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ABSTRACT. We introduce center-like subsets Z*(R, f), Z**(R, f) and
Z1(R, f), where R is a ring and f is a map from R to R. For f a deriva-
tion or a non-identity epimorphism and R a suitably—chosen prime or
semiprime ring, we prove that these sets coincide with the center of R.
Keywords: Prime ring, semiprime ring, derivation, epimorphism, center—
like subset.

MSC(2010): Primary: 16W20; Secondary: 16W25, 16U70, 16U80.

1. Introduction

Let R denote a ring with center Z = Z(R). For each z,y € R, let [z,y]
denote the commutator zy — yx; and recall that [zy, 2] = z[y, 2] + [z, 2]y and
[x,y2] = y[z, 2] + [z, y]z for all x,y,z € R.

Several results in the literature assert that certain subsets of a ring R, de-
fined by some sort of commutativity condition, must coincide with Z(R). We
call such subsets center—like subsets. A classical result of Herstein [11] states
that the hypercenter S(R), defined as {a € R | az™ = z"a,n = n(x,a) >
1, for all z € R}, coincides with Z(R) if R has no nonzero nil ideals. Following
Herstein, Chacron [7] introduced the cohypercenter G(R) as follows: a € G(R)
if and only if for each € R there exists a polynomial p(X) € Z[X], depend-
ing on a and x, such that [a,z — 2%p(x)] = 0; and he established equality of
Z(R) and G(R) for semiprime R. Similar results of this kind are to be found
in [3,4,6,8,9] and [10].

Our purpose is to study center—like subsets the definition of which involves a
map f : R — R, which have not been extensively studied. Apparently the first
example of such a set was H(R,d) = {a € R | ad(z) = d(z)a for all x € R},
where d is a derivation. Herstein introduced this set in [13], and he proved that
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if R is prime with char(R) # 2 and d is a nonzero derivation, then H(R,d) =
Z(R).
In [1] it is proved that a semiprime ring must be commutative if there exists

a derivation d on R such that [z,y] = [d(z),d(y)] for all z,y € R; and in [2]
it is shown that a prime ring is commutative if for some nonzero derivation d,
[d(x),d(y)] = [d(z),y] + [x,d(y)] for all z,y € R. Motivated by these results,
we define the following subsets of a ring R equipped with a map f: R — R :

Z*(R, f) ={y € R | [z,y] = [f(y), f(x)] for all z € R};

Z7 (R, f) ={y € R| [x,y] = [f(2), f(y)] for all 2 € R};

Zu(R, f) = {y € R | [f(2), fy)] = [f(y), 2] + [y, f(a)] for all & € R}.

We shall be concerned with these sets when f is a derivation or an epimorphism.

2. Results on derivations

Theorem 2.1. Let R be a semiprime ring and d a derivation on R. Then
Z*(R,d) =

Proof. Since d(Z) C Z, Z C Z (R d); thus we only need to show that
Z*(R,d) C Z. Let y € Z*(R,d), i

(
Yyl = [() d(z)] for all z € R.
2.

(2.1) [
Substituting zy for z in (2.1) and then using (2.1), we obtain

(2.2) d(z)[y, d(y)] + [z,d(y)]d(y) = 0 for all € R.

Replacing « by zw in (2.2) and simplifying using (2.2), we get

(2.3) d(z)wly,d(y)] + [z, d(y)]wd(y) = 0 for all z,w € R;

and taking x = d(y) now gives d?(y) Ry, d(y)] = {0}. It follows that

(2.4) [@*(y), d(y)]Rly, d(y)] = {0}.

But by (2.1) with z =d(y), [d(y),y] = [d(y),d*(y)], so (2.4) yields
[y, d(y))Rly,d(y)] = {0}; and semiprimeness gives [y,d(y)] = 0. By (2.3) we

now get [z,d(y)|R[x,d(y)] = {0} for all z € R, so that d(y) € Z and by (2.1)

yE Z. O
A similar proof yields

Theorem 2.2. If R is a semiprime ring and d is a derivation on R, then

Z**(R,d) = Z.

Corollary 2.3. Let R be a semiprime ring and U a nonzero left ideal of R. If R
admits a derivation d such that d(U) # {0} and [z, [y, d(y)]] = [[y, d*(v)], d(z)]
forallx € R and y € U, then R contains a nonzero central ideal.

Proof. By Theorem 2.1, d is centralizing on U; hence by Theorem 3 of [5], R
contains a nonzero central ideal. O
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Corollary 2.4. Let R be a semiprime ring, U a nonzero ideal of R and d
a derwation on R such that d(U) # {0} and d(U) C U. If [z,[y,d(y)]] =
[ly, d*(y)],d(z)] for all x,y € U, then R contains a nonzero central ideal.

Proof. Since U is an ideal of a semiprime ring, U is a semiprime ring; and d
restricts to a derivation on U. Hence, by Theorem 2.1, [y,d(y)] € Z(U) for all
y € U. But, as is easily can be shown, Z(U) C Z(R); therefore d is centralizing
on R. Again invoking Theorem 3 of [5], we see that R must contain a nonzero
central ideal. ]

We now proceed to study Z;(R,d).

Theorem 2.5. Let R be a prime ring with char(R) # 2 and d a nonzero
deriwation on R. Then Z1(R,d) = Z.

Proof. We only need to prove that Z;(R,d) C Z, since the other inclusion is
immediate. Let y € Z1(R,d), so that

(2.5) [d(z), d(y)] = [d(y), 2] + [y, d(z)] for all = € R.
Substituting zy for z in (2.5), we obtain

(2.6) d(@)ly, d(y)] + [z, d(y)]d(y) = [y, z]d(y) for all x € R;

and substituting zw for z in (2.6), we get

(2.7) d(z)wly, d(y)] + [z, d(y)]wd(y) = [y, z]wd(y) for all z,w € R.
Replacing z by d(y) in (2.7) gives

(2.8) d*(y)wly, d(y)] = ly, d(y)Jwd(y) for all w € R;

and taking x = y in (2.7) gives

(2.9) d(y)wly, d(y)] + [y, d(y)]wd(y) = 0 for all w € R.
From (2.8) and (2.9) we conclude that
(2.10) (d(y) + d*(y))wly, d(y)] = 0 for all w € R;

and since R is prime, either d(y) + d*(y) = 0 or [y,d(y)] = 0. Suppose that
d(y) + d*(y) = 0. Then [d?(y),d(y)] = 0; and by taking = = d(y) in (2.5), we
get [y, d?(y)] = 0, so that [y, d(y)] = 0. Thus, in either case [y, d(y)] = 0.

It now follows from (2.7) that [x,y + d(y)]wd(y) = 0 for all z,w € R, so
by primeness of R, either d(y) = 0 or y +d(y) € Z. If y+ d(y) € Z, then
[d(x),d(y)] = —ld(x),y] for all z € R. This fact, together with (2.5), gives
d(y) € Z; and (2.5) now gives [y,d(R)] = {0}. If d(y) = 0, we also have
ly,d(R)] = {0}, so Z1(R,d) C H(R,d); hence by Herstein’s result mentioned
earlier, Z1(R,d) C Z. O
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If we assume R is semiprime instead of prime and consider a family {P, | a €
A} of prime ideals for which (P, = {0}, the argument used to prove The-
orem 2.5 can be modified to yield [y,d(R)] € P, for all « € A. Hence
Z1(R,d) C H(R,d). But we cannot prove that Z;(R,d) C Z, as the following
example shows.

Example 2.6. Let R = Ry ® Ry, where R; is a commutative domain with
nonzero derivation d; and Rs is a noncommutative prime ring. Then R is
semiprime with nonzero derivation d given by d((r1,r2)) = (d1(r1),0). For
y = (0,72), we have d(y) = 0 and [y, d(z)] = 0 for all x € R; hence y € Z1(R, d).
Thus S = {(0,72) | r2 € R2} C Z1(R,d), but S € Z.

3. Results on epimorphisms
We turn now to the results involving epimorphisms.

Lemma 3.1 ( [12, Lemma 1.1.9]). Let R be a 2-torsion—free semiprime ring.
Ify € R and [[z,y],y] =0 for allx € R, theny € Z.

Lemma 3.2. Let R be a prime ring and T' an endomorphism which is not the
identity map. If u € R and u(x — T(x)) =0 for all x € R, then u = 0.

Proof. Assume ux = uT(x) for all z € R. Then for all r,x € R, uxr =
uT(xr) = uT(x)T(r) = uwzT(r), so that uz(r —T(r)) = 0 for all z € R; and by
primeness of R we get u = 0. d

Lemma 3.3. Let R be an arbitrary ring and T an epimorphism of R. Then
(i) Z**(R,T) is an additive subgroup of R;

(i) if T(u) =u and y € Z**(R,T), then [u,y — T(y)] = 0;

(iii) if y € Z**(R,T), then T(y) € Z**(R,T);

(w) ify € Z*(R,T), theny —T(y) € Z**(R,T).

Proof. (i) and (ii) are immediate from the definition of Z**(R,T) and (iv)
follows from (i) and (iii). Therefore we only need to prove (iii). Let y €
Z**(R,T), so that [z,y] = [T(x),T(y)] for all x € R. Applying T to both
sides of this equation yields [T'(z),T(y)] = [T(T(x)),T(T(y))]; and since T
is an epimorphism, [w,T(y)] = [T(w),T(T(y))] for all w € R. Therefore,
T(y) € Z*(R,T). O

Theorem 3.4. Let R be a prime ring with char(R) # 2, and let T be an
epimorphism of R which is not the identity map. Then Z**(R,T) = Z.

Proof. Clearly, Z C Z**(R,T), since T(Z) C Z; therefore we only need to show
that Z**(R,T) C Z. Let y € Z**(R,T) and note that for any « € R, u = [z, y]
satisfies T'(u) = u. Therefore, by Lemma 3.3 (ii) and (iv),

(3.1) [z,y —T(y)],y —T(y)] =0 for all z € R,
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hence by Lemma 3.1 y — T'(y) € Z. Thus, for all z € R, [z,y] = [T(z),T(y)] =
[T'(z),y], so that

(3.2) [z — T(x),y] = 0 for all z € R.

Substituting r for z in (3.2), we have [rz,y] — [T(r)T(z),y] = 0, so
rlz,yl + [ryle = T(r)[T(x),y] — [T'(r),y]T(z) =0,

which by (3.2) may be rewritten as

(3.3) (r — T(r)[a,y] + [r,y)(z — T(z)) = 0 for all 7,z € R.

Recalling that T'([r,y]) = [r,y] and replacing r by [r, y] in (3.3), we get [[r, y], y](z—
T(z)) =0 for all r,x € R. Using Lemma 3.2 we conclude that [[r,y],y] = 0 for
all » € R, hence by Lemma 3.1, y € Z. O

We note that Theorem 3.4 cannot be extended to semiprime rings, as the
following example shows.

Example 3.5. Let R = Ry ® Ry, where R; is a commutative domain with
epimorphism 737 which is not the identity map on R, and Ry is a noncommu-
tative prime ring; and define T : R — R by T((r1,72)) = (T1(r1),72). Then
R is semiprime, T is a non-identity epimorphism, and {(0,72) | 2 € R2} is a
noncentral subset of Z**(R, T).

Our final theorem involves Z*(R,T) when T is an epimorphism.

Theorem 3.6. Let R be a prime ring with char(R) # 2, and let T : R — R
be an epimorphism such that T? is not the identity map. Then Z*(R,T) = Z.

Proof. By an argument similar to the one in the proof of Theorem 3.4, we get
(3.4) [+ T(z),yl=0forall z € R,y € Z*(R,T).
Replacing x by rz in (3.4), we have for all r,xz € R,y € Z*(R,T)
rle,yl + [ryle + T()[T(2), y] + [T(r), y]T(x) = 0;
and by (3.4) we can rewrite this equation as
(3.5) (r—=T(r)|z,y] + [r,y](x — T(x)) =0 for all z,r € R.

We now substitute w + T'(w) for = in (3.5), and since [w + T'(w),y] = 0, we
obtain

(3.6) (w — T*(w))[z,y] = 0 for all w,x € R.

This easily yields (w — T?%(w))R[z,y] = {0}, so by primeness of R, y € Z. O
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