Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 4, pp. 879-880

Title:
The Ramsey numbers of large trees versus wheels
Author(s):

> D. Zhu, L. Zhang and D. Li

Published by Iranian Mathematical Society

THE RAMSEY NUMBERS OF LARGE TREES VERSUS WHEELS

D. ZHU, L. ZHANG* AND D. LI

(Communicated by Ebadollah S. Mahmoodian)

Abstract

For two given graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}\right.$, $\left.G_{2}\right)$ is the smallest integer n such that for any graph G of order n, either G contains G_{1} or the complement of G contains G_{2}. Let T_{n} denote a tree of order n and W_{m} a wheel of order $m+1$. To the best of our knowledge, only $R\left(T_{n}, W_{m}\right)$ with small wheels are known. In this paper, we show that $R\left(T_{n}, W_{m}\right)=3 n-2$ for odd m with $n>756 m^{10}$. Keywords: Ramsey number, tree, wheel. MSC(2010): Primary: 05C55; Secondary: 05C15.

All graphs considered in this paper are finite simple graphs without loops. For two given graphs G_{1} and G_{2}, the Ramsey number $R\left(G_{1}, G_{2}\right)$ is the smallest integer n such that for any graph G of order n, either G contains G_{1} or \bar{G} contains G_{2}, where \bar{G} is the complement of G. Let $|G|$ be the number of vertices of G. The neighborhood $N(v)$ of a vertex v is the set of vertices adjacent to v in G and $N[v]=N(v) \cup\{v\}$. The minimum degree of G is denoted by $\delta(G)$. We use T_{n} to denote a tree of order n. We use C_{m} and $m K_{n}$ to denote a cycle of order m and the disjoint union of m copies of K_{n}, respectively. A Wheel $W_{m}=K_{1}+C_{m}$ is a graph of $m+1$ vertices, where K_{1} is called the hub of the wheel.

Ramsey number involving trees or wheels have been studied in several research, for a survey see [8]. Some Ramsey values $R\left(T_{n}, W_{m}\right)$ for small wheels $W_{5}, W_{6}, W_{7}, W_{9}$ have been shown in $[2,5-7,9]$. To the best of our knowledge, there is no other known tree-wheel Ramsey values. In this paper, we evaluate the Ramsey numbers of $R\left(T_{n}, W_{m}\right)$ for large trees and wheels. The main result of this paper is the following theorem.

Theorem 0.1. $R\left(T_{n}, W_{m}\right)=3 n-2$ for odd m with $n>756 m^{10}$.

[^0]In [3], Burr et al. considered the Ramsey number involving a tree versus a cycle and established the following result.
Lemma 0.2. [3] $R\left(T_{n}, C_{m}\right)=2 n-1$ if m is odd and $n>756 m^{10}$.
Proof of Theorem. Let G be a graph with $|G|=3 n-2$ such that m is odd and $n>756 m^{10}$. If there is a vertex $v \in V(G)$ such that $|N[v]| \leq n-1$, we have $|G-N[v]| \geq 2 n-1 \geq R\left(T_{n}, C_{m}\right)$ and hence $\bar{G}-N[v]$ contains a C_{m}. Therefore, \bar{G} contains a $W_{m}=\{v\}+C_{m}$. Otherwise, for any vertex $v,|N[v]| \geq n$, which shows that $\delta(G) \geq n-1$. So G contains every tree with n vertices(See Ex. 4.1.9 [1]). Hence, we have $R\left(T_{n}, W_{m}\right) \leq 3 n-2$. The lower bound is due to $3 K_{n-1}$.

Acknowledgments

The authors are grateful for the anonymous referee's many helpful comments. This research was supported by the National Natural Science Foundation of China under Research Fund no. 71203144 and 71501093, Natural Science Foundation of Jiangsu Province (Grant No. BK20150566).

References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics, 244, Springer, New York, 2008.
[2] E. T. Baskoro, Surahmat, S. M. Nababan and M. Miller, On Ramsey numbers for trees versus wheels of five or six vertices, Graphs Combin. 18 (2002), no. 4, 717-721.
[3] S. A. Burr, P. Erdös, R. J. Faudree, C. C. Rousseau and R. H. Schelp, Ramsey numbers for the pair sparse graph-path or cycle, Trans. Amer. Math. Soc. 269 (1982), no. 2, 501-512.
[4] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers $R\left(T_{n}, W_{6}\right)$ for $\Delta\left(T_{n}\right) \geq n-3$, Appl. Math. Lett. 17 (2004), no. 3, 281-285.
[5] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers of Trees versus W_{6} or W_{7}, European J. Combin. 27 (2006), no. 4, 558-564.
[6] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers $R\left(T_{n}, W_{6}\right)$ for small n, Util. Math. 67 (2005) 269-284.
[7] Y. Chen, Y. Zhang and K. Zhang, The Ramsey Numbers $R\left(T_{n}, W_{6}\right)$ for T_{n} without certain deletable sets, J. Syst. Sci. Complex 18 (2005), no. 1, 95-101.
[8] S. P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2014), DS1.14.
[9] Y. Zhang, Y. Chen and K. Zhang, The Ramsey numbers for trees of high degree versus a wheel of order nine, manuscript (2009).
(Dongmei Zhu) School of Economics and Management, Southeast University, Nanjing 210093, P.R. China.

E-mail address: dongmeizhu2013@126.com
(Lianmin Zhang) School of Management and Engineering, Nanjing University, Nanjing 210093, P.R. China.

E-mail address: zhanglm@nju.edu.cn
(Dongxin Li) School of Management and Engineering, Nanjing University, NanJing 210093, P.R. China.

E-mail address: leedongxin@163.com

[^0]: Article electronically published on August 20, 2016.
 Received: 17 December 2014, Accepted: 18 May 2015.

 * Corresponding author.

