Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 4, pp. 873-878

Title:
Center-like subsets in rings with derivations or epimorphisms
Author(s):
H. E. Bell adn M. N. Daif

Published by Iranian Mathematical Society

CENTER-LIKE SUBSETS IN RINGS WITH DERIVATIONS OR EPIMORPHISMS

H. E. BELL AND M. N. DAIF*

(Communicated by Omid Ali S. Karamzadeh)

Abstract

We introduce center-like subsets $Z^{*}(R, f), Z^{* *}(R, f)$ and $Z_{1}(R, f)$, where R is a ring and f is a map from R to R. For f a derivation or a non-identity epimorphism and R a suitably-chosen prime or semiprime ring, we prove that these sets coincide with the center of R. Keywords: Prime ring, semiprime ring, derivation, epimorphism, centerlike subset. MSC(2010): Primary: 16W20; Secondary: 16W25, 16U70, 16U80.

1. Introduction

Let R denote a ring with center $Z=Z(R)$. For each $x, y \in R$, let $[x, y]$ denote the commutator $x y-y x$; and recall that $[x y, z]=x[y, z]+[x, z] y$ and $[x, y z]=y[x, z]+[x, y] z$ for all $x, y, z \in R$.

Several results in the literature assert that certain subsets of a ring R, defined by some sort of commutativity condition, must coincide with $Z(R)$. We call such subsets center-like subsets. A classical result of Herstein [11] states that the hypercenter $S(R)$, defined as $\left\{a \in R \mid a x^{n}=x^{n} a, n=n(x, a) \geq\right.$ 1, for all $x \in R\}$, coincides with $Z(R)$ if R has no nonzero nil ideals. Following Herstein, Chacron [7] introduced the cohypercenter $G(R)$ as follows: $a \in G(R)$ if and only if for each $x \in R$ there exists a polynomial $p(X) \in \mathbb{Z}[X]$, depending on a and x, such that $\left[a, x-x^{2} p(x)\right]=0$; and he established equality of $Z(R)$ and $G(R)$ for semiprime R. Similar results of this kind are to be found in $[3,4,6,8,9]$ and [10].

Our purpose is to study center-like subsets the definition of which involves a map $f: R \rightarrow R$, which have not been extensively studied. Apparently the first example of such a set was $H(R, d)=\{a \in R \mid a d(x)=d(x) a$ for all $x \in R\}$, where d is a derivation. Herstein introduced this set in [13], and he proved that

[^0]if R is prime with $\operatorname{char}(R) \neq 2$ and d is a nonzero derivation, then $H(R, d)=$ $Z(R)$.

In [1] it is proved that a semiprime ring must be commutative if there exists a derivation d on R such that $[x, y]=[d(x), d(y)]$ for all $x, y \in R$; and in [2] it is shown that a prime ring is commutative if for some nonzero derivation d, $[d(x), d(y)]=[d(x), y]+[x, d(y)]$ for all $x, y \in R$. Motivated by these results, we define the following subsets of a ring R equipped with a map $f: R \rightarrow R$:

$$
\begin{aligned}
Z^{*}(R, f) & =\{y \in R \mid[x, y]=[f(y), f(x)] \text { for all } x \in R\} \\
Z^{* *}(R, f) & =\{y \in R \mid[x, y]=[f(x), f(y)] \text { for all } x \in R\} \\
Z_{1}(R, f) & =\{y \in R \mid[f(x), f(y)]=[f(y), x]+[y, f(x)] \text { for all } x \in R\} .
\end{aligned}
$$

We shall be concerned with these sets when f is a derivation or an epimorphism.

2. Results on derivations

Theorem 2.1. Let R be a semiprime ring and d a derivation on R. Then $Z^{*}(R, d)=Z$.
Proof. Since $d(Z) \subseteq Z, Z \subseteq Z^{*}(R, d)$; thus we only need to show that $Z^{*}(R, d) \subseteq Z$. Let $y \in Z^{*}(R, d)$, i.e.,

$$
\begin{equation*}
[x, y]=[d(y), d(x)] \text { for all } x \in R . \tag{2.1}
\end{equation*}
$$

Substituting $x y$ for x in (2.1) and then using (2.1), we obtain

$$
\begin{equation*}
d(x)[y, d(y)]+[x, d(y)] d(y)=0 \text { for all } x \in R \tag{2.2}
\end{equation*}
$$

Replacing x by $x w$ in (2.2) and simplifying using (2.2), we get

$$
\begin{equation*}
d(x) w[y, d(y)]+[x, d(y)] w d(y)=0 \text { for all } x, w \in R \tag{2.3}
\end{equation*}
$$

and taking $x=d(y)$ now gives $d^{2}(y) R[y, d(y)]=\{0\}$. It follows that

$$
\begin{equation*}
\left[d^{2}(y), d(y)\right] R[y, d(y)]=\{0\} \tag{2.4}
\end{equation*}
$$

But by (2.1) with $\quad x=d(y), \quad[d(y), y]=\left[d(y), d^{2}(y)\right]$, so (2.4) yields $[y, d(y)] R[y, d(y)]=\{0\}$; and semiprimeness gives $[y, d(y)]=0$. By (2.3) we now get $[x, d(y)] R[x, d(y)]=\{0\}$ for all $x \in R$, so that $d(y) \in Z$ and by (2.1) $y \in Z$.

A similar proof yields
Theorem 2.2. If R is a semiprime ring and d is a derivation on R, then $Z^{* *}(R, d)=Z$.
Corollary 2.3. Let R be a semiprime ring and U a nonzero left ideal of R. If R admits a derivation d such that $d(U) \neq\{0\}$ and $[x,[y, d(y)]]=\left[\left[y, d^{2}(y)\right], d(x)\right]$ for all $x \in R$ and $y \in U$, then R contains a nonzero central ideal.

Proof. By Theorem 2.1, d is centralizing on U; hence by Theorem 3 of [5], R contains a nonzero central ideal.

Corollary 2.4. Let R be a semiprime ring, U a nonzero ideal of R and d a derivation on R such that $d(U) \neq\{0\}$ and $d(U) \subseteq U$. If $[x,[y, d(y)]]=$ $\left[\left[y, d^{2}(y)\right], d(x)\right]$ for all $x, y \in U$, then R contains a nonzero central ideal.

Proof. Since U is an ideal of a semiprime ring, U is a semiprime ring; and d restricts to a derivation on U. Hence, by Theorem 2.1, $[y, d(y)] \in Z(U)$ for all $y \in U$. But, as is easily can be shown, $Z(U) \subseteq Z(R)$; therefore d is centralizing on R. Again invoking Theorem 3 of [5], we see that R must contain a nonzero central ideal.

We now proceed to study $Z_{1}(R, d)$.
Theorem 2.5. Let R be a prime ring with $\operatorname{char}(R) \neq 2$ and d a nonzero derivation on R. Then $Z_{1}(R, d)=Z$.

Proof. We only need to prove that $Z_{1}(R, d) \subseteq Z$, since the other inclusion is immediate. Let $y \in Z_{1}(R, d)$, so that

$$
\begin{equation*}
[d(x), d(y)]=[d(y), x]+[y, d(x)] \text { for all } x \in R \tag{2.5}
\end{equation*}
$$

Substituting $x y$ for x in (2.5), we obtain

$$
\begin{equation*}
d(x)[y, d(y)]+[x, d(y)] d(y)=[y, x] d(y) \text { for all } x \in R \tag{2.6}
\end{equation*}
$$

and substituting $x w$ for x in (2.6), we get

$$
\begin{equation*}
d(x) w[y, d(y)]+[x, d(y)] w d(y)=[y, x] w d(y) \text { for all } x, w \in R \tag{2.7}
\end{equation*}
$$

Replacing x by $d(y)$ in (2.7) gives

$$
\begin{equation*}
d^{2}(y) w[y, d(y)]=[y, d(y)] w d(y) \text { for all } w \in R \tag{2.8}
\end{equation*}
$$

and taking $x=y$ in (2.7) gives

$$
\begin{equation*}
d(y) w[y, d(y)]+[y, d(y)] w d(y)=0 \text { for all } w \in R . \tag{2.9}
\end{equation*}
$$

From (2.8) and (2.9) we conclude that

$$
\begin{equation*}
\left(d(y)+d^{2}(y)\right) w[y, d(y)]=0 \text { for all } w \in R \tag{2.10}
\end{equation*}
$$

and since R is prime, either $d(y)+d^{2}(y)=0$ or $[y, d(y)]=0$. Suppose that $d(y)+d^{2}(y)=0$. Then $\left[d^{2}(y), d(y)\right]=0$; and by taking $x=d(y)$ in (2.5), we get $\left[y, d^{2}(y)\right]=0$, so that $[y, d(y)]=0$. Thus, in either case $[y, d(y)]=0$.

It now follows from (2.7) that $[x, y+d(y)] w d(y)=0$ for all $x, w \in R$, so by primeness of R, either $d(y)=0$ or $y+d(y) \in Z$. If $y+d(y) \in Z$, then $[d(x), d(y)]=-[d(x), y]$ for all $x \in R$. This fact, together with (2.5), gives $d(y) \in Z$; and (2.5) now gives $[y, d(R)]=\{0\}$. If $d(y)=0$, we also have $[y, d(R)]=\{0\}$, so $Z_{1}(R, d) \subseteq H(R, d)$; hence by Herstein's result mentioned earlier, $Z_{1}(R, d) \subseteq Z$.

If we assume R is semiprime instead of prime and consider a family $\left\{P_{\alpha} \mid \alpha \in\right.$ $\Lambda\}$ of prime ideals for which $\bigcap P_{\alpha}=\{0\}$, the argument used to prove Theorem 2.5 can be modified to yield $[y, d(R)] \subseteq P_{\alpha}$ for all $\alpha \in \Lambda$. Hence $Z_{1}(R, d) \subseteq H(R, d)$. But we cannot prove that $Z_{1}(R, d) \subseteq Z$, as the following example shows.
Example 2.6. Let $R=R_{1} \oplus R_{2}$, where R_{1} is a commutative domain with nonzero derivation d_{1} and R_{2} is a noncommutative prime ring. Then R is semiprime with nonzero derivation d given by $d\left(\left(r_{1}, r_{2}\right)\right)=\left(d_{1}\left(r_{1}\right), 0\right)$. For $y=\left(0, r_{2}\right)$, we have $d(y)=0$ and $[y, d(x)]=0$ for all $x \in R$; hence $y \in Z_{1}(R, d)$. Thus $S=\left\{\left(0, r_{2}\right) \mid r_{2} \in R_{2}\right\} \subseteq Z_{1}(R, d)$, but $S \nsubseteq Z$.

3. Results on epimorphisms

We turn now to the results involving epimorphisms.
Lemma 3.1 ([12, Lemma 1.1.9]). Let R be a 2-torsion-free semiprime ring. If $y \in R$ and $[[x, y], y]=0$ for all $x \in R$, then $y \in Z$.
Lemma 3.2. Let R be a prime ring and T an endomorphism which is not the identity map. If $u \in R$ and $u(x-T(x))=0$ for all $x \in R$, then $u=0$.
Proof. Assume $u x=u T(x)$ for all $x \in R$. Then for all $r, x \in R$, uxr $=$ $u T(x r)=u T(x) T(r)=u x T(r)$, so that $u x(r-T(r))=0$ for all $x \in R$; and by primeness of R we get $u=0$.

Lemma 3.3. Let R be an arbitrary ring and T an epimorphism of R. Then
(i) $Z^{* *}(R, T)$ is an additive subgroup of R;
(ii) if $T(u)=u$ and $y \in Z^{* *}(R, T)$, then $[u, y-T(y)]=0$;
(iii) if $y \in Z^{* *}(R, T)$, then $T(y) \in Z^{* *}(R, T)$;
(iv) if $y \in Z^{* *}(R, T)$, then $y-T(y) \in Z^{* *}(R, T)$.

Proof. (i) and (ii) are immediate from the definition of $Z^{* *}(R, T)$ and (iv) follows from (i) and (iii). Therefore we only need to prove (iii). Let $y \in$ $Z^{* *}(R, T)$, so that $[x, y]=[T(x), T(y)]$ for all $x \in R$. Applying T to both sides of this equation yields $[T(x), T(y)]=[T(T(x)), T(T(y))]$; and since T is an epimorphism, $[w, T(y)]=[T(w), T(T(y))]$ for all $w \in R$. Therefore, $T(y) \in Z^{* *}(R, T)$.

Theorem 3.4. Let R be a prime ring with $\operatorname{char}(R) \neq 2$, and let T be an epimorphism of R which is not the identity map. Then $Z^{* *}(R, T)=Z$.
Proof. Clearly, $Z \subseteq Z^{* *}(R, T)$, since $T(Z) \subseteq Z$; therefore we only need to show that $Z^{* *}(R, T) \subseteq Z$. Let $y \in Z^{* *}(R, T)$ and note that for any $x \in R, u=[x, y]$ satisfies $T(u)=u$. Therefore, by Lemma 3.3 (ii) and (iv),

$$
\begin{equation*}
[[x, y-T(y)], y-T(y)]=0 \text { for all } x \in R, \tag{3.1}
\end{equation*}
$$

hence by Lemma $3.1 y-T(y) \in Z$. Thus, for all $x \in R,[x, y]=[T(x), T(y)]=$ $[T(x), y]$, so that

$$
\begin{equation*}
[x-T(x), y]=0 \text { for all } x \in R \tag{3.2}
\end{equation*}
$$

Substituting $r x$ for x in (3.2), we have $[r x, y]-[T(r) T(x), y]=0$, so

$$
r[x, y]+[r, y] x-T(r)[T(x), y]-[T(r), y] T(x)=0
$$

which by (3.2) may be rewritten as

$$
\begin{equation*}
(r-T(r))[x, y]+[r, y](x-T(x))=0 \text { for all } r, x \in R \tag{3.3}
\end{equation*}
$$

Recalling that $T([r, y])=[r, y]$ and replacing r by $[r, y]$ in (3.3), we get $[[r, y], y](x-$ $T(x))=0$ for all $r, x \in R$. Using Lemma 3.2 we conclude that $[[r, y], y]=0$ for all $r \in R$, hence by Lemma 3.1, $y \in Z$.

We note that Theorem 3.4 cannot be extended to semiprime rings, as the following example shows.

Example 3.5. Let $R=R_{1} \oplus R_{2}$, where R_{1} is a commutative domain with epimorphism T_{1} which is not the identity map on R_{1}, and R_{2} is a noncommutative prime ring; and define $T: R \rightarrow R$ by $T\left(\left(r_{1}, r_{2}\right)\right)=\left(T_{1}\left(r_{1}\right), r_{2}\right)$. Then R is semiprime, T is a non-identity epimorphism, and $\left\{\left(0, r_{2}\right) \mid r_{2} \in R_{2}\right\}$ is a noncentral subset of $Z^{* *}(R, T)$.

Our final theorem involves $Z^{*}(R, T)$ when T is an epimorphism.
Theorem 3.6. Let R be a prime ring with $\operatorname{char}(R) \neq 2$, and let $T: R \rightarrow R$ be an epimorphism such that T^{2} is not the identity map. Then $Z^{*}(R, T)=Z$.

Proof. By an argument similar to the one in the proof of Theorem 3.4, we get

$$
\begin{equation*}
[x+T(x), y]=0 \text { for all } x \in R, y \in Z^{*}(R, T) \tag{3.4}
\end{equation*}
$$

Replacing x by $r x$ in (3.4), we have for all $r, x \in R, y \in Z^{*}(R, T)$

$$
r[x, y]+[r, y] x+T(r)[T(x), y]+[T(r), y] T(x)=0
$$

and by (3.4) we can rewrite this equation as

$$
\begin{equation*}
(r-T(r))[x, y]+[r, y](x-T(x))=0 \text { for all } x, r \in R \tag{3.5}
\end{equation*}
$$

We now substitute $w+T(w)$ for r in (3.5), and since $[w+T(w), y]=0$, we obtain

$$
\begin{equation*}
\left(w-T^{2}(w)\right)[x, y]=0 \text { for all } w, x \in R \tag{3.6}
\end{equation*}
$$

This easily yields $\left(w-T^{2}(w)\right) R[x, y]=\{0\}$, so by primeness of $R, y \in Z$.

References

[1] H. E. Bell and M. N. Daif, On commutativity and strong commutativity-preserving maps, Canad. Math. Bull. 37 (1994), no. 4, 443-447.
[2] H. E. Bell and M. N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar. 66 (1995), no. 4, 337-343.
[3] H. E. Bell and A. A. Klein, On some centre-like subsets of rings, Math. Proc. R. Ir. Acad. 105 (2005), no. 1, 17-24.
[4] H. E. Bell and A. A. Klein, Neumann near-rings and Neumann centers, New Zealand J. Math. 35 (2006), no. 1, 31-36.
[5] H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), no. 1, 92-101.
[6] J. Bergen and I. N. Herstein, The algebraic hypercenter and some applications, J. Algebra 85 (1983), no. 1, 217-242.
[7] M. Chacron, A commutativity theorem for rings, Proc. Amer. Math. Soc. 59 (1976), no. 2, 211-216.
[8] C. L. Chuang and T. K. Lee, On the one-sided version of hypercenter theorem, Chinese J. Math. 23 (1995), no. 3, 211-223.
[9] A. Giambruno, Some generalizations of the center of a ring, Rend. Circ. Mat. Palermo (2) $\mathbf{2 7}$ (1978), no. 2, 270-282.
[10] A. Giambruno, On the symmetric hypercenter of a ring, Canad. J. Math. $\mathbf{3 6}$ (1984), no. 3, 421-435.
[11] I. N. Herstein, On the hypercenter of a ring, J. Algebra 36 (1975), no. 1, 151-157.
[12] I. N. Herstein, Rings with Involution, Univ. Chicago Press, Chicago, 1976.
[13] I. N. Herstein, A note on derivations II, Canad. Math. Bull. 22 (1979), no. 4, 509-511.
(H. E. Bell) Department of Mathematics, Brock University, St. Catharines, Ontario L2S 3A1, Canada.

E-mail address: hbell@brocku.ca
(M. N. Daif) Department of Mathematics, Al-Azhar University, Nasr City (11884), Cairo, Egypt.

E-mail address: nagydaif@yahoo.com

[^0]: Article electronically published on August 20, 2016.
 Received: 1 June 2014, Accepted: 16 May 2015.

 * Corresponding author.

