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Abstract. We introduce center–like subsets Z∗(R, f), Z∗∗(R, f) and

Z1(R, f), where R is a ring and f is a map from R to R. For f a deriva-
tion or a non-identity epimorphism and R a suitably–chosen prime or
semiprime ring, we prove that these sets coincide with the center of R.
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1. Introduction

Let R denote a ring with center Z = Z(R). For each x, y ∈ R, let [x, y]
denote the commutator xy − yx; and recall that [xy, z] = x[y, z] + [x, z]y and
[x, yz] = y[x, z] + [x, y]z for all x, y, z ∈ R.

Several results in the literature assert that certain subsets of a ring R, de-
fined by some sort of commutativity condition, must coincide with Z(R). We
call such subsets center–like subsets. A classical result of Herstein [11] states
that the hypercenter S(R), defined as {a ∈ R | axn = xna, n = n(x, a) ≥
1, for all x ∈ R}, coincides with Z(R) if R has no nonzero nil ideals. Following
Herstein, Chacron [7] introduced the cohypercenter G(R) as follows: a ∈ G(R)
if and only if for each x ∈ R there exists a polynomial p(X) ∈ Z[X], depend-
ing on a and x, such that [a, x − x2p(x)] = 0; and he established equality of
Z(R) and G(R) for semiprime R. Similar results of this kind are to be found
in [3, 4, 6, 8, 9] and [10].

Our purpose is to study center–like subsets the definition of which involves a
map f : R → R, which have not been extensively studied. Apparently the first
example of such a set was H(R, d) = {a ∈ R | ad(x) = d(x)a for all x ∈ R},
where d is a derivation. Herstein introduced this set in [13], and he proved that
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if R is prime with char(R) ̸= 2 and d is a nonzero derivation, then H(R, d) =
Z(R).

In [1] it is proved that a semiprime ring must be commutative if there exists
a derivation d on R such that [x, y] = [d(x), d(y)] for all x, y ∈ R; and in [2]
it is shown that a prime ring is commutative if for some nonzero derivation d,
[d(x), d(y)] = [d(x), y] + [x, d(y)] for all x, y ∈ R. Motivated by these results,
we define the following subsets of a ring R equipped with a map f : R → R :

Z∗(R, f) = {y ∈ R | [x, y] = [f(y), f(x)] for all x ∈ R};
Z∗∗(R, f) = {y ∈ R | [x, y] = [f(x), f(y)] for all x ∈ R};
Z1(R, f) = {y ∈ R | [f(x), f(y)] = [f(y), x] + [y, f(x)] for all x ∈ R}.

We shall be concerned with these sets when f is a derivation or an epimorphism.

2. Results on derivations

Theorem 2.1. Let R be a semiprime ring and d a derivation on R. Then
Z∗(R, d) = Z.

Proof. Since d(Z) ⊆ Z, Z ⊆ Z∗(R, d); thus we only need to show that
Z∗(R, d) ⊆ Z. Let y ∈ Z∗(R, d), i.e.,

[x, y] = [d(y), d(x)] for all x ∈ R.(2.1)

Substituting xy for x in (2.1) and then using (2.1), we obtain

d(x)[y, d(y)] + [x, d(y)]d(y) = 0 for all x ∈ R.(2.2)

Replacing x by xw in (2.2) and simplifying using (2.2), we get

d(x)w[y, d(y)] + [x, d(y)]wd(y) = 0 for all x,w ∈ R;(2.3)

and taking x = d(y) now gives d2(y)R[y, d(y)] = {0}. It follows that
[d2(y), d(y)]R[y, d(y)] = {0}.(2.4)

But by (2.1) with x = d(y), [d(y), y] = [d(y), d2(y)], so (2.4) yields
[y, d(y)]R[y, d(y)] = {0}; and semiprimeness gives [y, d(y)] = 0. By (2.3) we
now get [x, d(y)]R[x, d(y)] = {0} for all x ∈ R, so that d(y) ∈ Z and by (2.1)
y ∈ Z. □

A similar proof yields

Theorem 2.2. If R is a semiprime ring and d is a derivation on R, then
Z∗∗(R, d) = Z.

Corollary 2.3. Let R be a semiprime ring and U a nonzero left ideal of R. If R
admits a derivation d such that d(U) ̸= {0} and [x, [y, d(y)]] = [[y, d2(y)], d(x)]
for all x ∈ R and y ∈ U , then R contains a nonzero central ideal.

Proof. By Theorem 2.1, d is centralizing on U ; hence by Theorem 3 of [5], R
contains a nonzero central ideal. □
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Corollary 2.4. Let R be a semiprime ring, U a nonzero ideal of R and d
a derivation on R such that d(U) ̸= {0} and d(U) ⊆ U . If [x, [y, d(y)]] =
[[y, d2(y)], d(x)] for all x, y ∈ U , then R contains a nonzero central ideal.

Proof. Since U is an ideal of a semiprime ring, U is a semiprime ring; and d
restricts to a derivation on U . Hence, by Theorem 2.1, [y, d(y)] ∈ Z(U) for all
y ∈ U . But, as is easily can be shown, Z(U) ⊆ Z(R); therefore d is centralizing
on R. Again invoking Theorem 3 of [5], we see that R must contain a nonzero
central ideal. □

We now proceed to study Z1(R, d).

Theorem 2.5. Let R be a prime ring with char(R) ̸= 2 and d a nonzero
derivation on R. Then Z1(R, d) = Z.

Proof. We only need to prove that Z1(R, d) ⊆ Z, since the other inclusion is
immediate. Let y ∈ Z1(R, d), so that

[d(x), d(y)] = [d(y), x] + [y, d(x)] for all x ∈ R.(2.5)

Substituting xy for x in (2.5), we obtain

d(x)[y, d(y)] + [x, d(y)]d(y) = [y, x]d(y) for all x ∈ R;(2.6)

and substituting xw for x in (2.6), we get

d(x)w[y, d(y)] + [x, d(y)]wd(y) = [y, x]wd(y) for all x,w ∈ R.(2.7)

Replacing x by d(y) in (2.7) gives

d2(y)w[y, d(y)] = [y, d(y)]wd(y) for all w ∈ R;(2.8)

and taking x = y in (2.7) gives

d(y)w[y, d(y)] + [y, d(y)]wd(y) = 0 for all w ∈ R.(2.9)

From (2.8) and (2.9) we conclude that

(d(y) + d2(y))w[y, d(y)] = 0 for all w ∈ R;(2.10)

and since R is prime, either d(y) + d2(y) = 0 or [y, d(y)] = 0. Suppose that
d(y) + d2(y) = 0. Then [d2(y), d(y)] = 0; and by taking x = d(y) in (2.5), we
get [y, d2(y)] = 0, so that [y, d(y)] = 0. Thus, in either case [y, d(y)] = 0.

It now follows from (2.7) that [x, y + d(y)]wd(y) = 0 for all x,w ∈ R, so
by primeness of R, either d(y) = 0 or y + d(y) ∈ Z. If y + d(y) ∈ Z, then
[d(x), d(y)] = −[d(x), y] for all x ∈ R. This fact, together with (2.5), gives
d(y) ∈ Z; and (2.5) now gives [y, d(R)] = {0}. If d(y) = 0, we also have
[y, d(R)] = {0}, so Z1(R, d) ⊆ H(R, d); hence by Herstein’s result mentioned
earlier, Z1(R, d) ⊆ Z. □
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If we assume R is semiprime instead of prime and consider a family {Pα | α ∈
Λ} of prime ideals for which

∩
Pα = {0}, the argument used to prove The-

orem 2.5 can be modified to yield [y, d(R)] ⊆ Pα for all α ∈ Λ. Hence
Z1(R, d) ⊆ H(R, d). But we cannot prove that Z1(R, d) ⊆ Z, as the following
example shows.

Example 2.6. Let R = R1 ⊕ R2, where R1 is a commutative domain with
nonzero derivation d1 and R2 is a noncommutative prime ring. Then R is
semiprime with nonzero derivation d given by d((r1, r2)) = (d1(r1), 0). For
y = (0, r2), we have d(y) = 0 and [y, d(x)] = 0 for all x ∈ R; hence y ∈ Z1(R, d).
Thus S = {(0, r2) | r2 ∈ R2} ⊆ Z1(R, d), but S ⊈ Z.

3. Results on epimorphisms

We turn now to the results involving epimorphisms.

Lemma 3.1 ( [12, Lemma 1.1.9]). Let R be a 2–torsion–free semiprime ring.
If y ∈ R and [[x, y], y] = 0 for all x ∈ R, then y ∈ Z.

Lemma 3.2. Let R be a prime ring and T an endomorphism which is not the
identity map. If u ∈ R and u(x− T (x)) = 0 for all x ∈ R, then u = 0.

Proof. Assume ux = uT (x) for all x ∈ R. Then for all r, x ∈ R, uxr =
uT (xr) = uT (x)T (r) = uxT (r), so that ux(r− T (r)) = 0 for all x ∈ R; and by
primeness of R we get u = 0. □

Lemma 3.3. Let R be an arbitrary ring and T an epimorphism of R. Then

(i) Z∗∗(R, T ) is an additive subgroup of R;
(ii) if T (u) = u and y ∈ Z∗∗(R, T ), then [u, y − T (y)] = 0;
(iii) if y ∈ Z∗∗(R, T ), then T (y) ∈ Z∗∗(R, T );
(iv) if y ∈ Z∗∗(R, T ), then y − T (y) ∈ Z∗∗(R, T ).

Proof. (i) and (ii) are immediate from the definition of Z∗∗(R, T ) and (iv)
follows from (i) and (iii). Therefore we only need to prove (iii). Let y ∈
Z∗∗(R, T ), so that [x, y] = [T (x), T (y)] for all x ∈ R. Applying T to both
sides of this equation yields [T (x), T (y)] = [T (T (x)), T (T (y))]; and since T
is an epimorphism, [w, T (y)] = [T (w), T (T (y))] for all w ∈ R. Therefore,
T (y) ∈ Z∗∗(R, T ). □

Theorem 3.4. Let R be a prime ring with char(R) ̸= 2, and let T be an
epimorphism of R which is not the identity map. Then Z∗∗(R, T ) = Z.

Proof. Clearly, Z ⊆ Z∗∗(R, T ), since T (Z) ⊆ Z; therefore we only need to show
that Z∗∗(R, T ) ⊆ Z. Let y ∈ Z∗∗(R, T ) and note that for any x ∈ R, u = [x, y]
satisfies T (u) = u. Therefore, by Lemma 3.3 (ii) and (iv),

[[x, y − T (y)], y − T (y)] = 0 for all x ∈ R,(3.1)
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hence by Lemma 3.1 y − T (y) ∈ Z. Thus, for all x ∈ R, [x, y] = [T (x), T (y)] =
[T (x), y], so that

[x− T (x), y] = 0 for all x ∈ R.(3.2)

Substituting rx for x in (3.2), we have [rx, y]− [T (r)T (x), y] = 0, so

r[x, y] + [r, y]x− T (r)[T (x), y]− [T (r), y]T (x) = 0,

which by (3.2) may be rewritten as

(r − T (r))[x, y] + [r, y](x− T (x)) = 0 for all r, x ∈ R.(3.3)

Recalling that T ([r, y]) = [r, y] and replacing r by [r, y] in (3.3), we get [[r, y], y](x−
T (x)) = 0 for all r, x ∈ R. Using Lemma 3.2 we conclude that [[r, y], y] = 0 for
all r ∈ R, hence by Lemma 3.1, y ∈ Z. □

We note that Theorem 3.4 cannot be extended to semiprime rings, as the
following example shows.

Example 3.5. Let R = R1 ⊕ R2, where R1 is a commutative domain with
epimorphism T1 which is not the identity map on R1, and R2 is a noncommu-
tative prime ring; and define T : R → R by T ((r1, r2)) = (T1(r1), r2). Then
R is semiprime, T is a non-identity epimorphism, and {(0, r2) | r2 ∈ R2} is a
noncentral subset of Z∗∗(R, T ).

Our final theorem involves Z∗(R, T ) when T is an epimorphism.

Theorem 3.6. Let R be a prime ring with char(R) ̸= 2, and let T : R → R
be an epimorphism such that T 2 is not the identity map. Then Z∗(R, T ) = Z.

Proof. By an argument similar to the one in the proof of Theorem 3.4, we get

[x+ T (x), y] = 0 for all x ∈ R, y ∈ Z∗(R, T ).(3.4)

Replacing x by rx in (3.4), we have for all r, x ∈ R, y ∈ Z∗(R, T )

r[x, y] + [r, y]x+ T (r)[T (x), y] + [T (r), y]T (x) = 0;

and by (3.4) we can rewrite this equation as

(r − T (r))[x, y] + [r, y](x− T (x)) = 0 for all x, r ∈ R.(3.5)

We now substitute w + T (w) for r in (3.5), and since [w + T (w), y] = 0, we
obtain

(w − T 2(w))[x, y] = 0 for all w, x ∈ R.(3.6)

This easily yields (w − T 2(w))R[x, y] = {0}, so by primeness of R, y ∈ Z. □
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