Bulletin of the Iranian Mathematical Society Vol. 32 No. 2 (2006), pp 13-19.

A FIXED POINT THEOREM IN GENERALIZED D-METRIC SPACES

Y. J. CHO AND R. SAADATI*

Communicated by Fraydoun Rezakhanlou

ABSTRACT. In this paper, we consider the concept of Δ -distance on a complete *D*-metric space and prove a fixed point theorem.

1. Introduction and preliminaries

Recently, Dhage [1] introduced the concept of D-metric. Afterwards, many authors [4, 5, 6] proved some fixed point theorems in these spaces.

In this paper, using the concept of *D*-metric, we define a Δ -distance on a complete *D*-metric space which is a generalization of the concept of ω -distance due to Kada, Suzuki and Takahashi [2]. This generalization is non trivial because a *D*-metric does not always define a topology, and even when it does, this topology is not necessarily Hausdorff (see [3] and [4, Ch.1]). Using the concept of Δ -distance, we prove a fixed point theorem, which is the main result of this paper.

We state the definition of D-metric, Δ -distance and prove a lemma. For more information on D-metrics, we refer the reader to [1, 4, 6].

MSC(2000): 47H10, 54E50

Keywords: Fixed point theorem, $D\text{-metric spaces},\,\Delta\text{-distance}$

Received: 16 May 2006 , Revised: 22 October 2006

The first author was supported by the Korea Research Foundation Grant (KRF-2003-005-C00013).

 $[*] Corresponding \ author$

^{© 2006} Iranian Mathematical Society.

¹³

Definition 1.1. ([1]) Let X be a non-empty set. A function $D: X \times X \times X \longrightarrow [0, \infty)$ is called a *D*-metric if the following conditions are satisfied:

- (a) (coincidence) $D(x, y, z) \ge 0$ for all $x, y, z \in X$ and equality holds if and only if x = y = z,
- (b) (symmetry) $D(x, y, z) = D(p\{x, y, z\})$, where p is a permutation of x, y, z,
- (c) (tetrahedral inequality) $D(x,y,z) \leq D(x,y,a) + D(x,a,z) + D(a,y,z)$ for all $x,y,z,a \in X$.

Definition 1.2. ([1]) (a) A sequence $\{x_n\}$ in X is called a D-Cauchy sequence if for each $\varepsilon > 0$, there exists a positive integer n_0 such that, for all m > n, $p \ge n_0$,

$$D(x_m, x_n, x_p) < \varepsilon.$$

(b) A sequence $\{x_n\}$ in X is said to be D-convergent to a point $x \in X$ if for each $\varepsilon > 0$, there exists a positive integer n_0 such that, for all $m, n \ge n_0$,

$$D(x_m, x_n, x) < \varepsilon.$$

Definition 1.3. Let X be a metric space with metric D. Then a function $\Delta : X \times X \times X \longrightarrow [0, \infty)$ is called a Δ -distance on X if the following conditions are satisfied:

(a) $\Delta(x, y, z) \leq \Delta(x, y, a) + \Delta(x, a, z) + \Delta(a, y, z)$ for all $x, y, z, a \in X$,

- (b) for any $x, y \in X$, $\Delta(x, y, .) : X \longrightarrow [0, \infty)$ is lower semi-continuous,
- (c) for any $\varepsilon > 0$, there exists $\delta > 0$ such that $\Delta(a, x, y) \le \delta$, $\Delta(a, x, z) \le \delta$ and $\Delta(a, y, z) \le \delta$ imply $D(x, y, z) \le \varepsilon$.

Example 1.4. Let X be a metric space with the metric D defined by

$$D(x, y, z) = \max\{d(x, y), d(y, z), d(x, z)\},\$$

for all $x, y, z \in X$ (see [4, Corollary 1.20]). Then $\Delta = D$ is a Δ -distance on X.

Proof. (a) and (b) are obvious. We show (c). Let $\varepsilon > 0$ be given and put $\delta = \varepsilon$. If $D(a, x, y) \leq \delta$, $D(a, x, z) \leq \delta$ and $D(a, y, z) \leq \delta$, we have $d(x, y) \leq \delta$, $d(x, z) \leq \delta$, and $d(y, z) \leq \delta$, which implies that $D(x, y, z) \leq \delta = \varepsilon$. Fixed points in genralized D-metic spaces

Example 1.5. Let X be a metric space with the metric D defined by

$$D(x, y, z) = d(x, y) + d(y, z) + d(x, z),$$

for all $x, y, z \in X$ (see [4, Theorem 1.13 and Corollary 1.17]). Then the function $\Delta : X^3 \to [0, \infty)$ defined by

$$\Delta(x, y, z) = t,$$

for all $x, y, z \in X$, is a Δ -distance on X, where t is a positive real number.

Proof. The proofs of (a) and (b) are immediate. To show (c), for any $\varepsilon > 0$, put $\delta = \frac{\varepsilon}{3}$. Then $\Delta(a, x, y) \leq \delta$, $\Delta(a, x, z) \leq \delta$ and $\Delta(a, y, z) \leq \delta$ imply $D(x, y, z) \leq \varepsilon$.

Example 1.6. Let $X = \mathbb{R}$ be a metric space with the metric *D* defined by

$$D(x, y, z) = |x - y| + |y - z| + |x - z|,$$

for all $x, y, z \in \mathbb{R}$ (see [4, Theorem 1.13 and Corollary 1.17]). Then a function $\Delta : \mathbb{R}^3 \to [0, \infty)$ defined by

$$\Delta(x, y, z) = |y - z|,$$

for all $x, y, z \in \mathbb{R}$ is a Δ -distance on \mathbb{R} .

Proof. The proofs of (a) and (b) are immediate. We show (c). Let $\varepsilon > 0$ be given and put $\delta = \frac{\varepsilon}{3}$. If $\Delta(a, x, y) \leq \delta$, $\Delta(a, x, z) \leq \delta$ and $\Delta(a, y, z) \leq \delta$, then $|x - y| \leq \delta$, $|x - z| \leq \delta$ and $|y - z| \leq \delta$, which imply that $D(x, y, z) \leq \delta + \delta + \delta = \varepsilon$.

Lemma 1.7. Let X be a metric space with metric D and let Δ be a Δ -distance on X. Let $\{x_n\}, \{y_n\}$ be sequences in X and let $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ be sequences in $[0, \infty)$ converging to zero and assume that $x, y, z, a \in X$. Then we have the following implications:

- (a) If $\Delta(x_n, a_n, y_n) \leq \alpha_n$, $\Delta(x_n, a_n, z) \leq \beta_n$ and $\Delta(x_n, y_n, z) \leq \gamma_n$, for any $n \in \mathbb{N}$, then $D(a_n, y_n, z) \to 0$.
- (b) If $\Delta(x_n, x_m, x_p) \leq \alpha_n$, for any $p, n, m \in \mathbb{N}$ with m < n < p, then $\{x_n\}$ is a D-Cauchy sequence.

Proof. (a) Let $\varepsilon > 0$ be given. From the definition of Δ -distance, there exists $\delta > 0$ such that $\Delta(a, u, v) \leq \delta$, $\Delta(a, u, z) \leq \delta$ and $\Delta(a, v, z) \leq \delta$

imply $D(u, v, z) \leq \varepsilon$. Choose $n_0 \in \mathbb{N}$ such that $\alpha_n \leq \delta$, $\beta_n \leq \delta$ and $\gamma_n \leq \delta$ for every $n \geq n_0$. Then for any $n \geq n_0$ we have

 $\Delta(x_n, a_n, y_n) \le \alpha_n \le \delta, \ \Delta(x_n, a_n, z) \le \beta_n \le \delta, \ \Delta(x_n, y_n, z) \le \gamma_n \le \delta,$ and hence

d nence

 $D(a_n, y_n, z) \le \varepsilon.$

If we replace $\{a_n\}$ with $\{y_n\}$, then $\{y_n\}$ converges to z.

Let us now prove (b). Let $\varepsilon > 0$ be given. As in the proof of (a), choose $\delta > 0$ and then $n_0 \in \mathbb{N}$. Then, for any $p > n > m \ge n_0 + 1$,

$$\Delta(x_{n_0}, x_n, x_m) \le \alpha_{n_0} \le \delta, \ \Delta(x_{n_0}, x_n, x_p) \le \beta_{n_0} \le \delta,$$
$$\Delta(x_{n_0}, x_m, x_p) \le \gamma_{n_0} \le \delta,$$

and hence

$$D(x_n, x_m, x_p) \le \varepsilon.$$

This implies that $\{x_n\}$ is a *D*-Cauchy sequence.

2. The main result

In [4], the author showed that there are some D-metrics which are not continuous. In this paper, we assume that D-metrics lie in \mathcal{D} , where \mathcal{D} is the class of continuous D-metrics. Also, X is said to be Δ -bounded if there is a constant M > 0 such that $\Delta(x, y, z) \leq M$ for all $x, y, z \in X$.

Now, we give the main result of this paper.

Theorem 2.1. Let X be a complete metric space with metric D, Δ a Δ -distance on X and T a mapping from X into itself. Let X be Δ -bounded. Suppose that there exists $r \in [0, 1)$ such that

$$\Delta(Tx, T^2x, Tw) \le r\Delta(x, Tx, w),$$

for all $x, w \in X$. Then there exists $z \in X$ such that z = Tz. Moreover, if v = Tv, then $\Delta(v, v, v) = 0$.

Proof. We claim that

$$\inf\{\Delta(x, Tx, y) + \Delta(x, Tx, T^2x) + \Delta(x, T^2x, y) : x \in X\} > 0,$$

for all $y \in X$ with $y \neq Ty$. For the moment, suppose that the claim is true. Let $u \in X$ and define a sequence $\{u_n\}$ in X by

$$u_n = T^n u,$$

16

Fixed points in genralized D-metic spaces

for all $n \in \mathbb{N}$. Then, for all $n, t \in \mathbb{N}$, we have

$$\Delta(u_n, u_{n+1}, u_{n+t}) \le r\Delta(u_{n-1}, u_n, u_{n+t-1}) \le \dots \le r^n \Delta(u, u_1, u_t)$$

Thus, for any p > m > n for which m = n + k and p = m + t $(k, t \in \mathbb{N})$, we have

$$\begin{aligned} \Delta(u_n, u_m, u_p) &\leq \quad \Delta(u_n, u_{n+1}, u_{n+2}) + \dots + \Delta(u_{p-2}, u_{p-1}, u_p) \\ &\leq \quad \sum_{j=n}^p 2Mr^j \\ &\leq \quad \frac{r^n}{1-r} 2M. \end{aligned}$$

(For more details see [4, page 71]).By part (b) of Lemma 1.7, $\{u_n\}$ is a *D*-Cauchy sequence. Since X is complete, $\{u_n\}$ converges to a point $z \in X$. Let $n \in \mathbb{N}$ be fixed. Then, by lower semi-continuity of Δ , we have

$$\Delta(u_n, u_m, z) \le \liminf_{p \to \infty} \Delta(u_n, u_m, u_p) \le \frac{r^n}{1 - r} 2M.$$

Assume that $z \neq Tz$. Then, by hypothesis, we have

 $0 < \inf\{\Delta(x, Tx, z) + \Delta(x, Tx, T^{2}x) + \Delta(x, T^{2}x, z)\}$ $\leq \inf\{\Delta(u_{n}, u_{n+1}, z) + \Delta(u_{n}, u_{n+1}, u_{n+2}) + \Delta(u_{n}, u_{n+2}, z) : n \in \mathbb{N}\}$ $\leq \inf\left\{\frac{r^{n}}{1 - r}2M + r^{n}M + \frac{r^{n+1}}{1 - r}2M : n \in \mathbb{N}\right\} = 0.$

This is a contradiction. Therefore, we have z = Tz.

Now, if v = Tv, we have

$$\Delta(v, v, v) = \Delta(Tv, T^2v, T^3v) \le r\Delta(v, Tv, T^2v) = r\Delta(v, v, v),$$

and so $\Delta(v, v, v) = 0$.

Now, it remains to prove the claim. Assume that there exists $y \in X$ with $y \neq Ty$ and

$$\inf\{\Delta(x,Tx,y) + \Delta(x,Tx,T^2x) + \Delta(x,T^2x,y)\} = 0.$$

Then there exists a sequence $\{x_n\}$ in X such that

$$\lim_{n \to \infty} \{ \Delta(x_n, Tx_n, y) + \Delta(x_n, Tx_n, T^2x_n) + \Delta(x_n, T^2x_n, y) \} = 0.$$

Thus we have

$$\lim_{n \to \infty} \Delta(x_n, Tx_n, y) = 0, \quad \lim_{n \to \infty} \Delta(x_n, Tx_n, T^2x_n) = 0,$$
$$\lim_{n \to \infty} \Delta(x_n, T^2x_n, y) = 0,$$

and hence, by part (a) of Lemma 1.7, we have $\lim_{n\to\infty} D(Tx_n, T^2x_n, y) = 0$, and by continuity of *D*-metric,

$$\lim_{n \to \infty} Tx_n = \lim_{n \to \infty} T^2 x_n = y.$$

We also have

$$\lim_{n \to \infty} \Delta(Tx_n, T^2x_n, Ty) \le r \lim_{n \to \infty} \Delta(x_n, Tx_n, y) = 0,$$
$$\lim_{n \to \infty} \Delta(Tx_n, y, Ty) \le \liminf_{n \to \infty} \Delta(Tx_n, T^2x_n, Ty)$$
$$\le r \liminf_{n \to \infty} \Delta(x_n, Tx_n, y) = 0,$$

and

$$\lim_{n \to \infty} \Delta(Tx_n, T^2x_n, y) \leq \liminf_{n \to \infty} \Delta(Tx_n, T^2x_n, T^2x_n)$$

$$\leq r \liminf_{n \to \infty} \Delta(x_n, Tx_n, Tx_n)$$

$$\leq r \liminf_{n \to \infty} \Delta(x_n, Tx_n, T^2x_n) = 0.$$

By part (a) of Lemma 1.7, we have $\lim_{n\to\infty} D(T^2x_n, y, Ty) = 0$ and hence y = Ty. This is a contradiction. This completes the proof.

Now, to justify that the set of functions satisfying the conditions of Theorem 2.1 is not void, we give an example.

Example 2.2. Consider Example 1.6 Define a function $T : \mathbb{R} \longrightarrow \mathbb{R}$ as follows:

$$Tx = \frac{x}{2}$$

for all $x \in \mathbb{R}$. Then we have

$$\Delta(Tx, T^2x, Tw) = |T^2x - Tw| = \left|\frac{x}{4} - \frac{w}{2}\right| = \frac{1}{2}\left|\frac{x}{2} - w\right| \le \frac{1}{2}\Delta(x, Tx, w)$$

for all $x, w \in \mathbb{R}$. Thus all the conditions of Theorem 2.1 are satisfied and 0 is a fixed point of T.

Acknowledgements

The authors would like to thank the referee for giving useful comments and suggestions for the improvement of this paper. The authors wish to thank Prof. R. Zaare-Nahandi for his helpful suggestions. Fixed points in genralized D-metic spaces

References

- B. C. Dhage, Generalized metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc. 84 (1992), 329–336.
- [2] O. Kada, T. Suzuki and W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete metric spaces, *Math. Japon.* 44 (1996), 381–391.
- [3] S. V. R. Naidu, K. P. R. Rao and N. S. Rao, On the topology of *D*-metric spaces and generation of *D*-metric spaces from metric spaces, *Int. J. Math. Math. Sci.* 51 (2004), 2719-2740.
- [4] N. S. Rao, A study of the topological properties of *D*-metric spaces and fixed point theorems in metric and *D*-metric spaces, Ph. D. Thesis, Acharia Nagarjuna University, 2004.
- [5] B. E. Rhoades, A fixed point theorem for generalized metric spaces, Int. J. Math. Math. Sci. 19 (1996), 457-460.
- [6] J. S. Ume and J. K. Kim, Common fixed point theorems in D-metric spaces with local boundedness, Indian J. Pure Appl. Math. 31 (2000), 865–871.

Y. J. Cho

Department of Mathematics Education and the RINS Gyeongsang National University Chinju 660-701, Korea e-mail: yjcho@gsnu.ac.kr

R. Saadati

Institute for Studies in Applied Mathematics 1, Fajr 4, Amol 46176–54553 Iran and Islamic Azad University, Ayatollah Amoly Branch Amol, Iran e-mail: rsaadati@eml.cc