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Abstract. This study concerns with a trust-region-based method for
solving unconstrained optimization problems. The approach takes the
advantages of the compact limited memory BFGS updating formula to-

gether with an appropriate adaptive radius strategy. In our approach,
the adaptive technique leads us to decrease the number of subproblems
solving, while utilizing the structure of limited memory quasi-Newton for-
mulas helps to handle large-scale problems. Theoretical analysis indicates

that the new approach preserves the global convergence to a first-order
stationary point under classical assumptions. Moreover, the superlinear
and the quadratic convergence rates are also established under suitable
conditions. Preliminary numerical experiments show the effectiveness of

the proposed approach for solving large-scale unconstrained optimization
problems.
Keywords: Unconstrained optimization, trust-region framework, com-
pact quasi-Newton representation, limited memory technique, adaptive

strategy.
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1. Introduction

Over the past few decades large-scale unconstrained optimization gets lots
of attention thanks to arising in many applications in the context of applied
sciences such as biology, physics, geophysics, chemistry, engineering and indus-
try. In general, an unconstrained optimization problem can be formulated as
follows

(1.1) min f(x), x ∈ Rn
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where f : Rn → R is assumed to be continuously differentiable.

Motivation & history There exist lots of iterative schemes such as New-
ton, quasi-Newton, variable metric, gradient and conjugate gradient methods
that have been introduced and developed for solving the unconstrained prob-
lem (1.1). In the most cases, they are required to exploit one of the general
globalization techniques, i.e. line search and trust-region techniques, in order
to guarantee the global convergence results (see [26]).

For a given xk, a line search technique refers to a procedure that com-
putes a step-size αk along a specific direction dk and generates a new point as
xk+1 = xk + αkdk. Many line search strategies for determining the step-size
have been proposed, for instance exact line search or Armijo, Wolfe and Gold-
stein inexact line searches (see [26]). On the other hand, a quadratic-based
framework of trust-region technique computes a trial step dk by solving the
quadratic subproblem

(1.2)
minimize mk(xk + d) = fk + gTk d+

1
2d

TBkd
subject to d ∈ Rn, ∥d∥ ≤ ∆k,

where ∥.∥ denotes the Euclidean norm, fk = f(xk), gk = ∇f(xk), Bk is the
exact Hessian, i.e. Gk = ∇2f(xk), or its symmetric approximation and ∆k is
the trust-region radius. In order to evaluate an agreement between the model
and the objective function and to accept or reject the trial step dk, a criterion
based on the actual and the model reductions is required. Traditional monotone
trust-region methods do this by defining the ratio

(1.3) ρk =
f(xk)− f(xk + dk)

mk(xk)−mk(xk + dk)
,

where the numerator and the denominator are called the actual and the pre-
dicted reductions, respectively. It is clear that the predicted reduction is always
positive. The trial step dk is accepted whenever ρk is greater than a positive
constant. In this case, if ρk is greater than a constant µ2 > 0, then the new
point xk+1 = xk + dk is accepted and the iterate is called very successful. But
if ρk ≥ µ1 for 0 < µ1 < µ2, then the new point is generated by xk+1 = xk + dk
and the iterate is called successful and the trust-region radius is also updated
appropriately based on amount of ρk. Otherwise, the trial step is rejected and
the quadratic subproblem (1.2) would be resolved at the current point with the
reduced trust-region radius.

On the basis of literature reviews, one can realize that the traditional trust-
region methods are very sensitive to the initial trust-region radius ∆0 and its
updating scheme. This fact leads the researchers to work on finding appropriate
procedures for initial trust-region radius as well as its updating rule. In 1997,
Sartenaer in [30] proposed an approach to determine the initial trust-region ra-
dius by monitoring the agreement between the model and the objective function
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along the steepest descent direction. A possible drawback of this approach is
the dependency of the parameters to the problem information. Recently, Gould
et al. in [18] examined the sensitivity of the traditional trust-region methods to
the parameters related to the step acceptance test and trust-region radius up-
date with extensive numerical experiments. Despite their comprehensive tests
on a large number of test problems, they did not claim to find the best pa-
rameters for updating scheme. In 2002, motivated by a problem in the field of
neural network, the first adaptive trust-region radius was proposed by Zhang
et al. in [35] in which the information of the current iteration was used more
effectively to introduce an adaptive scheme. They introduced the following
adaptive trust-region radius

(1.4) ∆k = cpk∥gk∥ ∥B̂−1
k ∥,

where c ∈ (0, 1) is a constant, pk ∈ N ∪ {0} and the matrix B̂k = Bk +Ek is a
safely positive definite matrix based on Schnabel and Eskow modified Cholesky
factorization, see [31]. As numerical results show, their method works very well
on small-scale unconstrained optimization problems, but the situation dramat-
ically changes for the large-scale and even medium-scale problems because of
the computation of the inverse matrix B̂−1

k . Subsequently, Shi and Guo in [33]
proposed another interesting adaptive radius by

(1.5) ∆k = −cpk
gTk qk

qTk B̂kqk
∥qk∥,

where c ∈ (0, 1) is a constant, pk ∈ N ∪ {0}, and B̂k is generated by the
procedure

B̂k = Bk + iI,

where i is the smallest nonnegative integer so that qTk B̂kqk > 0 and qk satisfies
the well-known angle condition

(1.6) − gTk qk
∥gk∥.∥qk∥

≥ τ,

in which τ ∈ (0, 1] is a constant. An important advantage of this method is its
ability for selecting an appropriate qk in order to make a more robust method.
For instance, Shi and Guo proposed q̃k = −gk and q̂k = −B−1

k gk. Prelim-
inary numerical results and theoretical analysis showed that their method is
promising for solving medium-scale problems without any need of exploring for
appropriate initial trust-region radius. For more references about the adaptive
trust-region radius, see also [1–4,6].

Although the proposed adaptive radius of Shi and Guo has some advantages
such as decreasing in the total computational costs by decreasing the number
of subproblems solving and determining a good initial radius, it suffers from
some drawbacks as well. First of all, it can be easily seen that q̃k = −gk does



A limited memory adaptive trust-region 822

not generate an appropriate radius (see [33]), and the computation of q̂k =
−B−1

k gk requires the computation of the inverse matrix B−1
k or solving a linear

system of equations that causes being inappropriate for large-scale problems.
Secondly, the process of generating B̂k guarantees that the denominator of (1.5)
is bounded away from zero, however, if the numerator term −gTk qk be close to
zero, then this case causes a tiny trust-region radius which possibly increases
the total number of iterations. Thirdly, numerical experiments have shown
that when the ratio is so close to 1, for very successful iterations, the method
does not necessarily enlarge the trust-region radius sufficiently. In addition, the
procedure of constructing B̂k is almost unusual and sometimes costly. Finally,
the necessity of storing Bk for computing the term qTk B̂kqk in (1.5) and the
term dTkBkdk for computing the predicted reduction may cause the method to
be unsuitable for large-scale problems.

It is known that the limited memory quasi-Newton methods are the cus-
tomized version of the quasi-Newton methods for large-scale optimization prob-
lems. Besides, their implementations are almost identical to that of the quasi-
Newton methods, however, the Hessian and the inverse Hessian approximations
are not explicitly formed on them. Instead, they are defined based on infor-
mation of some small number of previous iterations to reduce the required
memory. As another advantage, some limited memory quasi-Newton formula,
such as the compact limited memory BFGS updating formula (see [10]), can
preserve positive definite property based on some mild conditions. Due to these
remarkable advantages of the limited memory quasi-Newton formulas, they are
widely utilized for large-scale optimization problems, see [8, 10,19–21,24,25].

Content. In this paper, we propose an improved version of the adaptive
trust-region radius (1.5) to attain better performances when the number of
variables of underlying function is large. More specifically, we first substitute
(1.5) by a modified formula to overcome the above-mentioned disadvantages.
We then take the advantages of the compact limited memory BFGS formula
in order to calculate the term dTkBkdk in a low-cost way. It is also clear that
the method can preserve positive definiteness of Bk based on some conditions,
so it can avoid of calculating B̂k. The analysis of the new approach shows
that it inherits both the stability of adaptive trust-region approaches and the
effectiveness of the limited memory BSGS. We also investigate the global con-
vergence to first-order stationary points of the proposed method and provide
the superlinear and quadratic convergence rates. To show the efficiency of the
proposed method, some numerical results are reported.

The remainder of this paper is organized as follows. In Section 2, we describe
the motivation behind the proposed algorithm and outline the algorithm. Sec-
tion 3 is devoted to investigating the global, superlinear and quadratic conver-
gence properties of the algorithm. Numerical results are provided in Section
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4 to show the well promising behaviour of the proposed method for solving
large-scale unconstrained optimization problems. Finally, some conclusions are
given in Section 5.

2. THE NEW ALGORITHM: MOTIVATION AND STRUCTURE

In this section, we first verify some alternatives to overcome disadvantages of
the trust-region radius (1.5) which mentioned in the previous section. We then
construct our trust-region-based algorithm and establish some of its properties.

It can be easily seen that if one exploits a positive definite quasi-Newton
formula for Bk, then there is no need to define B̂k in (1.5) due to the fact
that qTk Bkqk > 0 for every arbitrary non-zero vector qk. Therefore, the method

exempts from the generating B̂k. As mentioned before, q̃k = −gk does not gen-
erate an appropriate trust-region radius, and the calculation of q̂k = −B−1

k gk
imposes a remarkable computational cost to the method. Thus, it is needed to
find a new qk with less computational cost satisfying (1.6). For this purpose,
the following qk is employed throughout the paper

(2.1) qk = −Hkgk,

which clearly has less computational cost in comparison to the cost of cal-
culating q̂k = −B−1

k gk. In order to show qk = −Hkgk satisfies (1.6), it is
sufficient that the spectral condition number κk of Hk, the ratio λ1/λn of the
largest to the smallest eigenvalues of Hk, is bounded above independent of
k. Let θk denotes the angle between qk = −Hkgk and −gk, so the fact that
∥Hkgk∥ ≤ λ1∥gk∥ and gTk Hkgk ≥ λn∥gk∥2 implying

sin
(π
2
− θk

)
= cos(θk) =

gTk Hkgk
∥gk∥.∥Hkgk∥

≥ λn∥gk∥2

λ1∥gk∥2
= κ−1

k .

From the inequality sin(x) ≤ x, it can be concluded that

θk ≤
π

2
− κ−1

k .

Therefore, if spectral condition number κk is bounded above for any k ∈ N,
then θk is bounded away from π/2, i.e. the angle condition (1.6) is satisfied,
for example see [16].

It is known that the compact limited memory BFGS formula can be used
to decrease the computational costs of the calculation qTk Bkqk, d

T
kBkdk and

Hkgk (see [10, 20]). Besides, it can remain positive definite if the curvature
condition yTk sk > 0 holds for all previous iterations, where sk = xk+1 − xk

and yk = gk+1 − gk. We also increase the trust-region radius more than that
defined in (1.5) when the procedure encounters with very successful iterations.
It seems that these changes possibly lead to an approach needing less number
of iterations and function evaluations.
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It is clear that traditional trust-region methods and the radius defined in
(1.5) requires to store the n × n matrix Bk needing lots amount of memory,
especially for large-scale problems. Hence it is worth to explore a way to avoid
storing this matrix. The pioneering work to find such methods proposed by
Nocedal in [25] called the limited memory quasi-Newton method. On the basis
of the interesting features of limited memory quasi-Newton methods, they have
been widely used in various fields of optimization, see [8, 10, 19–21, 24, 25] and
references therein.

Here, we briefly describe the compact limited memory BFGS formulae pro-
posed by Byrd et al. in [10]. For a positive integer constant m1, let matrices
Sk and Yk be defined as follows:

(2.2) Sk = [sk−m, · · · , sk−1], Yk = [yk−m, · · · , yk−1],

where m = min{k,m1}. Suppose that Dk be the m×m diagonal matrix

(2.3) Dk = diag
[
sTk−myk−m, · · · , sTk−1yk−1

]
and let Lk be m×m lower triangular matrix

(2.4) (Lk)i,j =

{
sTk−m+i−1yk−m+j−1 if i > j;
0 otherwise.

Then, using relations (2.2)–(2.4), the compact representation of BFGS formula
proposed by Byrd et al. in [10] can be expressed as follows:

(2.5) Bk = B
(0)
k −

[
Yk B

(0)
k Sk

] [ −Dk LT
k

Lk ST
k B

(0)
k Sk

]−1 [
Y T
k

ST
k B

(0)
k

]
,

where the basic matrix B
(0)
k is defined as B

(0)
k = σkI, for some positive scalar

σk. Defining Ak = [Yk, Sk] and using the way in [20], we can easily write

Bk = σkI −Ak

[
I 0
0 σk

] [
−Dk LT

k

Lk σkS
T
k Sk

]−1 [
I 0
0 σk

]
AT

k .

Consequently, using the Cholesky factorization, this formula can be stated as
(2.6)

Bk = σkI−Ak

[
I 0
0 σk

] [
−D

1
2
k D

− 1
2

k LT
k

0 JT
k

]−1[
D

1
2
k 0

−LkD
− 1

2
k Jk

]−1[
I 0
0 σk

]
AT

k ,

where Jk is a lower triangular matrix satisfying JT
k Jk = σkS

T
k Sk +LkD

−1
k LT

k .

Notice that the matrix Dk is a positive definite diagonal matrix, so D
1/2
k exists

and is a positive definite diagonal matrix as well. Moreover, from positive
definiteness of the matrix Dk, one can easily conclude that σkS

T
k Sk+LkD

−1
k LT

k

is also positive definite and therefore the matrix Jk evidently exists. Under
curvature assumption sTk yk > 0 for each k, it is not difficult to show that the
matrix Bk generated by the formula (2.6) is positive definite. In the rest of the
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paper, we use (2.6) to approximate exact Hessian Gk = ∇2f(xk), however, we
will never form it explicitly.

It is obvious that the computation of the term Hkgk in (2.1) is so costly,
especially when the number of variables is large. Therefore, this formula can
be calculated according to the compact limited memory technique which is
customized for the approximate inverse Hessian, i.e. Hk. As in [10, 20], the
compact limited memory representation of the approximate inverse Hessian Hk

can be constructed by
(2.7)

Hk = σ−1
k I+Ak

[
0 σ−1

k I

R−T
k 0

] [
Dk + σ−1

k Y T
k Yk −I

−I 0

][
0 R−1

k

σ−1
k I 0

]
AT

k ,

where

(Rk)i,j =

{
sTk−m+i−1yk−m+i−1, if i ≤ j;
0, otherwise.

Since the matrix Rk is an m × m upper triangular matrix, for any arbitrary
vector ηk, it is easy to compute the vector θk = R−1

k ηk by solving an upper
triangular system Rkθk = ηk. Thanks to the updating formula of Hk in (2.7),
for an arbitrary vector vk ∈ Rn, we compute the vector Hkvk by the following
scheme:

Scheme 1: Calculation of Hkvk based on the formula (2.7)

Step 1. Determine ξ = AT
k vk and partition it as ξ =

[
ξ1
ξ2

]
where ξ1, ξ2 ∈ Rm.

Step 2. Solve Rkw = ξ2.
Step 3. Set β = (Dk + σ−1

k Y T
k Yk)w − σ−1

k ξ1 and solve RT
k γ = β.

Step 4. Set Hkvk = σ−1
k [vk + Ykw] + Skγ.

Using the fact that Dk and Rk are respectively diagonal and triangular ma-

trices, we observe that the Scheme 1 consists of 2mn+ m(m+1)
2 multiplications

for Step 1, m2+3m+ m(m+1)
2 multiplications for Step 2 and 2mn+n multipli-

cations for Step 3. Thus Scheme 1 requires 4mn+2m2+4m+n multiplications
for computing the term Hkvk.

As mentioned in the implementation of the Shi and Guo’s algorithm in [33],
we need to calculate the term vTk Bkvk in the subproblem (1.2) as well as the
trust-region radius, respectively. One knows that direct computation of these
formulas is expensive for large-scale problems. As discussed in [10, 20], these
formula can be calculated more efficiently if one applies the compact version
of limited memory quasi-Newton updates. Based on the formula (2.6), for an
arbitrary vector vk ∈ Rn, we establish an effective scheme to compute vTk Bkvk
as follows:

Scheme 2: Calculation of vTk Bkvk based on the formula (2.6)
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Step 1. Compute ξ = AT
k vk, and let ξ =

[
ξ1
ξ2

]
where ξ1, ξ2 ∈ Rm.

Step 2. Solve two following systems

D
1
2

k t1 = ξ1 and Jkt2 = σkξ2 + Lk(D
− 1

2

k t1).

Step 3. Set vTk Bkvk = σkv
T
k vk + tT1 t1 − tT2 t2.

In Scheme 2, it is observed that the vector ξ is available from Step 1 of
Scheme 1, so we do not need to recompute it. The lower triangular 2m × 2m
linear system in Step 2 needs m2+3m multiplications. Finally, Step 3 requires
only 2(n + m) multiplications. Hence Procedure 2 requires 2n + 2m2 + 5m
multiplications to compute the scalar vTk Bkvk, for an arbitrary vector vk.

Now, we describe the k-th step of our novel scheme. In the first, we define

βk = − gTk qk
qTk Bkqk

∥qk∥,

where qk is an arbitrary vector satisfying (1.6), for example qk = −gk or qk =
−Hkgk, and Bk is defined by the compact limited memory BFGS formula
(2.6). Note that the formula (2.6) leads to a positive definite matrix Bk and
consequently qTk Bkqk > 0, for any arbitrary non-zero vector qk. We now define
sk based on the definition of βk as follows

(2.8) sk :=


∥g0∥ if k = 0;

βk if k ≥ 1, µ1 ≤ ρk−1 < µ2;

c1βk if k ≥ 1, ρk−1 ≥ µ2

where c1 > 1, 0 < µ1 ≤ µ2 ≤ 1, then compute ∆k, the adaptive trust-region
radius, by

(2.9) ∆k = cpksk

in which pk is the smallest integer in N ∪ {0} that guarantee ρk ≥ µ1. In view
of our discussion, a new limited memory trust-region algorithm with adaptive
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radius is outlined in the following:

Algorithm 1: LMATR (Limited memory trust-region algorithm with
adaptive radius)

Input: x0 ∈ Rn, B0 ∈ Rn×n, kmax, 0 < µ1 ≤ µ2 ≥ 1, 0 < c1 ≤< 1,
c2 ≥ 1, ϵ > 0;

Output: xb; fb;
1 begin
2 ∆0 ← ∥g0∥; k ← 0; p← 0;

3 while ∥gk∥ ≥ ϵ & k ≤ kmax do
4 compute qk by (2.1) using Scheme 1;

5 compute qTk Bkqk using Scheme 2;

6 compute sk using (2.8);

7 solve the subproblem (1.2) to specify dk;

8 x̂k+1 ← xk + dk; compute f(x̂k+1);

9 compute dTkBkdk using Scheme 2;

10 determine ρk using (1.3);

11 while ρk < µ1 do
12 p← p+ 1;

13 solve the subproblem (1.2) to specify dk;

14 x̂k+1 ← xk + dk; compute f̂k+1 = f(x̂k+1);

15 determine ρk using (1.3);

16 end

17 xk+1 ← x̂k+1; fk+1 = f̂k+1; m← min{k,m1};
18 update Sk, Yk, Dk, Lk, Y

T
k Yk and Rk;

19 k ← k + 1;

20 end

21 xb ← xk; fb ← fk;

22 end

The loop starts from Line 3 and ends at line 20 is called the outer loop, and
the loop starts from Line 11 and ends at line 16 is called the inner loop.

3. Convergence analysis

This section is devoted to analyzing the global convergence of the pro-
posed algorithm. We first give some properties of the algorithm and then
investigate its global convergence to first-order stationary points. The local
superlinear and quadratic convergence rates of the proposed algorithm are also
established in the sequel.
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To establish the global convergence property, we assume that the decrease
on the model mk is at least as much as a fraction of that obtained by Cauchy’s
point, i.e., there exists a constant β ∈ (0, 1) such that, for all k,

(3.1) mk(xk)−mk(xk + dk) ≥ β∥gk∥ min

[
∆k,

∥gk∥
∥Bk∥

]
.

This inequality is called the sufficient reduction condition and have been in-
vestigated by many authors when they extended some inexact methods for
approximately solving the subproblem (1.2), for example see [12, 26, 27]. In-
equality (3.1) implies that dk ̸= 0 whenever gk ̸= 0. Furthermore, throughout
the paper, we also consider the following two assumptions in order to analyse
the convergence properties of Algorithm 1:

(H1) The objective function f(x) is twice continuously differentiable and has
a lower bound on the upper level set L(x0) = {x ∈ Rn|f(x) ≤ f(x0), x0 ∈ Rn}.

(H2) The approximate Hessian matrix Bk is uniformly bounded, i.e., there
exists a constant M > 0 such that ∥Bk∥ ≤M , for all k ∈ N ∪ {0}.

Remark 3.1. Suppose that the objective function f(x) is a twice continu-
ously differentiable function and the level set L(x0) is bounded. Then (H1)
implies that ∥∇2f(x)∥ is uniformly continuous and bounded above on the open
bounded convex set Ω, containing L(x0). As a result, there exists a constant
L > 0 such that ∥∇2f(x)∥ ≤ L, for all x ∈ Ω. Therefore, using the mean value
theorem, it can be concluded that, for all x, y ∈ Ω,

∥g(x)− g(y)∥ ≤ L∥x− y∥,
which leads to the fact that f(x) is Lipschitz continuous in the open bounded
convex set Ω.

In the next two lemmas, it will be proved that the inner loop of Algorithm
1 will be stopped after the finite number of steps.

Lemma 3.2. Suppose that (H2) holds and the sequence {xk} is generated by
Algorithm 1. Then, we have

|f(xk + dk)−mk(xk + dk))| = O(∥dk∥2).

Proof. Taylor’s expansion along with Remark 3.1 and the definition of mk(d)
imply that

|f(xk + dk)−mk(xk + dk))| ≤ | − dTkGkdk + dTkBkdk|+O(∥dk∥2)
= |dTk (Bk −Gk)dk|+O(∥dk∥2)
≤ (L+M)∥dk∥2 +O(∥dk∥2)
= O(∥dk∥2).
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This completes the proof of the lemma. □

Lemma 3.3. Suppose that (H2) holds and the sequence {xk} is generated by
Algorithm 1. Then, the inner loop of Algorithm 1 terminates after the finite
number of steps.

Proof. By contrary, we assume that an infinite cycle happens in Step 2 of
Algorithm 1. Therefore, setting p = pk implies

(3.2) ∆p
k → 0, as p→∞.

Since the current iteration xk is not the optimum solution of problem (1.1),
then there exists a positive constant ϵ so that ∥gk∥ ≥ ϵ. This fact and (1.6)
suggest that

(3.3) mk(xk)−mk(xk + dpk) ≥ βϵ min
[
∆p

k,
ϵ

M

]
,

where dpk is the solution of the subproblem (1.2) corresponding to p ∈ N∪ {0}.
Now, by Lemma 3.2, (3.2) and (3.3), we obtain∣∣∣∣ f(xk)− f(xk + dpk)

mk(xk)−mk(xk + dpk)
− 1

∣∣∣∣ = ∣∣∣∣f(xk + dpk)−mk(xk + dpk))

mk(xk)−mk(xk + dpk)

∣∣∣∣
≤

O(∥dpk∥2)
βϵ min

[
∆p

k,
ϵ
M

] ≤ O((∆p
k)

2)

βϵ ∆p
k

→ 0, (p→∞).

Therefore, there exists a sufficiently large constant p1 such that for all p ≥ p1,
the inequality

ρk =
f(xk)− f(xk + dpk)

mk(xk)−mk(xk + dpk)
≥ µ1

holds. This fact indicates that there exists a finite nonnegative integer pk,
which is a contradiction with (3.2). Therefore, the inner loop of Algorithm 1
terminates after the finite number of steps. □

In order to establish the global convergence to first-order critical points, we
require that the following condition holds

(3.4) mk(xk)−mk(xk + dk) ≥
cpk

2M

[
gTk qk
∥qk∥

]2
, for all k ∈ N ∪ {0}.

Hence the subsequent lemma plays an important role in proving the global
convergence of the sequence {xk} generated by Algorithm 1.

Lemma 3.4. Suppose that (H2) holds, the sequence {xk} is generated by Al-
gorithm 1 and dk is a solution of the subproblem (1.2). Then (3.4) holds.

Proof. By setting

d̂k = −cpk
gTk qk

qTk Bkqk
qk,
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it is clear that ∥d̂k∥ ≤ ∆k, i.e., d̂k is a feasible point of the subproblem (1.2).
On the other hand, from (1.6), we have gTk qk < 0. Consequently, using these
facts and the assumption (H2), we obtain

mk(xk)−mk(xk + dk) ≥ mk(xk)−mk(xk + d̂k) = −gTk d̂k − 1

2
d̂Tk Bkd̂k

= cpk
gTk qk

qTk Bkqk

[
gTk qk − 1

2
cpkgTk qk

]
= cpk

(gTk qk)
2

qTk Bkqk

[
1− 1

2
cpk

]
≥ cpk

(gTk qk)
2

qTk Bkqk

[
1− 1

2

]
=

1

2
cpk

(gTk qk)
2

qTk Bkqk

≥ cpk

2M

[
gTk qk
∥qk∥

]2

,

completing the proof. □

We here establish the global convergence property to first-order stationary
points of Algorithm 1 under the mentioned assumptions.

Theorem 3.5. Suppose that (H1) and (H2) hold and qk satisfies (1.6). Then,
Algorithm 1 either stops at a stationary point of (1.1) or generates an infinite
sequence {xk} such that

(3.5) lim
k→∞

∥gk∥ = 0.

Proof. If Algorithm 1 stops at a stationary point of the problem (1.1), then we
have nothing to do. Otherwise, we first prove that

(3.6) lim
k→∞

−gTk qk
∥qk∥

= 0.

By contrary, we suppose that there exists a constant ϵ0 > 0 and an infinite
subset K ⊆ N ∪ {0} such that

(3.7) − gTk qk
∥qk∥

≥ ϵ0 ∀k ∈ K.

Lemma 3.4 and (3.7) imply that

fk−f(xk+dk) ≥ µ1(mk(xk)−mk(xk+dk)) ≥
µ1

2M
cpk

[
gTk qk
∥qk∥

]2
≥ 1

2M
µ1c

pkϵ20.
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Taking an infinite summation from both sides of this inequality and using
assumption (H1), we get

1

2M
µ1ϵ

2
0

∞∑
k=0

cpk ≤
∞∑
k=0

(fk − fk+1) = f0 − lim
k→∞

f(xk) <∞.

This fact leads to
lim
k→∞

cpk = 0.

This equality clearly implies that pk →∞ as k →∞, which is a contradiction
with Lemma 3.3. Therefore, (3.6) holds.

Using (3.6) and the fact that the vector qk satisfies (1.6), we obtain

0 ≤ τ∥gk∥ ≤ −
gTk qk

∥gk∥.∥qk∥
∥gk∥ = −

gTk qk
∥qk∥

→ 0, (k →∞).

Therefore, (3.5) holds and the proof is completed. □
Theorem 1 is the key step in investigating the convergence analysis of Algo-

rithm 1. It obviously implies that, if the generated sequence {xk} of Algorithm
1 has limit points, then all of the limit points satisfies the first-order necessary
condition.

In what follows, we will verify the superlinear and the quadratic convergence
rates of Algorithm 1 under some classical conditions that have been widely used
in nonlinear optimization literatures, see [26].

Theorem 3.6. Suppose that assumptions (H1) and (H2) hold, the sequence
{xk} is generated by Algorithm 1 converges to x∗, dk = −B−1

k gk, the matrix
G(x) = ∇2f(x) is continuous in a neighborhood N(x∗, ϵ) of x∗, and Bk satisfies
the following condition

lim
k→∞

∥[Bk −G(x∗)]dk∥
∥dk∥

= 0.

Then, the sequence {xk} converges to x∗ superlinearly. Moreover, if Bk =
G(xk) and G(x) is Lipschitz continuous in a neighborhood N(x∗, ϵ), then the
sequence {xk} converges to x∗ quadratically.

Proof. The proof is similar to what stated in the proof of Theorems 4.3 and
4.4 in [33] and therefore the details are omitted. □

4. Preliminary numerical experiments

In this section, we report some numerical results of LMATR on a large set
of standard test problems taken from the references [5, 23] in which problem’s
dimensions are varied from 500 to 10000. To show the efficiency of LMATR, we
compare its results with those obtained by the limited memory quasi-Newton
algorithm (LMQNM), proposed in page 48 of [26], the limited memory version
of the traditional trust-region algorithm (LMTTR) and the limited memory



A limited memory adaptive trust-region 832

version of the adaptive trust-region algorithm of Shi and Guo [33] (LMTRS)
with qk = −Hkgk.

All these algorithms take advantages of the compact limited memory BFGS
with m1 = 5 which is rewritten in MATLAB code due to L-BFGS-B Fortran
code in [37], which is based on the literatures [9, 22, 36]. Furthermore, all the
algorithms are coded with double precision format in MATLAB 7.4 and the
trust-region subproblems are solved by a modified Steihaug-Toint procedure
(see [12]), which employs the compact limited memory BFGS. Similar to Bastin
et al. in [7], the Steihaug-Toint algorithm terminates at xk + d when

∥∇f(xk) +Bkd∥ ≤ min

[
1

10
, ∥gk∥

1
2

]
∥gk∥ or ∥d∥ = ∆k,

holds. Moreover, all the algorithms are stopped whenever the total number of
iterations exceeds 20000 or the condition

∥gk∥ ≤ 10−5

is satisfied. We set µ1 = 0.05 and µ2 = 0.9 for the algorithms LMATR, LMTTR
and LMTRS. Besides, we exploit c = 0.2 and c1 = 1.55 for LMATR, and the
parameters of LMTRS are chosen as done in [33]. Similar to [12], LMTTR
employs ∆0 = 1

10∥g0∥ and updates the trust-region radius by

∆k+1 =

 α1∥dk∥ if ρk < µ1;
∆k if µ1 ≤ ρk < µ2;
max{α2∥dk∥, ∆k} if ρk ≥ µ2,

where α1 = 0.25 and α2 = 3.5. During the run of the algorithms, we make
sure that all of the codes converge to the same point. Therefore, we have just
provided those results in which all the algorithms are convergent to an identical
point. The results are summarized in Table 1.

Thanks to the structure of Algorithm 1 (LMATR) and the other presented
algorithms, it is easy to see that the total number of iterations, Ni, are identical
to the total number of gradient evaluations, Ng. Therefore, in Table 1, we only
report the number of iterations, the number of function evaluations, Nf as
efficiency measures. From Table 1, it can be seen that, in the most cases, both
the number of iterations and function evaluations of Algorithm 1 is remarkably
less than the others.
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Figure 1. Performance profile for the number of iterations

Figure 2. Performance profile for the number of function evaluations

Figure 3. Performance profile for Nf + 3Ni
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Table 1. Numerical results

Problem name Dim LMQNM LMTTR LMTRS LMATR
ni / nf ni / nf ni / nf ni / nf

POWER 500 4273/4397 6515/6860 6707/8061 6164/6543
Hager 500 35/40 36/41 38/49 38/49
Raydan 1 500 165/176 146/155 144/178 143/157
Gen. White and Holst 500 6423/9262 6390/8445 5764/15836 5577/9099
BIGGSB1 500 1409/1449 1368/1447 1365/1668 1521/1598
Gen. Rosenbrock 1000 6892/9686 6248/8041 5983/13247 5735/8362
Ext. White and Holst 1000 76/111 66/100 46/123 57/94
Partial per. quad. 1000 188/217 170/193 169/229 164/187
DIXON3DQ 1000 5327/5671 4692/4971 4849/6009 5156/5494
FLETCHCR 1000 5333/6271 5814/6423 7173/9008 4687/5559
TRIDIA 1000 871/895 868/924 790/920 631/669
Quad. QF2 1000 1322/1681 289/308 278/342 273/289
VARDIM 1000 77/112 81/114 84/245 81/111
ENGVAL1 1000 25/32 22/27 23/42 20/26
Diagonal 2 1000 145/160 150/162 140/167 141/164
Ext. tridiag. 2 1000 27/31 29/32 28/43 27/30
Ext. Penalty 1000 69/71 61/76 62/140 56/71
ARWHEAD 1000 14/16 9/15 9/48 10/17
EG2 1000 153/241 26/39 21/101 20/29
CUBE 1000 1263/2081 1903/2235 1646/6606 1280/2328
Ext. Maratos 1000 153/232 649/689 112/423 105/217
Ext. Powell 5000 69/77 71/94 49/198 64/112
Ext. Wood 5000 178/236 50/73 34/102 49/77
Per. quad. 5000 597/623 608/637 575/702 592/631
Per. tridiag. quad. 5000 557/583 635/676 591/693 555/595
Broyden tridiag. 5000 68/87 52/58 51/74 33/40
Almost per. quad. 5000 580/597 629/661 599/710 592/623
NONDQUAR 5000 1834/2036 2096/2542 2292/3949 2155/2746
EDENSCH 5000 26/30 20/25 21/39 21/24
Quad. QF1 5000 587/604 607/633 588/696 598/640
Ext. Fre. and Roth 5000 20/23 18/23 17/45 19/26
Ext. tridiag. 1 5000 27/31 28/31 24/44 32/38
BDEXP 5000 31/32 36/37 31/32 31/32
HIMMELBG 5000 2/3 37/38 2/3 2/3
QUARTC 5000 31/32 31/32 28/32 26/28
LIARWHD 5000 34/42 39/55 33/96 31/40
Ext. PSC1 5000 21/24 12/14 12/26 14/18
Ext. BD1 5000 14/17 15/19 14/17 14/17
Ext. quad. pen. QP1 5000 34/36 28/35 27/61 24/31
Ext. DENSCHNB 5000 10/12 10/11 9/13 9/11
Ext. DENSCHNF 5000 16/18 13/18 14/38 13/22
SINCOS 5000 21/24 12/14 12/26 14/18
COSINE 5000 17/20 14/17 15/26 15/18
Raydan 2 5000 8/9 7/8 8/9 8/9
Diag. 4 5000 4/6 6/9 8/23 7/11
Diag. 7 5000 11/14 7/8 7/9 7/10
Diag. 8 5000 6/8 6/7 7/11 5/7
NONSCOMP 5000 52/60 41/50 636/2466 34/40
DIXMAANE 6000 332/349 363/386 288/339 336/360
DIXMAANF 6000 257/268 252/262 209/241 245/259
DIXMAANG 6000 240/247 325/349 225/267 289/307
DIXMAANI 6000 2417/2478 2568/2744 811/965 3157/3376
DIXMAANH 9000 498/586 249/258 233/278 268/283
DIXMAANA 9000 8/11 9/10 9/17 10/13
DIXMAANB 9000 7/10 7/8 8/16 9/12
DIXMAANC 9000 9/12 10/12 10/20 9/12
DIXMAAND 9000 10/14 9/11 11/24 13/17
DIXMAANJ 9000 284/298 227/236 447/513 388/406
DIXMAANK 9000 376/382 403/414 414/458 349/364
DIXMAANL 9000 1656/1714 353/364 330/384 316/326
DQDRTIC 10000 10/14 18/30 15/33 14/23
Diag. 5 10000 5/6 7/8 5/6 5/6
NONDIA 10000 11/13 9/19 11/61 9/19
Ext.TET 10000 10/12 10/11 10/18 9/12
Ext. Beale 10000 18/20 18/19 16/27 19/23
Full Hessian FH3 10000 4/6 4/11 4/35 4/11
Gen. PSC1 10000 44/46 38/41 39/56 33/38
Ext. Himmelblau 10000 13/16 11/14 12/24 10/13
Ext. quad. exp. EP1 10000 6/8 4/8 4/25 4/9

Although the proposed algorithm is not the best algorithm in some prob-
lems, it has better computational performances. We also take the advantages
of the performance profile of Dolan and Moré in [13], which is a statistical
tools to compare the efficiency of algorithms. Therefore, we illustrate the re-
sults of Table 1 in Figures 1-3 according to the total number of iterations,
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the total number of function evaluations and the efficiency measure Nf + 3Ni,
respectively.

From Figure 1, it is observed that LMATR attains the most wins among the
other considered algorithms. More precisely, it solves about 51% of test func-
tions efficiently and faster than the others. We also see that LMTRS performs
better than LMQNM and LMTTR regarding of the total number of iterations.
Moreover, considering the ability of completing the run successfully, LMATR
is the best algorithm among the others, where its figure grows up faster than
the other algorithms. This means that whenever the proposed algorithm is not
the best algorithm, it performs close to the best algorithm. Figure 2 shows
that LMATR, LMQNM and LMTTR are so competitive regarding to the total
number of function evaluations, however they perform better than LMTRS.
Furthermore, the results of LMATR have the most wins in about 40% of test
functions. We also use the efficiency measure Nf + 3Ni in Figure 3, where it
show that LMATR outperforms the others. Our preliminary computational ex-
periments show that LMATR is promising for solving large-scale unconstrained
optimization problems.

5. Concluding remarks

We present an iterative scheme for solving large-scale unconstrained opti-
mization problems based on a trust-region framework equipped with an adap-
tive radius and the compact limited memory BFGS. As it is known, using an
appropriate adaptive radius can decrease the total number of subproblems solv-
ing in trust-region methods. We describe some disadvantages of the adaptive
trust-region radius of Shi and Guo in [33], especially for solving large problems.
To overcome these drawbacks, we propose some reformations for this radius.
Moreover, the limited memory quasi-Newton schemes have been developed to
cope with large-scale optimization problems. We therefore unify this two inter-
esting ideas into a trust-region algorithm to decrease the computational cost
compared with the traditional trust-region framework.

From the theoretical analysis point of view, the proposed algorithm inher-
its the global convergence of traditional trust-region algorithms to the first-
order stationary points under classical assumptions. The superlinear and the
quadratic convergence rates are also established. Finally, our preliminary nu-
merical experiments on the set of standard test problems point out that the
proposed algorithm is efficient for solving large-scale unconstrained optimiza-
tion problems.
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