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ABSTRACT. In this paper, we consider the concept of A—distance
on a complete D—metric space and prove a fixed point theorem.

1. Introduction and preliminaries

Recently, Dhage [1] introduced the concept of D-metric. Afterwards,
many authors [4, 5, 6] proved some fixed point theorems in these spaces.

In this paper, using the concept of D-metric, we define a A—distance
on a complete D-metric space which is a generalization of the concept of
w—distance due to Kada, Suzuki and Takahashi [2]. This generalization
is non trivial because a D-metric does not always define a topology, and
even when it does, this topology is not necessarily Hausdorff (see [3]
and [4, Ch.1]). Using the concept of A-distance, we prove a fixed point
theorem, which is the main result of this paper.

We state the definition of D-metric, A—distance and prove a lemma.
For more information on D—metrics, we refer the reader to [1, 4, 6].
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Definition 1.1. ([1]) Let X be a non-empty set. A function D : X x
X x X — [0,00) is called a D-metric if the following conditions are
satisfied:
(a) (coincidence) D(z,y,z) > 0 for all z,y, z € X and equality holds
if and only if z =y = z,
(b) (symmetry) D(z,y,z) = D(p{z,y, z}), where p is a permutation
of z,y, 2,
(c) (tetrahedral inequality) D(z,y,z) < D(z,y,a) + D(z,a,z) +
D(a,y,z) for all z,y,z,a € X

Definition 1.2. ([1]) (a) A sequence {z,} in X is called a D-Cauchy
sequence if for each ¢ > 0, there exists a positive integer ng such that,
for all m > n, p > ny,

D(xp,, T, xp) < €.

(b) A sequence {x,} in X is said to be D-convergent to a point z € X
if for each € > 0, there exists a positive integer ng such that, for all
m,n > no,

D(zp,, Tp, ) < €.

Definition 1.3. Let X be a metric space with metric D. Then a
function A : X x X x X — [0,00) is called a A-distance on X if the
following conditions are satisfied:

(a) A(z,y,2) < A(z,y,a)+A(z,a,2)+A(a,y, 2) forall z,y,z,a € X,

(b) for any =,y € X, A(x,y,.) : X — [0, 00) is lower semi-continuous,

(c) for any € > 0, there exists § > 0 such that A(a,z,y) <4,
A(a,z,2z) < and A(a,y,z) < 9§ imply D(z,y,z) <e.

Example 1.4. Let X be a metric space with the metric D defined by

D(x7y7 Z) - max{d(m,y),d(y, Z)v d(.%', Z)},

for all z,y,z € X (see [4, Corollary 1.20]). Then A = D is a A-distance
on X.

Proof. (a) and (b) are obvious. We show (c). Let ¢ > 0 be given
and put § = If D(a,z,y) < 6, D(a,z,z) < 6 and D(a,y,z) < 0,
< 9, d(z,z) <9, and d(y,z) < §, which implies that
€

O
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Example 1.5. Let X be a metric space with the metric D defined by
D(z,y,z) = d(z,y) + d(y, 2) + d(, 2),

for all z,y,z € X (see [4, Theorem 1.13 and Corollary 1.17]). Then the
function A : X3 — [0,00) defined by

Alzx,y, z) =t,

for all z,y,z € X, is a A-distance on X, where t is a positive real
number.

Proof. The proofs of (a) and (b) are immediate. To show (c), for any
e>0,put § = 5. Then A(a,z,y) <6, Ala,r,2) <0 and A(a,y,2) <6
imply D(z,y,2) < e. O

Example 1.6. Let X = R be a metric space with the metric D defined
by

D(‘T’y’z) = ‘ﬂf—y‘ + |y_Z| + |‘T—Z‘7
for all x,y,z € R (see [4, Theorem 1.13 and Corollary 1.17]). Then a
function A : R3 — [0, 00) defined by

A(xayvz) = |y - Z|7
for all x,y,z € R is a A—distance on R.
Proof. The proofs of (a) and (b) are immediate. We show (c). Let
e > 0 be given and put 6 = 5. If A(a,z,y) < 6, A(a,z,z) < § and

A(a,y,z) <0, then |z —y| <6, |x — 2| < J and |y — z| < 4, which imply
that D(z,y,2) <d+d+dJ=c¢. O

wl

Lemma 1.7. Let X be a metric space with metric D and let A be
a A—distance on X. Let {x,}, {yn} be sequences in X and let {a,},
{Bn}, {7} be sequences in [0,00) converging to zero and assume that
x,y,2,a € X. Then we have the following implications:
(@) If A(@n, any Yn) < any, AT, an,2) < By and A(xn, Yn, 2) < Y,
for any n € N, then D(an,yn, z) — 0.
(b) If A(xy, m, zp) < an, for any p,n,m € N with m < n < p, then
{zn} is a D-Cauchy sequence.

Proof. (a) Let ¢ > 0 be given. From the definition of A-distance, there
exists § > 0 such that A(a,u,v) <6, A(a,u,2z) <6 and A(a,v,2) <9
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imply D(u,v,z) < e&. Choose ng € N such that o, < 9§, 5, < 0 and
Yn < 0 for every n > ng. Then for any n > ng we have
A(xmanayn) <a,< 57 A(a:n,an,z) <Bp < 67 A(mn,yn,z) <M < 57
and hence
D(anvynv Z) <e.

If we replace {a,} with {y,}, then {y,} converges to z.
Let us now prove (b). Let ¢ > 0 be given. As in the proof of (a),
choose § > 0 and then ng € N. Then, for any p > n > m > ng + 1,

A(xTZO)an xm) S a’n() S 57 A(xTZO?an xp) S 6710 S 57
A($n07xm’ zp) S ’yno S 67
and hence
D(xy, xm,zp) < €.
This implies that {z,} is a D-Cauchy sequence. O

2. The main result

In [4], the author showed that there are some D-metrics which are
not continuous. In this paper, we assume that D—metrics lie in D, where
D is the class of continuous D—metrics. Also, X is said to be A—bounded
if there is a constant M > 0 such that A(x,y,z) < M for all z,y, z € X.

Now, we give the main result of this paper.

Theorem 2.1. Let X be a complete metric space with metric D, A
a A-distance on X and T a mapping from X into itself. Let X be
A-bounded. Suppose that there exists r € [0,1) such that

A(Tz,T?z, Tw) < rA(z, Tz, w),
for all x,w € X. Then there exists z € X such that z = Tz. Moreover,
if v="Tv, then A(v,v,v) = 0.
Proof. We claim that
inf{A(x, Tz,y) + Az, Tx, T?z) + Az, T?z,y) : € X } >0,

for all y € X with y # Ty. For the moment, suppose that the claim is
true. Let u € X and define a sequence {u,} in X by

Uy = T"u,
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for all n € N. Then, for all n,t € N, we have
A(tn, Unt1, Untt) < TA(UR—1, Uny Untt-1) < oo <A (u, un, uy).

Thus, for any p > m > n for which m =n+k and p=m+1t (k,t € N),
we have

A(Umum,up) < A(umun—i-lyun—i—Q) +---+ A(up—%up—lvup)

p
< Z?Mrj
j=n
n
< o
1—1r

(For more details see [4, page 71]).By part (b) of Lemma 1.7, {u,} is
a D-Cauchy sequence. Since X is complete, {u,} converges to a point
z € X. Let n € N be fixed. Then, by lower semi-continuity of A, we

have
n

A(Up, U, 2) < liminf A(uy, Um, up) < 2M.

p—00 1—r
Assume that z £ T'z. Then, by hypothesis, we have
0 < inf{A(z,Tz,2)+ Az, Tz, T?z) + Az, T?z, 2)}

< Inf{A(un, Unt1,2) + A(tn, Unt1, Unt2) + AUy, Unt2, 2) :n € N}
rh ,rn—l-l
< inf{ OM + "M +
1—r 1—r

2M :n € N} =0.
This is a contradiction. Therefore, we have z = T'z.
Now, if v = T'v, we have
A(v,v,v) = A(Tv, T?v, T3v) < rA(v, Tv, T?v) = rA(v,v,v),
and so A(v,v,v) = 0.

Now, it remains to prove the claim. Assume that there exists y € X
with y # Ty and

inf{A(x, Tz,y) + Az, Tz, T?z) + Az, T?z,y)} = 0.
Then there exists a sequence {z,,} in X such that
nlir&{A(xn,Tmn, y) + A(xn,Txn,TQ:I:n) + A(xn,T2xn,y)} = 0.
Thus we have
lim A(zn, Tzp,y) =0, lim Az, T, T?2,) = 0,

n—oo

lim A(z,, T?z,,y) =0,

n—oo
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and hence, by part (a) of Lemma 1.7, we have lim,, oo D(Tz, T%%y,y) =
0, and by continuity of D—metric,

lim Tz, = lim T?z, = Y.
n—oo n—oo

We also have

lim A(Tzy, T%z,,Ty) <r lim A(z,, Tz,,y) =0,
n—oo

n—oo
lim A(Tz,,y, Ty) < liminf A(Tz,, T?z,, Ty)
n—oo n—oo

< rliminf A(zy, Tzp,y) =0,

n—oo
and

lim A(Txn,Tan,y) < I%mg.}fA(Txn,Tan,Tan)

n—oo

< rliminf Az, Tz, Txy)
n—oo

< rliminf A(zy, Tz,, T?2,) = 0.
n—oo

By part (a) of Lemma 1.7, we have lim, .o D(T%x,,y,Ty) = 0 and
hence y = Ty. This is a contradiction.This completes the proof. O

Now, to justify that the set of functions satisfying the conditions of
Theorem 2.1 is not void, we give an example.

Example 2.2. Consider Example 1.6 Define a function 7': R — R as
follows:

X
Ty =2
T3

for all x € R. Then we have

2 T - Tw = |5 B = LE <L
ATz, Tz, Tw) = |T*x Tw\f‘ll 2‘72’2 w’§2A(x,Tx,w)
for all z,w € R. Thus all the conditions of Theorem 2.1 are satisfied

and 0 is a fixed point of T'.
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