\}$ which includes $q(\mathbb{D})$ and $\varphi(w) \neq 0$. Consider the functions Q and h defined as follows:

$$
\begin{equation*}
Q(z):=z q^{\prime}(z) \varphi(q(z))=\frac{\beta z q^{\prime}(z)}{q^{2}(z)}=\frac{\beta z}{2(1+z)^{\frac{3}{2}}} \tag{2.27}
\end{equation*}
$$

and

$$
\begin{equation*}
h(z):=\nu(q(z))+Q(z)=q(z)+Q(z) \tag{2.28}
\end{equation*}
$$

Since $z /(1-z)^{2-2 \alpha} \in S^{*}(\alpha)$, the function Q is starlike in \mathbb{D}. Using (2.27) and (2.28), we get

$$
\frac{z h^{\prime}(z)}{Q(z)}=\frac{1}{\beta} q^{2}(z)+\frac{z Q^{\prime}(z)}{Q(z)}
$$

which further gives

$$
\operatorname{Re}\left(\frac{z h^{\prime}(z)}{Q(z)}\right)>\frac{1}{4}>0
$$

Hence, h is univalent in \mathbb{D}. If the subordination (2.25) holds, then from Lemma 1.2, it follows that $p(z) \prec q(z)$.
(b) We now show that (2.26) holds. Proceeding as in Theorem 2.3 and by using the definition of h given in (2.26), the subordination $\varphi_{C}(z) \prec h(z)$ holds if for $t \in[-\pi, \pi]$, the following condition holds

$$
\begin{equation*}
\left|\sqrt{-2+6 \sqrt{1+e^{i t}}+\frac{3 \beta e^{i t}}{\left(1+e^{i t}\right)^{\frac{3}{2}}}}-2\right|>2 \tag{2.29}
\end{equation*}
$$

Set

$$
w=u+i v=-2+6 \sqrt{1+e^{i t}}+\frac{3 \beta e^{i t}}{\left(1+e^{i t}\right)^{\frac{3}{2}}}
$$

so that

$$
\begin{equation*}
u=-2+6 \sqrt{2 \cos (t / 2)} \cos (t / 4)+3 \beta \cos (t / 4)(2 \cos (t / 2))^{-\frac{3}{2}} \tag{2.30}
\end{equation*}
$$

and

$$
\begin{equation*}
v=6 \sqrt{2 \cos (t / 2)} \sin (t / 4)+3 \beta \sin (t / 4)(2 \cos (t / 2))^{-\frac{3}{2}} \tag{2.31}
\end{equation*}
$$

Proceeding as in Theorem 2.3, the condition (2.29) holds if (2.14) holds. After using (2.30) and (2.31) in (2.14), we get

$$
\begin{aligned}
g(t):= & -64\left(\left(-2+\frac{3 \beta \cos (t / 4)}{2 \sqrt{2}(\cos (t / 2))^{\frac{3}{2}}}+6 \sqrt{2} \cos (t / 4) \sqrt{\cos (t / 2)}\right)^{2}\right. \\
& \left.+\left(\frac{3 \beta \sin (t / 4)}{2 \sqrt{2}(\cos (t / 2))^{\frac{3}{2}}}+6 \sqrt{2} \sqrt{\cos (t / 2)} \sin (t / 4)\right)^{2}\right) \\
& +\left(-8\left(-2+\frac{3 \beta \cos (t / 4)}{2 \sqrt{2}(\cos (t / 2))^{\frac{3}{2}}}+6 \sqrt{2} \cos (t / 4) \sqrt{\cos (t / 2)}\right)\right. \\
& +\left(-2+\frac{3 \beta \cos (t / 4)}{2 \sqrt{2}(\cos (t / 2))^{\frac{3}{2}}}+6 \sqrt{2} \cos (t / 4) \sqrt{\cos (t / 2)}\right)^{2} \\
& \left.+\left(\frac{3 \beta \sin (t / 4)}{2 \sqrt{2}(\cos (t / 2))^{\frac{3}{2}}}+6 \sqrt{2} \sqrt{\cos (t / 2)} \sin (t / 4)\right)^{2}\right)^{2}>0
\end{aligned}
$$

Since $g(t)$ is an even function of t, we will consider $g(t)$ for $t \in[0, \pi]$. It can be easily seen that the function $g(t)$ attains its minimum value at $t=0$. A simple calculation shows that

$$
\begin{equation*}
g(0)=\frac{3}{256}(8(-3+\sqrt{2})+\sqrt{2} \beta)(-8+24 \sqrt{2}+3 \sqrt{2} \beta)^{3} . \tag{2.32}
\end{equation*}
$$

The relation $\beta>4(-2+3 \sqrt{2})$ gives $8(-3+\sqrt{2})+\sqrt{2} \beta>0$ and $-8+24 \sqrt{2}+$ $3 \sqrt{2} \beta>0$ so that (2.32) yields $g(0)>0$. Hence, we conclude that $g(t)>0$ for $t \in[0, \pi]$.

By taking $p(z)=z f^{\prime}(z) / f(z)$ in Theorems 2.3, 2.4, and 2.5, we obtain the following example.

Example 2.6. Let $f \in \mathcal{A}$. Then the following are sufficient conditions for $f \in \mathcal{S}_{L}^{*}$.
(1) Let $-1 /(2 \sqrt{2}-1) \leq \alpha \leq 1$ and $\beta>-2(2-3 \sqrt{2}-2 \alpha+2 \sqrt{2} \alpha)$. The function f satisfies the subordination

$$
\left((1-\alpha)+(\alpha-\beta) \frac{z f^{\prime}(z)}{f(z)}\right) \frac{z f^{\prime}(z)}{f(z)}+\beta \frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \varphi_{C}(z) .
$$

(2) Let $0 \leq \alpha \leq 1$ and $\beta>4(3-\sqrt{2}+(\sqrt{2}-2) \alpha)$. The function f satisfies the subordination

$$
\left(1-\alpha-\beta+\alpha \frac{z f^{\prime}(z)}{f(z)}\right) \frac{z f^{\prime}(z)}{f(z)}+\beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \varphi_{C}(z)
$$

(3) Let $\beta>4(-2+3 \sqrt{2})$. The function f satisfies the subordination

$$
\frac{z f^{\prime}(z)}{f(z)}-\beta+\beta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) /\left(\frac{z f^{\prime}(z)}{f(z)}\right) \prec \varphi_{C}(z)
$$

By taking $p(z)=f^{\prime}(z)$ in Theorems 2.3, 2.4, and 2.5 respectively, we obtain the following example.

Example 2.7. Let $f \in \mathcal{A}$. Then the following are sufficient conditions for $f^{\prime}(z) \prec \sqrt{1+z}$.
(1) Let $-1 /(2 \sqrt{2}-1) \leq \alpha \leq 1$ and $\beta>-2(2-3 \sqrt{2}-2 \alpha+2 \sqrt{2} \alpha)$. The function f satisfies the subordination

$$
(1-\alpha) f^{\prime}(z)+\alpha\left(f^{\prime}(z)\right)^{2}+\beta z f^{\prime \prime}(z) \prec \varphi_{C}(z) .
$$

(2) Let $0 \leq \alpha \leq 1$ and $\beta>4(3-\sqrt{2}+(\sqrt{2}-2) \alpha)$. The function f satisfies the subordination

$$
(1-\alpha) f^{\prime}(z)+\alpha\left(f^{\prime}(z)\right)^{2}+\beta \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \varphi_{C}(z)
$$

(3) Let $\beta>4(-2+3 \sqrt{2})$. The function f satisfies the subordination

$$
f^{\prime}(z)+\beta \frac{z f^{\prime \prime}(z)}{\left(f^{\prime}(z)\right)^{2}} \prec \varphi_{C}(z)
$$

In the following theorem, condition on β is obtained so that $1+\beta z p^{\prime}(z) \in \Omega_{C}$ implies $p(z) \in \Omega_{P}$, where p is an analytic function in \mathbb{D} with $p(0)=1$.

Theorem 2.8. Let $\beta \in \mathbb{R}$ satisfying $\beta<-2 \pi$. If the function p is analytic in \mathbb{D} with $p(0)=1$ satisfies

$$
1+\beta z p^{\prime}(z) \prec \varphi_{C}(z)
$$

then $p(z) \prec \varphi_{P A R}(z)$, where the function $\varphi_{P A R}(z)$ is defined by (1.1).
Proof. Define the function $q: \mathbb{D} \rightarrow \mathbb{C}$ as $q(z)=\varphi_{P A R}(z)$ with $q(0)=1$. Let us define $\varphi(w)=\beta$ and $Q(z)=z q^{\prime}(z) \varphi(q(z))=\beta z q^{\prime}(z)$. Since q is the convex univalent function, Q is starlike in \mathbb{D}. It follows from Lemma 1.1 that the subordination

$$
1+\beta z p^{\prime}(z) \prec 1+\beta z q^{\prime}(z)
$$

implies $p(z) \prec q(z)$. The theorem is proved by showing that

$$
\begin{align*}
\varphi_{C}(z):=1+\frac{4 z}{3}+\frac{2 z^{2}}{3} \prec & 1+\beta z q^{\prime}(z) \\
& =1-\frac{4 \beta}{\pi^{2}} \frac{\sqrt{z}}{z-1} \log \frac{1+\sqrt{z}}{1-\sqrt{z}}=: h(z) \tag{2.33}
\end{align*}
$$

Proceeding as in Theorem 2.3 and by using the definition of h given in (2.33), the subordination $\varphi_{C}(z) \prec h(z)$ holds if for $t \in[-\pi, \pi]$, the following condition holds

$$
\begin{equation*}
\left|\sqrt{4-\frac{24 \beta}{\pi^{2}} \frac{e^{i t / 2}}{e^{i t}-1} \log \frac{1+e^{i t / 2}}{1-e^{i t / 2}}}-2\right|>2 \tag{2.34}
\end{equation*}
$$

Set

$$
w=u+i v=4-\frac{24 \beta}{\pi^{2}} \frac{e^{i t / 2}}{e^{i t}-1} \log \frac{1+e^{i t / 2}}{1-e^{i t / 2}}=4+\frac{12 \beta i}{\pi^{2}} \csc \frac{t}{2} \log \left(i \cot \frac{t}{4}\right)
$$

Clearly,

$$
\begin{equation*}
u=4-\frac{1}{\pi^{2}}\left(12 \beta \csc \frac{t}{2} \arg \left(i \cot \frac{t}{4}\right)\right) \tag{2.35}
\end{equation*}
$$

and

$$
\begin{equation*}
v=\frac{1}{\pi^{2}}\left(12 \beta \csc \frac{t}{2} \log \left|\cot \frac{t}{4}\right|\right) \tag{2.36}
\end{equation*}
$$

Proceeding as in Theorem 2.3, the condition (2.34) holds if (2.14) holds. Substituting the values of u and v given by (2.35) and (2.36) respectively in (2.14), we get

$$
\begin{align*}
f(t):= & -16 \pi^{4}\left(\left(\pi^{2}-3 \beta \arg (i \cot (t / 4)) \csc (t / 2)\right)^{2}\right. \\
& \left.+9 \beta^{2} \csc ^{2}(t / 2)(\log |\cot (t / 4)|)^{2}\right)+\csc ^{4}(t / 2)\left(\pi^{4}(-1+\cos t)\right. \tag{2.37}\\
& \left.+18 \beta^{2}\left((\arg (i \cot (t / 4)))^{2}+(\log |\cot (t / 4)|)^{2}\right)\right)^{2}>0
\end{align*}
$$

Note that $f(t)$ is an even function of t so we will take $t \in[0, \pi]$. Since for $t \in[0, \pi]$, we have $\arg (i \cot (t / 4))=\pi / 2$ and $\log |\cot (t / 4)|=\log \cot (t / 4)$, the condition (2.37) further reduces to

$$
\begin{aligned}
f(t)= & -16 \pi^{4}\left(\left(\pi^{2}-3 \beta(\pi / 2) \csc (t / 2)\right)^{2}+9 \beta^{2} \csc ^{2}(t / 2)(\log (\cot (t / 4)))^{2}\right) \\
& +\csc ^{4}(t / 2)\left(\pi^{4}(-1+\cos t)+(9 / 2) \beta^{2}\left(\pi^{2}+4(\log (\cot (t / 4)))^{2}\right)\right)^{2}>0
\end{aligned}
$$

It can be easily verified that f is decreasing function of t. The relation $\beta<-2 \pi$ implies $2 \pi-3 \beta>0$ and $2 \pi+\beta<0$ so that $f(\pi)=-3 \pi^{4}(2 \pi-3 \beta)^{3}(2 \pi+\beta) / 4>$ 0 . Therefore, we conclude that $f(t)>0$ for $t \in[0, \pi]$.

We close this section by obtaining the conditions on β so that $p(z) \in \Omega_{P}$, whenever $1+\beta z p^{\prime}(z) \in \Omega_{L}$.

Theorem 2.9. Let p be an analytic function defined on \mathbb{D} and $p(0)=1$. Let $|\beta-\pi|>\sqrt{2} \pi$. If the function p satisfies the subordination

$$
1+\beta z p^{\prime}(z) \prec \sqrt{1+z}
$$

then the function p satisfies the subordination

$$
p(z) \prec \varphi_{P A R}(z)
$$

where the function $\varphi_{P A R}(z)$ is defined by (1.1).
Proof. Let q be the convex univalent function $\varphi_{P A R}(z)$ defined by (1.1). Proceeding as in Theorem 2.8, the result is proved by showing that

$$
\begin{equation*}
\sqrt{1+z} \prec 1+\beta z q^{\prime}(z)=1-\frac{4 \beta}{\pi^{2}} \frac{\sqrt{z}}{z-1} \log \frac{1+\sqrt{z}}{1-\sqrt{z}}=: h(z) . \tag{2.38}
\end{equation*}
$$

Set $\psi(z)=\sqrt{1+z}$. The subordination $\psi(z) \prec h(z)$ holds if $\partial h(\mathbb{D}) \subset \mathbb{C} \backslash \overline{\psi(\mathbb{D})}=$ $\left\{w \in \mathbb{C}:\left|w^{2}-1\right|>1\right\}$. For $t \in[-\pi, \pi]$, let

$$
\begin{align*}
w=u+i v=h\left(e^{i t}\right) & =1-\frac{4 \beta}{\pi^{2}} \frac{e^{i t / 2}}{e^{i t}-1} \log \frac{1+e^{i t / 2}}{1-e^{i t / 2}} \\
& =1+\frac{2 \beta i}{\pi^{2}} \csc \frac{t}{2} \log \left(i \cot \frac{t}{4}\right) \tag{2.39}
\end{align*}
$$

The subordination $\psi(z) \prec h(z)$ holds if $\left|h^{2}\left(e^{i t}\right)-1\right|>1$ which holds if

$$
\begin{equation*}
u^{2}+v^{2}-2>0 \tag{2.40}
\end{equation*}
$$

From (2.39), we get

$$
u=1-\frac{2 \beta}{\pi^{2}} \csc (t / 2) \arg (i \cot (t / 4)) \quad \text { and } \quad v=\frac{2 \beta}{\pi^{2}} \csc (t / 2) \log |\cot (t / 4)|
$$

After substituting these values of u and v in (2.40), we get

$$
\begin{align*}
f(t):= & -2+\left(1-\frac{2 \beta}{\pi^{2}} \arg (i \cot (t / 4)) \csc (t / 2)\right)^{2} \\
& +\frac{4 \beta^{2}}{\pi^{4}} \csc ^{2}(t / 2)(\log |\cot (t / 4)|)^{2}>0 \tag{2.41}
\end{align*}
$$

Since $f(t)=f(-t)$, we will consider $t \in[0, \pi]$. Therefore, the condition (2.41) further reduces to

$$
f(t):=-2+\left(-1+\frac{\beta}{\pi} \csc (t / 2)\right)^{2}+\frac{4 \beta^{2}}{\pi^{4}} \csc ^{2}(t / 2)(\log (\cot (t / 4)))^{2}>0
$$

Note that

$$
\begin{aligned}
f^{\prime}(t)= & \frac{\beta \csc ^{3}(t / 2)}{2 \pi^{4}}\left(\pi^{3} \sin t-\beta(8 \log (\cot (t / 4))\right. \\
& \left.\left.+2 \cos (t / 2)\left(\pi^{2}+4(\log (\cot (t / 4)))^{2}\right)\right)\right)
\end{aligned}
$$

Since $f^{\prime}(t)<0$ and $f(\pi)=-2+(-1+\beta / \pi)^{2}>0$, we conclude that $f(t)>0$ for $t \in[0, \pi]$.

As applications of Theorems 2.8 and 2.9, we have the following examples.
Example 2.10. Let $f \in \mathcal{A}$. Then the following are sufficient conditions for $f \in \mathcal{S}_{P}$.
(1) Let $\beta<-2 \pi$. The function f satisfies the subordination

$$
1+\beta \frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec \varphi_{C}(z)
$$

(2) Let $|\beta-\pi|>\sqrt{2} \pi$. The function f satisfies the subordination

$$
1+\beta \frac{z f^{\prime}(z)}{f(z)}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right) \prec \sqrt{1+z}
$$

Example 2.11. Let $f \in \mathcal{A}$. Then the following are sufficient conditions for $f^{\prime}(z) \prec \varphi_{P A R}(z)$, where the function $\varphi_{P A R}(z)$ is given by (1.1).
(1) Let $\beta<-2 \pi$. The function f satisfies the subordination

$$
1+\beta z f^{\prime \prime}(z) \prec \varphi_{C}(z)
$$

(2) Let $|\beta-\pi|>\sqrt{2} \pi$. The function f satisfies the subordination

$$
1+\beta z f^{\prime \prime}(z) \prec \sqrt{1+z} .
$$

Acknowledgments

The authors are thankful to Lee See Keong for his comments on an earlier draft of this paper. The work presented here was supported by a grant from University of Delhi.

References

[1] R. M. Ali, N. E. Cho, N. Jain and V. Ravichandran, Radii of starlikeness and convexity for functions with fixed second coefficient defined by subordination, Filomat 26 (2012), no. 3, 553-561.
[2] R. M. Ali, N. E. Cho, V. Ravichandran and S. Sivaprasad Kumar, Differential subordination for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math. 16 (2012), no. 3, 1017-1026.
[3] R. M. Ali, N. K. Jain and V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. Comput. 218 (2012), no. 11, 6557-6565.
[4] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87-92.
[5] W. Janowski, Some extremal problems for certain families of analytic functions, I, Ann. Polon. Math. 28 (1973) 297-326.
[6] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math. 23 (1970/1971) 159-177.
[7] S. Sivaprasad Kumar, V. Kumar, V. Ravichandran and N. E. Cho, Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequal. Appl. 2013 (2013) 13 pages.
[8] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, 1994.
[9] R. Mendiratta, S. Nagpal and V. Ravichandran, A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli, Internat. J. Math. 25 (2014), no. 9, 17 pages.
[10] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (2015), no. 1, 365-386.
[11] S. S. Miller and P. T. Mocanu, Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.
[12] E. Paprocki and J. Sokół, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 20 (1996) 89-94.
[13] Y. Polatoğlu and M. Bolcal, Some radius problem for certain families of analytic functions, Turkish J. Math. 24 (2000), no. 4, 401-412.
[14] V. Ravichandran, F. Rønning and T. N. Shanmugam, Radius of convexity and radius of starlikeness for some classes of analytic functions, Complex Variables Theory Appl. $\mathbf{3 3}$ (1997), no. 1-4, 265-280.
[15] V. Ravichandran and K. Sharma, Sufficient conditions for starlikeness, J. Korean Math. Soc. 52 (2015), no. 4, 727-749.
[16] M. S. Robertson, Certain classes of starlike functions, Michigan Math. J. 32 (1985), no. 2, 135-140.
[17] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189-196.
[18] T. N. Shanmugam, Convolution and differential subordination, Internat. J. Math. Math. Sci. 12 (1989), no. 2, 333-340.
[19] T. N. Shanmugam and V. Ravichandran, Certain properties of uniformly convex functions, Computational Methods And Function Theory 1994 (Penang), 319-324, Ser. Approx. Decompos., 5 World Sci. Publ., River Edge, 1995.
[20] K. Sharma, N. K. Jain and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. (2015) DOI: 10.1007/s13370-015-0387-7.
[21] J. Sokól, Coefficient estimates in a class of strongly starlike functions, Kyungpook Math. J. 49 (2009), no. 2, 349-353.
[22] J. Sokół, Radius problems in the class $\mathcal{S} \mathcal{L}$, Appl. Math. Comput. 214 (2009), no. 2, 569-573.
[23] J. Sokółand J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. 19 (1996) 101-105.
(K. Sharma) Department of Mathematics, Atma Ram Sanatan Dharma College, University of Delhi, Delhi 110021, India.

E-mail address: kanika.divika@gmail.com
(V. Ravichandran) Department of Mathematics, University of Delhi, Delhi-110007, India.

E-mail address: vravi@maths.du.ac.in;vravi68@gmail.com

[^0]: Article electronically published on June 29, 2016.
 Received: 13 February 2015, Accepted: 27 April 2015.

 * Corresponding author.

