Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 4, pp. 881-889

Title:
Coefficient estimates for a subclass of analytic and bi-univalent functions
Author(s):
A. Zireh and E. Analouei Audegani

Published by Iranian Mathematical Society

COEFFICIENT ESTIMATES FOR A SUBCLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS

A. ZIREH* AND E. ANALOUEI AUDEGANI

(Communicated by Ali Abkar)

Abstract

In this paper, we introduce and investigate a subclass $H_{\Sigma}^{h, p}(\beta)$ of analytic and bi-univalent functions in the open unit disk \mathbb{U}. Upper bounds for the second and third coefficients of functions in this subclass are founded. Our results generalize and improve over the existing results in the literature. Keywords: Analytic functions, bi-univalent functions, coefficient estimates, starlike functions, Koebe one-quarter theorem. MSC(2010): Primary: 30C45; Secondary: 30C50.

1. Introduction

Let \mathcal{A} be a class of analytic functions in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}$: $|z|<1\}$, of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

We also denote by \mathcal{S} the class of functions $f \in \mathcal{A}$ which are univalent in \mathbb{U}. Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the entire unit disk \mathbb{U}. The Koebe one-quarter theorem [3] ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{S}$ contains a disk of radius $\frac{1}{4}$. Hence every function $f \in \mathcal{S}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

Article electronically published on August 20, 2016.
Received: 17 April 2014, Accepted: 27 May 2015.

* Corresponding author.
where

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. The class consisting of bi-univalent functions are denoted by Σ.
Determination of the bounds for the coefficients a_{n} is an important problem in geometric function theory as they give information about the geometric properties of these functions. For example, the bound for the second coefficient a_{2} of functions $f \in \mathcal{S}$ gives the growth and distortion bounds as well as covering theorems.
Lewin [9] investigated the class Σ of bi-univalent functions and showed that $\left|a_{2}\right|<1.51$ for the functions belonging to Σ. Subsequently, Brannan and Clunie [2] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. Kedzierawski [8] proved this conjecture for a special case when the function f and f^{-1} are starlike functions. Tan [12] obtained the bound for $\left|a_{2}\right|$ namely $\left|a_{2}\right| \leq 1.485$ which is the best known estimate for functions in the class Σ. Recently there interest to study the biunivalent functions class Σ (see $[4,5,13,14]$) and obtain non-sharp estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. The coefficient estimate problem i.e. bound of $\left|a_{n}\right|(n \in \mathbb{N}-\{1,2\})$ for each $f \in \Sigma$ given by [1] is still an open problem.

Recently, Frasin [6] introduced two subclasses of class Σ and obtained estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these subclasses as follow.

Definition 1.1 ([6]). A function $f(z)$ given by (1.1) is said to be in the class $H_{\Sigma}(\alpha, \beta)$ if the following conditions are satisfied:

$$
f \in \Sigma \operatorname{and}\left|\arg \left(f^{\prime}(z)+\beta z f^{\prime \prime}(z)\right)\right|<\frac{\alpha \pi}{2}(z \in \mathbb{U})
$$

and

$$
\left|\arg \left(g^{\prime}(w)+\beta w g^{\prime \prime}(w)\right)\right|<\frac{\alpha \pi}{2}(w \in \mathbb{U})
$$

where, $\beta>0,0<\alpha<1, \quad 2(1-\alpha) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\beta m+1} \leq 1$, and the function g is the extension of f^{-1} to \mathbb{U}, which
(1.2) $g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots$.

Theorem 1.2 ([6]). Let $f(z)$ given by (1.1) be in the class $H_{\Sigma}(\alpha, \beta)$ where $\beta>0,0<\alpha<1, \quad 2(1-\alpha) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\beta m+1} \leq 1$. Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2(\alpha+2)+4 \beta(\alpha+\beta+2-\alpha \beta)}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\alpha^{2}}{(1+\beta)^{2}}+\frac{2 \alpha}{3(1+2 \beta)}
$$

Definition 1.3 ([6]). A function $f(z)$ given by (1.1) is said to be in the class $H_{\Sigma}(\gamma, \beta)$ if the following conditions are satisfied:

$$
f \in \Sigma \text { and } \mathfrak{R e}\left(f^{\prime}(z)+\beta z f^{\prime \prime}(z)\right)>\gamma(z \in \mathbb{U}),
$$

and

$$
\mathfrak{R e}\left(g^{\prime}(w)+\beta w g^{\prime \prime}(w)\right)>\gamma(w \in \mathbb{U})
$$

where, $\beta>0,0 \leq \gamma<1,2(1-\gamma) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\beta m+1} \leq 1$, and g is given by (1.2).
Theorem 1.4 ([6]). Let $f(z)$ given by (1.1) be in the class $H_{\Sigma}(\gamma, \beta)$ where $\beta>0,0 \leq \gamma<1, \quad 2(1-\gamma) \sum_{m=1}^{\infty} \frac{(-1)^{m-1}}{\beta m+1} \leq 1$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\gamma)}{3(1+2 \beta)}}
$$

and

$$
\left|a_{3}\right| \leq \frac{(1-\gamma)^{2}}{(1+\beta)^{2}}+\frac{2(1-\gamma)}{3(1+2 \beta)}
$$

The purpose of our study is to obtain estimates of coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in subclasses $H_{\Sigma}^{h, p}(\beta)$ which improve Theorem 1.2 and Theorem 1.4.

2. Coefficient Estimates

In this section, we introduce and investigate the general subclass $H_{\Sigma}^{h, p}(\beta)$ where $\beta \geq 0$.

Definition 2.1. Let $h, p: \mathbb{U} \rightarrow \mathbb{C}$ be analytic functions and

$$
\min \{\mathfrak{R e}(h(z)), \mathfrak{R e}(p(z))\}>0(z \in \mathbb{U}) \text { and } h(0)=p(0)=1 .
$$

A univalent function $f \in \mathcal{S}$ given by (1.1) is said to be in the class $H_{\Sigma}^{h, p}(\beta)$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \text { and } f^{\prime}(z)+\beta z f^{\prime \prime}(z) \in h(\mathbb{U})(z \in \mathbb{U}), \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{\prime}(w)+\beta w g^{\prime \prime}(w) \in p(\mathbb{U})(w \in \mathbb{U}), \tag{2.2}
\end{equation*}
$$

where, $\beta \geq 0$ and the function g is given by (1.2).
Remark 2.2. There are many choices of h, p and β which would provide interesting subclasses of class $H_{\Sigma}^{h, p}(\beta)$. For example,
(1) For $\beta>0$ and $h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}$ where $0<\alpha \leq 1$, it can be directly verified that the functions $h(z)$ and $p(z)$ satisfy the hypotheses of Definition 2.1. Now if $f \in H_{\Sigma}^{h, p}(\beta)$ then

$$
\left|\arg \left(f^{\prime}(z)+\beta z f^{\prime \prime}(z)\right)\right|<\frac{\alpha \pi}{2} \operatorname{and}\left|\arg \left(g^{\prime}(w)+\beta w g^{\prime \prime}(w)\right)\right|<\frac{\alpha \pi}{2}
$$

Therefore in this case, the class $H_{\Sigma}^{h, p}(\beta)$ reduces to class $H_{\Sigma}(\alpha, \beta)$ in Definition 1.1.
(2) For $\beta>0$ and $h(z)=p(z)=\frac{1+(1-2 \gamma) z}{1-z}$, where $0 \leq \gamma<1$, the functions $h(z)$ and $p(z)$ satisfy the hypotheses of Definition 2.1. Now if $f \in$ $H_{\Sigma}^{h, p}(\beta)$, then

$$
\mathfrak{R e}\left(f^{\prime}(z)+\beta z f^{\prime \prime}(z)\right)>\gamma \text { and } \mathfrak{R e}\left(g^{\prime}(w)+\beta w g^{\prime \prime}(w)\right)>\gamma
$$

This means that the class $H_{\Sigma}^{h, p}(\beta)$ reduces to class $H_{\Sigma}(\gamma, \beta)$ in Definition 1.3.
(3) For $\beta=0$ and $h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}$ where $0<\alpha \leq 1$, the class $H_{\Sigma}^{h, p}(0)$ reduces to the class $\mathcal{H}_{\Sigma}^{\alpha}$ which is defined by Srivastava et al. [10, Definition 1].
(4) For $\beta=0$ and $h(z)=p(z)=\frac{1+(1-2 \gamma) z}{1-z}$, where $0 \leq \gamma<1$, the class $H_{\Sigma}^{h, p}(0)$ reduces to the class $\mathcal{H}_{\Sigma}(\gamma)$ which is defined by Srivastava et al. [10, Definition 2].

Now, we derive the estimates of the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for class $H_{\Sigma}^{h, p}(\beta)$.
Theorem 2.3. If $f \in H_{\Sigma}^{h, p}(\beta)$ where $\beta \geq 0$, then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8(1+\beta)^{2}}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12(1+2 \beta)}}\right\} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8(1+\beta)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12(1+2 \beta)}, \frac{\left|h^{\prime \prime}(0)\right|}{6(1+2 \beta)}\right\} \tag{2.4}
\end{equation*}
$$

Proof. Since $f \in H_{\Sigma}^{h, p}(\beta)$ and $g=f^{-1}$, from relations (2.1) and (2.2) we have,

$$
\begin{equation*}
f^{\prime}(z)+\beta z f^{\prime \prime}(z)=h(z)(z \in \mathbb{U}) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
g^{\prime}(w)+\beta w g^{\prime \prime}(w)=p(w)(w \in \mathbb{U}) \tag{2.6}
\end{equation*}
$$

respectively, where functions h and p satisfy the conditions of Definition 2.1. Also, functions h and p have the following Taylor-Maclaurin series expansions:

$$
\begin{equation*}
h(z)=1+h_{1} z+h_{2} z^{2}+h_{3} z^{3}+\cdots \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
p(w)=1+p_{1} w+p_{2} w^{2}+p_{3} w^{2}+\cdots \tag{2.8}
\end{equation*}
$$

Now, by substituting (2.7) and (2.8) into (2.5) and (2.6), respectively, and equating the coefficients, we get

$$
\begin{array}{r}
2(1+\beta) a_{2}=h_{1} \\
3(1+2 \beta) a_{3}=h_{2} \\
-2(1+\beta) a_{2}=p_{1} \tag{2.11}
\end{array}
$$

and

$$
\begin{equation*}
6(1+2 \beta) a_{2}^{2}-3(1+2 \beta) a_{3}=p_{2} \tag{2.12}
\end{equation*}
$$

From (2.9) and (2.11), it yields

$$
\begin{equation*}
h_{1}=-p_{1} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
8(1+\beta)^{2} a_{2}^{2}=h_{1}^{2}+p_{1}^{2} \tag{2.14}
\end{equation*}
$$

Adding (2.10) and (2.12), gives

$$
\begin{equation*}
6(1+2 \beta) a_{2}^{2}=p_{2}+h_{2} \tag{2.15}
\end{equation*}
$$

Consequently, from (2.14) and (2.15), we have that

$$
\begin{equation*}
a_{2}^{2}=\frac{h_{1}^{2}+p_{1}^{2}}{8(1+\beta)^{2}} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}^{2}=\frac{p_{2}+h_{2}}{6(1+2 \beta)} \tag{2.17}
\end{equation*}
$$

respectively. Therefore, we find from the equations (2.16) and (2.17), that

$$
\left|a_{2}\right|^{2} \leq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8(1+\beta)^{2}}
$$

and

$$
\left|a_{2}\right| \leq \frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12(1+2 \beta)}
$$

Thus, the desired estimate on the coefficient $\left|a_{2}\right|$ as asserted in (2.3).
Next, in order to find the bound of the coefficient $\left|a_{3}\right|$, by subtracting (2.12) from (2.10), we get

$$
\begin{equation*}
6(1+2 \beta) a_{3}-6(1+2 \beta) a_{2}^{2}=h_{2}-p_{2} \tag{2.18}
\end{equation*}
$$

Upon substituting the value of a_{2}^{2} from (2.16) into (2.18), it follows that

$$
a_{3}=\frac{h_{1}^{2}+p_{1}^{2}}{8(1+\beta)^{2}}+\frac{h_{2}-p_{2}}{6(1+2 \beta)}
$$

Therefore, we obtain

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{8(1+\beta)^{2}}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{12(1+2 \beta)} \tag{2.19}
\end{equation*}
$$

On the other hand, by substituting the value of a_{2}^{2} from (2.17) into (2.18), it follows that

$$
a_{3}=\frac{\left.p_{2}+h_{2}\right)}{6(1+2 \beta)}+\frac{\left.h_{2}-p_{2}\right)}{6(1+2 \beta)}=\frac{h_{2}}{3(1+2 \beta)}
$$

Hence

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|h^{\prime \prime}(0)\right|}{6(1+2 \beta)} . \tag{2.20}
\end{equation*}
$$

The desired estimate of the coefficient $\left|a_{3}\right|$ as asserted in (2.4) will be obtained from (2.19) and (2.20).

By choosing

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1, z \in \mathbb{U})
$$

in Theorem 2.3, we have the following result.
Corollary 2.4. Let the function f be given by (1.1) in the class $H_{\Sigma}^{h, p}(\beta)$ where $\beta \geq 0$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{\alpha}{1+\beta}, \frac{\sqrt{2} \alpha}{\sqrt{3(1+2 \beta)}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha^{2}}{3(1+2 \beta)}
$$

Remark 2.5. Corollary 2.4 is an improvement of estimates obtained by Frasin [6] in Theorem 1.2. To see this, for the coefficient $\left|a_{2}\right|$, we have that
(i) If $\beta \geq \frac{1}{2}+\frac{\sqrt{3}}{2}$, then $\min \left\{\frac{\alpha}{1+\beta}, \frac{\sqrt{2} \alpha}{\sqrt{3(1+2 \beta)}}\right\}=\frac{\alpha}{1+\beta}$, and

$$
\frac{\alpha}{1+\beta} \leq \frac{2 \alpha}{\sqrt{2(\alpha+2)+4 \beta(\alpha+\beta+2-\alpha \beta)}}
$$

(ii) If $\beta \leq \frac{1}{2}+\frac{\sqrt{3}}{2}$, then $\min \left\{\frac{\alpha}{1+\beta}, \frac{\sqrt{2} \alpha}{\sqrt{3(1+2 \beta)}}\right\}=\frac{\sqrt{2} \alpha}{\sqrt{3(1+2 \beta)}}$, and

$$
\frac{\sqrt{2} \alpha}{\sqrt{3(1+2 \beta)}} \leq \frac{2 \alpha}{\sqrt{2(\alpha+2)+4 \beta(\alpha+\beta+2-\alpha \beta)}}
$$

Also for the coefficient $\left|a_{3}\right|$, it can be concluded that

$$
\frac{2 \alpha^{2}}{3(1+2 \beta)} \leq \frac{\alpha^{2}}{(1+\beta)^{2}}+\frac{2 \alpha}{3(1+2 \beta)}
$$

Therefore the bounds obtained in Corollary 2.4 is a refinement of the estimates obtained in Theorem 1.2.

If we take $\beta=1$ in Theorem 2.3, then we have the following result.
Corollary 2.6. Let the function f be given by (1.1) in the class $H_{\Sigma}^{h, p}(1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{32}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{36}}\right\} \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{32}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{36}, \frac{\left|h^{\prime \prime}(0)\right|}{18}\right\} \tag{2.22}
\end{equation*}
$$

By taking

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1, z \in \mathbb{U})
$$

in Corollary 2.6, the following result will be concluded.
Corollary 2.7. Let the function f be given by (1.1) in the class $H_{\Sigma}^{h, p}(1)$. Then

$$
\left|a_{2}\right| \leq \min \left\{\frac{\alpha}{2}, \frac{\sqrt{2} \alpha}{3}\right\}=\frac{\sqrt{2} \alpha}{3}
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha^{2}}{9}
$$

By setting $\beta=0$ in Corollary 2.4, we obtain the following consequence which is an improvement of the estimates obtained by Srivastava et al. in [10, Theorem 1].

Corollary 2.8. Let the function f be given by (1.1) in the class $H_{\Sigma}(\alpha)$. Then

$$
\left|a_{2}\right| \leq \sqrt{\frac{2}{3}} \alpha
$$

and

$$
\left|a_{3}\right| \leq \frac{2 \alpha^{2}}{3}
$$

By letting

$$
h(z)=p(z)=\frac{1+(1-2 \gamma) z}{1-z}(0 \leq \gamma<1, z \in \mathbb{U})
$$

in Theorem 2.3, we deduce the following corollary.

Corollary 2.9. Let the function f be given by (1.1) in the class $H_{\Sigma}^{h, p}(\beta)$ where $\beta \geq 0$. Then,

$$
\left|a_{2}\right| \leq \min \left\{\frac{1-\gamma}{1+\beta}, \sqrt{\frac{2(1-\gamma)}{3(1+2 \beta)}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\gamma)}{3(1+2 \beta)}
$$

Remark 2.10. Corollary 2.9 is an improvement of the estimates obtained by Frasin [6] in Theorem 1.4. To see this,
for the coefficient $\left|a_{2}\right|$, if $\beta>\frac{3 \delta-2+\sqrt{3 \delta(3 \delta-2)}}{2}$ and $\delta>\frac{2}{3}$, then

$$
\min \left\{\frac{1-\gamma}{1+\beta}, \sqrt{\frac{2(1-\gamma)}{3(1+2 \beta)}}\right\}<\sqrt{\frac{2(1-\gamma)}{3(1+2 \beta)}}
$$

Also for the coefficient $\left|a_{3}\right|$, we have

$$
\frac{2(1-\gamma)}{3(1+2 \beta)}<\frac{(1-\gamma)^{2}}{(1+\beta)^{2}}+\frac{2(1-\gamma)}{3(1+2 \beta)}
$$

Therefore the bounds obtained in Corollary 2.9 is a refinement of the estimates obtained in Theorem 1.4.

If we take $\beta=1$ and

$$
h(z)=p(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1, z \in \mathbb{U})
$$

in Theorem 2.3, we have the following result.
Corollary 2.11. Let the function f be given by (1.1) in the class $H_{\Sigma}^{h, p}(1)$. Then,

$$
\left|a_{2}\right| \leq \min \left\{\frac{1-\gamma}{2}, \frac{\sqrt{2(1-\gamma)}}{3}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\gamma)}{9}
$$

By setting $\beta=0$ in Corollary 2.9, we obtain the following result which is an improvement of the estimates obtained by Srivastava et al. [10, Theorem 2].
Corollary 2.12. Let the function f be given by (1.1) in the class $H_{\Sigma}(\gamma)$. Then

$$
\left|a_{2}\right| \leq \min \left\{1-\gamma, \sqrt{\frac{2(1-\gamma)}{3}}\right\}
$$

and

$$
\left|a_{3}\right| \leq \frac{2(1-\gamma)}{3}
$$

Acknowledgments

The authors wish to thank the referee, for the careful reading of the paper and for the helpful suggestions and comments.

References

[1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Subramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), no. 3, 344-351.
[2] D. A. Brannan and J. G. Clunie (Eds.), Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Institute held at the University of Durham, Academic Press, New York-London, 1980.
[3] P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, 1983.
[4] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Panamer. Math. J. 22 (2012), no. 4, 15-26.
[5] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), no. 9, 1569-1573.
[6] B. A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat. 43 (2014), no. 3, 383-389.
[7] C. Y. Gao and S. Q. Zhou, Certain subclass of starlike functions, Appl. Math. Comput. 187 (2007), no. 1, 176-182.
[8] A. W. Kedzierawski, Some remarks on bi-univalent functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A. 39 (1985) 77-81.
[9] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967) 63-68.
[10] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188-1192.
[11] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal. 32 (1969) 100-112.
[12] D. L. Tan, Coefficient estimates for bi-univalent functions, Chinese Ann. Math. Ser. A. 5 (1984), no. 5, 559-568.
[13] Q. H. Xu, Y. C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), no. 6, 990-994.
[14] Q. H. Xu, H. G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218 (2012), no. 23, 11461-11465.
[15] D. G. Yang and J. L. Liu, A class of analytic functions with missing coefficients, Abstr. Appl. Anal. 2011, Article ID 456729, 16 pages.
(Ahmad Zireh) Department of Mathematics, Shahrood University Of Technology, P.O. Box 316-36155, Shahrood, Iran.

E-mail address: azireh@shahroodut.ac.ir; azireh@gmail.com
(Ebrahim Analouei Audegani) Department of Mathematics, Mobarakeh Branch, Islamic Azad University, Mobarakeh, P.O. Box 84819-97817, Isfahan, Iran.

E-mail address: e-analoei@ymail.com

