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A FIXED POINT THEOREM IN GENERALIZED
D–METRIC SPACES

Y. J. CHO AND R. SAADATI*

Communicated by Fraydoun Rezakhanlou

Abstract. In this paper, we consider the concept of ∆–distance
on a complete D–metric space and prove a fixed point theorem.

1. Introduction and preliminaries

Recently, Dhage [1] introduced the concept of D-metric. Afterwards,
many authors [4, 5, 6] proved some fixed point theorems in these spaces.

In this paper, using the concept of D-metric, we define a ∆–distance
on a complete D-metric space which is a generalization of the concept of
ω–distance due to Kada, Suzuki and Takahashi [2]. This generalization
is non trivial because a D-metric does not always define a topology, and
even when it does, this topology is not necessarily Hausdorff (see [3]
and [4, Ch.1]). Using the concept of ∆-distance, we prove a fixed point
theorem, which is the main result of this paper.

We state the definition of D–metric, ∆–distance and prove a lemma.
For more information on D–metrics, we refer the reader to [1, 4, 6].
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Definition 1.1. ([1]) Let X be a non-empty set. A function D : X ×
X × X −→ [0,∞) is called a D–metric if the following conditions are
satisfied:

(a) (coincidence) D(x, y, z) ≥ 0 for all x, y, z ∈ X and equality holds
if and only if x = y = z,

(b) (symmetry) D(x, y, z) = D(p{x, y, z}), where p is a permutation
of x, y, z,

(c) (tetrahedral inequality) D(x, y, z) ≤ D(x, y, a) + D(x, a, z) +
D(a, y, z) for all x, y, z, a ∈ X .

Definition 1.2. ([1]) (a) A sequence {xn} in X is called a D-Cauchy
sequence if for each ε > 0, there exists a positive integer n0 such that,
for all m > n, p ≥ n0,

D(xm, xn, xp) < ε.

(b) A sequence {xn} in X is said to be D-convergent to a point x ∈ X
if for each ε > 0, there exists a positive integer n0 such that, for all
m,n ≥ n0,

D(xm, xn, x) < ε.

Definition 1.3. Let X be a metric space with metric D. Then a
function ∆ : X ×X ×X −→ [0,∞) is called a ∆–distance on X if the
following conditions are satisfied:

(a) ∆(x, y, z) ≤ ∆(x, y, a)+∆(x, a, z)+∆(a, y, z) for all x, y, z, a ∈ X,
(b) for any x, y ∈ X, ∆(x, y, .) : X −→ [0,∞) is lower semi-continuous,
(c) for any ε > 0, there exists δ > 0 such that ∆(a, x, y) ≤ δ,

∆(a, x, z) ≤ δ and ∆(a, y, z) ≤ δ imply D(x, y, z) ≤ ε.

Example 1.4. Let X be a metric space with the metric D defined by

D(x, y, z) = max{d(x, y), d(y, z), d(x, z)},

for all x, y, z ∈ X (see [4, Corollary 1.20]). Then ∆ = D is a ∆–distance
on X.

Proof. (a) and (b) are obvious. We show (c). Let ε > 0 be given
and put δ = ε. If D(a, x, y) ≤ δ, D(a, x, z) ≤ δ and D(a, y, z) ≤ δ,
we have d(x, y) ≤ δ, d(x, z) ≤ δ, and d(y, z) ≤ δ, which implies that
D(x, y, z) ≤ δ = ε. �
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Example 1.5. Let X be a metric space with the metric D defined by

D(x, y, z) = d(x, y) + d(y, z) + d(x, z),

for all x, y, z ∈ X (see [4, Theorem 1.13 and Corollary 1.17]). Then the
function ∆ : X3 → [0,∞) defined by

∆(x, y, z) = t,

for all x, y, z ∈ X, is a ∆–distance on X, where t is a positive real
number.

Proof. The proofs of (a) and (b) are immediate. To show (c), for any
ε > 0, put δ = ε

3 . Then ∆(a, x, y) ≤ δ, ∆(a, x, z) ≤ δ and ∆(a, y, z) ≤ δ
imply D(x, y, z) ≤ ε. �

Example 1.6. Let X = R be a metric space with the metric D defined
by

D(x, y, z) = |x− y|+ |y − z|+ |x− z|,
for all x, y, z ∈ R (see [4, Theorem 1.13 and Corollary 1.17]). Then a
function ∆ : R3 → [0,∞) defined by

∆(x, y, z) = |y − z|,

for all x, y, z ∈ R is a ∆–distance on R.

Proof. The proofs of (a) and (b) are immediate. We show (c). Let
ε > 0 be given and put δ = ε

3 . If ∆(a, x, y) ≤ δ, ∆(a, x, z) ≤ δ and
∆(a, y, z) ≤ δ, then |x− y| ≤ δ, |x− z| ≤ δ and |y− z| ≤ δ, which imply
that D(x, y, z) ≤ δ + δ + δ = ε. �

Lemma 1.7. Let X be a metric space with metric D and let ∆ be
a ∆–distance on X. Let {xn}, {yn} be sequences in X and let {αn},
{βn}, {γn} be sequences in [0,∞) converging to zero and assume that
x, y, z, a ∈ X. Then we have the following implications:

(a) If ∆(xn, an, yn) ≤ αn, ∆(xn, an, z) ≤ βn and ∆(xn, yn, z) ≤ γn,
for any n ∈ N, then D(an, yn, z) → 0.

(b) If ∆(xn, xm, xp) ≤ αn, for any p, n,m ∈ N with m < n < p, then
{xn} is a D-Cauchy sequence.

Proof. (a) Let ε > 0 be given. From the definition of ∆–distance, there
exists δ > 0 such that ∆(a, u, v) ≤ δ, ∆(a, u, z) ≤ δ and ∆(a, v, z) ≤ δ
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imply D(u, v, z) ≤ ε. Choose n0 ∈ N such that αn ≤ δ, βn ≤ δ and
γn ≤ δ for every n ≥ n0. Then for any n ≥ n0 we have

∆(xn, an, yn) ≤ αn ≤ δ, ∆(xn, an, z) ≤ βn ≤ δ, ∆(xn, yn, z) ≤ γn ≤ δ,

and hence
D(an, yn, z) ≤ ε.

If we replace {an} with {yn}, then {yn} converges to z.
Let us now prove (b). Let ε > 0 be given. As in the proof of (a),

choose δ > 0 and then n0 ∈ N. Then, for any p > n > m ≥ n0 + 1,

∆(xn0 , xn, xm) ≤ αn0 ≤ δ, ∆(xn0 , xn, xp) ≤ βn0 ≤ δ,

∆(xn0 , xm, xp) ≤ γn0 ≤ δ,

and hence
D(xn, xm, xp) ≤ ε.

This implies that {xn} is a D-Cauchy sequence. �

2. The main result

In [4], the author showed that there are some D–metrics which are
not continuous. In this paper, we assume that D–metrics lie in D, where
D is the class of continuous D–metrics. Also, X is said to be ∆–bounded
if there is a constant M > 0 such that ∆(x, y, z) ≤ M for all x, y, z ∈ X.

Now, we give the main result of this paper.

Theorem 2.1. Let X be a complete metric space with metric D, ∆
a ∆–distance on X and T a mapping from X into itself. Let X be
∆–bounded. Suppose that there exists r ∈ [0, 1) such that

∆(Tx, T 2x, Tw) ≤ r∆(x, Tx,w),

for all x,w ∈ X. Then there exists z ∈ X such that z = Tz. Moreover,
if v = Tv, then ∆(v, v, v) = 0.

Proof. We claim that

inf{∆(x, Tx, y) + ∆(x, Tx, T 2x) + ∆(x, T 2x, y) : x ∈ X } > 0,

for all y ∈ X with y 6= Ty. For the moment, suppose that the claim is
true. Let u ∈ X and define a sequence {un} in X by

un = Tnu,
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for all n ∈ N. Then, for all n, t ∈ N, we have

∆(un, un+1, un+t) ≤ r∆(un−1, un, un+t−1) ≤ · · · ≤ rn∆(u, u1, ut).

Thus, for any p > m > n for which m = n + k and p = m + t (k, t ∈ N),
we have

∆(un, um, up) ≤ ∆(un, un+1, un+2) + · · ·+ ∆(up−2, up−1, up)

≤
p∑

j=n

2Mrj

≤ rn

1− r
2M.

(For more details see [4, page 71]).By part (b) of Lemma 1.7, {un} is
a D-Cauchy sequence. Since X is complete, {un} converges to a point
z ∈ X. Let n ∈ N be fixed. Then, by lower semi-continuity of ∆, we
have

∆(un, um, z) ≤ lim inf
p→∞

∆(un, um, up) ≤
rn

1− r
2M.

Assume that z 6= Tz. Then, by hypothesis, we have

0 < inf{∆(x, Tx, z) + ∆(x, Tx, T 2x) + ∆(x, T 2x, z)}
≤ inf{∆(un, un+1, z) + ∆(un, un+1, un+2) + ∆(un, un+2, z) : n ∈ N}

≤ inf
{ rn

1− r
2M + rnM +

rn+1

1− r
2M : n ∈ N

}
= 0.

This is a contradiction. Therefore, we have z = Tz.
Now, if v = Tv, we have

∆(v, v, v) = ∆(Tv, T 2v, T 3v) ≤ r∆(v, Tv, T 2v) = r∆(v, v, v),

and so ∆(v, v, v) = 0.
Now, it remains to prove the claim. Assume that there exists y ∈ X

with y 6= Ty and

inf{∆(x, Tx, y) + ∆(x, Tx, T 2x) + ∆(x, T 2x, y)} = 0.

Then there exists a sequence {xn} in X such that

lim
n→∞

{∆(xn, Txn, y) + ∆(xn, Txn, T 2xn) + ∆(xn, T 2xn, y)} = 0.

Thus we have

lim
n→∞

∆(xn, Txn, y) = 0, lim
n→∞

∆(xn, Txn, T 2xn) = 0,

lim
n→∞

∆(xn, T 2xn, y) = 0,
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and hence, by part (a) of Lemma 1.7, we have limn→∞D(Txn, T 2xn, y) =
0, and by continuity of D–metric,

lim
n→∞

Txn = lim
n→∞

T 2xn = y.

We also have

lim
n→∞

∆(Txn, T 2xn, T y) ≤ r lim
n→∞

∆(xn, Txn, y) = 0,

lim
n→∞

∆(Txn, y, Ty) ≤ lim inf
n→∞

∆(Txn, T 2xn, T y)

≤ r lim inf
n→∞

∆(xn, Txn, y) = 0,

and

lim
n→∞

∆(Txn, T 2xn, y) ≤ lim inf
n→∞

∆(Txn, T 2xn, T 2xn)

≤ r lim inf
n→∞

∆(xn, Txn, Txn)

≤ r lim inf
n→∞

∆(xn, Txn, T 2xn) = 0.

By part (a) of Lemma 1.7, we have limn→∞D(T 2xn, y, Ty) = 0 and
hence y = Ty. This is a contradiction.This completes the proof. �

Now, to justify that the set of functions satisfying the conditions of
Theorem 2.1 is not void, we give an example.

Example 2.2. Consider Example 1.6 Define a function T : R −→ R as
follows:

Tx =
x

2
for all x ∈ R. Then we have

∆(Tx, T 2x, Tw) = |T 2x− Tw| =
∣∣∣x
4
− w

2

∣∣∣ =
1
2

∣∣∣x
2
− w

∣∣∣ ≤ 1
2
∆(x, Tx,w)

for all x,w ∈ R. Thus all the conditions of Theorem 2.1 are satisfied
and 0 is a fixed point of T .
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