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Abstract. In this short note, we present some inequalities for relative
operator entropy which are generalizations of some results obtained by
Zou [Operator inequalities associated with Tsallis relative operator en-
tropy, Math. Inequal. Appl. 18 (2015), no. 2, 401–406]. Meanwhile, we

also show some new lower and upper bounds for relative operator entropy
and Tsallis relative operator entropy.
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1. Introduction

In this note we mainly adopt the notation and terminology in [7]. For
convenience, recall that. For two invertible positive operators A and B and
λ ∈ (0, 1], the Tsallis relative operator entropy Tλ (A|B) and the relative
operator entropy S (A|B) are defined by

Tλ (A|B) =
A#λB −A

λ
,

S (A|B) = A1/2 log
(
A−1/2BA−1/2

)
A1/2,

where

A#λB = A1/2
(
A−1/2BA−1/2

)λ

A1/2

is the wieghted geometric mean.
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Recently, Zou [7] proved that if a > 0 and λ ∈ (0, 1], then for any invertible
positive operators A and B,
(1.1)

(1− log a)A− 1

a
AB−1A ≤ −

(
1− aλ

λaλ
+ log a

)
A+ a−λT−λ (A|B)

≤ S (A|B)

≤ (log a)A+ Tλ (A|B) +
1− aλ

λaλ
A#λB

≤ (log a− 1)A+
1

a
B.

This is a refinement of the following inequality:

(1− log a)A− 1

a
AB−1A ≤ S (A|B) ≤ (log a− 1)A+

1

a
B,

which is due to Furuta [2]. For more information on the Tsallis relative entropy
the reader is referred to [1–6] and the references therein.

In this short note, we will present some generalizations of (1.1). Meanwhile,
we also show some new lower and upper bounds for relative operator entropy
S (A|B) and Tsallis relative operator entropy Tλ (A|B).

2. Main results

We begin this section with the following result.

Theorem 2.1. Let a > 0, λ ∈ (0, 1] and v ∈ [0, 1]. For any invertible positive
operators A and B, we have

S (A|B) ≤
(
v + (1− v) aλ

)
Tλ (A|B)− v

1− aλ

λ
A#λB

+

(
(1− v)

aλ − 1

λ
− log a

)
A.

Proof. Note that

(2.1)
(ax)λ − 1

λ
=

xλ − 1

λ
+ xλ a

λ − 1

λ
,

(2.2)
(ax)λ − 1

λ
= aλ x

λ − 1

λ
+

aλ − 1

λ
.

It follows from (2.1) and (2.2) that

(2.3)

(ax)
λ − 1

λ
= v

(
xλ − 1

λ
+ xλ a

λ − 1

λ

)
+ (1− v)

(
aλ

xλ − 1

λ
+

aλ − 1

λ

)
=

(
v + (1− v) aλ

) xλ − 1

λ

+
(
v
(
xλ − 1

)
+ 1

) aλ − 1

λ
.
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It is known that for positive real number x, we have

(2.4) log ax ≤ (ax)
λ − 1

λ
.

Combining (2.3) and (2.4), we have

(2.5) log x ≤
(
v + (1− v) aλ

) xλ − 1

λ
+ v

aλ − 1

λ
xλ + (1− v)

aλ − 1

λ
− log a.

The result

S (A|B) ≤
(
v + (1− v) aλ

)
Tλ (A|B)− v

1− aλ

λ
A#λB

+

(
(1− v)

aλ − 1

λ
− log a

)
A.

follows from (2.5) by applying the functional calculus x = A−1/2BA−1/2 and
then multiplying both sides by A1/2. □

Remark 2.2. Putting v = 1 in (2.1), we get the third part of (1.1). Putting
v = 0 in (2.1), we have

(2.6) S (A|B) ≤ aλTλ (A|B) +

(
aλ − 1

λ
− log a

)
A,

which is an upper bound for S (A|B).

Theorem 2.3. Let a > 0, λ ∈ (0, 1] and v ∈ [0, 1]. For any invertible positive
operators A and B, we have

(2.7)

(
v + (1− v) a−λ

)
T−λ (A|B) − v

a−λ − 1

λ
A#−λB

−
(
(1− v)

a−λ − 1

λ
+ log a

)
A

≤ S (A|B) .

Proof. Substituting x by x−1 and a by a−1 in (2.5), respectively, we have(
v + (1− v) a−λ

) x−λ − 1

−λ
− v

a−λ − 1

λ
x−λ − (1− v)

a−λ − 1

λ
− log a ≤ log x

for all x > 0. The result(
v + (1− v) a−λ

)
T−λ (A|B) − v

a−λ − 1

λ
A#−λB

−
(
(1− v)

a−λ − 1

λ
+ log a

)
A

≤ S (A|B) .

follows from this last inequality by applying the functional calculus x = A−1/2BA−1/2

and then multiplying both sides by A1/2. □



Inequalities for relative operator entropy 858

Remark 2.4. Putting v = 0 in (2.7), we get the second part of (1.1). Putting
v = 1 in (2.7), we have

(2.8) T−λ (A|B)− a−λ − 1

λ
A#−λB − (log a)A ≤ S (A|B) ,

which is a lower bound for S (A|B).

Remark 2.5. It follows from (2.6) and (2.8) that

(2.9)

T−λ (A|B) − a−λ − 1

λ
A#−λB − (log a)A

≤ S (A|B)

≤ aλTλ (A|B) +

(
aλ − 1

λ
− log a

)
A.

Putting a = 1 in (2.9), we have

T−λ (A|B) ≤ S (A|B) ≤ Tλ (A|B) ,

which is due to Furuichi, Yanagi and Kuriyama [1].

Theorem 2.6. Let a > 0, λ ∈ (0, 1] and v ∈ [0, 1]. For any invertible positive
operators A and B, we have

(2.10) A− 1

a
AB−1A + v

a−λ − 1

λ
A#−λB + (1− v)

a−λ − 1

λ
A

≤
(
v + (1− v) a−λ

)
T−λ (A|B) .

Proof. Substituting λ by −λ in (2.3), we have

(2.11)

(ax)
−λ − 1

−λ
=

(
v + (1− v) a−λ

) x−λ − 1

−λ

+
(
v
(
x−λ − 1

)
+ 1

) a−λ − 1

−λ
.

For a > 0 and λ ∈ [0, 1], we have

(2.12) 1− 1

ax
≤ (ax)

−λ − 1

−λ
, x > 0.

It follows from (2.11) and (2.12) that

1− 1

ax
+ v

a−λ − 1

λ
x−λ + (1− v)

a−λ − 1

λ
≤

(
v + (1− v) a−λ

) x−λ − 1

−λ
.

The result

A− 1

a
AB−1A + v

a−λ − 1

λ
A#−λB + (1− v)

a−λ − 1

λ
A

≤
(
v + (1− v) a−λ

)
T−λ (A|B) .

follows from this last inequality by applying the functional calculus x = A−1/2BA−1/2

and then multiplying both sides by A1/2. □
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Remark 2.7. Putting v = 0 in (2.10), we get the first part of (1.1). Putting
v = 1 in (2.10), we have

A− 1

a
AB−1A+

a−λ − 1

λ
A#−λB ≤ T−λ (A|B) ,

which is a lower bound for T−λ (A|B). Putting a = 1 in this last inequality, we
have

A−AB−1A ≤ T−λ (A|B) ,

which is due to Zou [7].
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