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1. Introduction

Mathematical finance is a field of applied mathematics, concerned with fi-
nancial markets. Generally, mathematical finance derive and extend the math-
ematical or numerical models suggested by financial economics.
In the recent years stock option was one of the most popular financial deriva-
tive. Indeed, an option is a financial contract which gives its owner the right to
buy or sell a specified amount of a particular asset at a fixed price, called the
exercise price, on or before a specified date, called the maturity date. Black
and Scholes have shown in [2] that option prices satisfy a second-order partial
differential equation (PDE) with respect to the time t and asset price x. This
equation is known as the Black-Scholes equation and is given by

(1.1) ut +
1

2
A2x2uxx +Bxux −Bu = 0,

where A, B are arbitrary constants.

Gazizov and Ibragimov in [14] have shown that the one-dimensional Black-
Scholes equation is included in Sophous Lie’s classification of linear second-
order PDEs with two independent variables. Then, they obtained the invariant
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solutions of the Black-Scholes equation. Pooe et al. in [30] utilized two sets of
transformations, introduced in [14], which reduce the Black-Scholes equation
to the one-dimensional heat equation. Then they exploited an optimal system
of one-dimensional subalgebras for the heat equation to obtain two classes
of optimal systems of one-dimensional subalgebras for Eq. (1.1). Complete
Lie symmetry group of the one dimensional Black-Scholes equation is derived
in [24] and infinite dimensional Lie algebras of Eq. (1.1) and related invariant
solution are obtained. However, invariant solutions of Eq. (1.1) presented in
[17, 24] are different from our obtained solutions, by nonclassical symmetries,
in Section 3. More recently, classical symmetries of the Black-Scholes equation
with time dependent coefficient is considered by O’Hara et al. in [17] and Group
classification of a generalized Black-Scholes-Merton equation is considered in
[5].

The nonclassical symmetry method due to Bluman and Cole [4] is one of
the most well known generalizations of Lie’s classical method for finding group-
invariant solutions of a PDE which these solutions are not deducible from Lie
group analysis. It consists in adding the invariant surface condition to the given
equation, and then apply the Lie group analysis. The main difficulty of this
approach is that the determining equations are no longer linear. M.C. Nucci
in [26], has found that iterations of the nonclassical symmetries method give
rise to new nonlinear equations, which inherit the Lie point symmetry algebra
of the given equation.

Concept of conservation laws, which are mathematical formulations of the
fundamental physical principles, such as conservation of momentum, mass,
charge, energy and so on, arises in a wide variety of applications and contexts.
Conservation laws are widely applied in analysis of PDEs, particularly, inves-
tigation of existence, uniqueness and stability of solutions of nonlinear PDEs.
Moreover, conservation laws play a vital role in studying the integrability of
nonlinear PDEs. The existence of infinite conservation laws is an important in-
dicator of integrability of the system. Edelstein and Govinder in [7] have found
the conservation laws of Black-Scholes equation by the method of Kara and
Mahomed [23], which utilizes the point symmetries. Also, we found that our
obtained conservation laws are different from the reported results in [7]. How-
ever, as mentioned by Edlestein, et al. comparison of Ibragimov method with
method of Kara and Mahomed is not possible. They obtained only six con-
served vectors for Eq. (1.1), whereas in this paper we present infinite number of
conservation laws. In [20] a general theorem on conservation laws for arbitrary
differential equations which do not require the existence of Lagrangians has
been proved. This new theorem is based on the concept of adjoint equations
for both linear and non-linear equations. There are many equations with phys-
ical significance which are not self-adjoint and several generalizations of this
concept have been introduced. In [21] Ibragimov has introduced the definition
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of quasi self-adjoint equations. Then, after introducing the concept of weakly
self-adjoint equations by Gandarias in [12], this concept is utilized to construct
the conservation laws of the Hamilton-Jacobi-Bellman equations which arises
from financial mathematics [13]. Finally, Ibragimov in [22] introduced the con-
cept of nonlinear self-adjointness where substitution v = h(u) can be replaced
with a more general substitution v = h(x, t, u, ut, ux, . . .). Some recent papers
in this field are [6, 8–11,18,31].

In this paper we look for nonclassical symmetries of Eq. (1.1) with the pur-
pose of deriving nonclassical symmetry solutions and then finding the conser-
vation laws [20] using the concept of nonlinear self-adjointness of Black-Scholes
equation and classical symmetries.

2. Heir-equations and nonclassical symmetries

Let us consider an evolution equation in two independent variables and one
dependent variable of second order:

(2.1) ut = H(t, x, u, ux, uxx).

If

(2.2) Γ = V1(t, x, u)∂t + V2(t, x, u)∂x − F (t, x, u)∂u,

is a generator of a Lie point symmetry1 of equation (2.1) then the invariant
surface condition (more details about invariant surface condition can be found
in [3]) is given by:

(2.3) V1(t, x, u)ut + V2(t, x, u)ux = F (t, x, u).

Let us take the case with V1 = 0 and V2 = 1, so that (2.3) becomes2:

(2.4) ux = G(t, x, u)

Then, an equation for G, namely, G-equation is easily obtained [28]. Its invari-
ant surface condition is given by:

(2.5) ξ1(t, x, u,G)Gt + ξ2(t, x, u,G)Gx + ξ3(t, x, u,G)Gu = η(t, x, u,G).

Let us consider the case ξ1 = 0, ξ2 = 1, and ξ3 = G, so that (2.5) becomes:

(2.6) Gx +GGu = η(t, x, u,G).

Then, an equation for η is derived. We call this equation η-equation. Clearly

(2.7) Gx +GGu ≡ uxx ≡ η.

We could keep iterating to obtain the Ω-equation, which corresponds to:

(2.8) ηx +Gηu + ηηG ≡ uxxx ≡ Ω(t, x, u,G, η)

1The minus sign in front of F (t, x, u) was put there for the sake of simplicity: it could be
replaced with a plus sign without affecting the following results.

2We have replaced F (t, x, u) withG(t, x, u) in order to avoid any ambiguity in the following

discussion.
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and so on. Each of these equations inherits the symmetry algebra of the original
equation, with the right prolongation: first prolongation for the G-equation,
second prolongation for the η-equation, and so on. Therefore, these equations
were named Heir-equations in [26]. This implies that even in the case of few
Lie point symmetries many more Lie symmetry reductions can be performed
by using the invariant symmetry solution of any of the possible Heir-equations,
as it was shown in [1, 19, 25, 26]. However, we recall that the Heir-equations
are just some of the many possible n-extended equations as defined by Guthrie
in [16].

In [26] it was shown that this iterating method yields both partial symmetries
as given by Vorob’ev in [32], and differential constraints as given by Olver [29].

In [15] Goard has shown that Nucci’s method of constructing Heir equations
by iterating the nonclassical symmetries method is equivalent to the generalized
conditional symmetries method.

The difficulty in applying the method of nonclassical symmetries consists in
solving nonlinear determining equations in contrast with the linearity of the
determining equations in the case of classical symmetries. In [27] it was shown
that one can find the nonclassical symmetries of any evolution equations of
any order by using a suitable heir-equation and searching for a given particular
solution among all its solutions, thus avoiding any complicated calculations.
We recall the method as applicable to equation (2.1).

We derive ut from (2.1) and replace it into (2.3), with the condition V1 = 1,
i.e.:

(2.9) H(t, x, u, ux, uxx) + V2(t, x, u)ux = F (t, x, u).

Then, we generate the η-equation with η = η(x, t, u,G), and replace ux = G,
uxx = η into (2.9), i.e.:

(2.10) H(t, x, u,G, η) = F (t, x, u)− V2(t, x, u)G.

For Dini’s theorem, we can isolate η in (2.10), e.g.:

(2.11) η = [h1(t, x, u,G) + F (t, x, u)− V2(t, x, u)G]h2(t, x, u,G)

where hi(t, x, u,G)(i = 1, 2) are known functions. Thus, we have obtained a
particular solution of η which must yield an identity if replaced into the η-
equation. The only unknowns are V2 = V2(t, x, u) and F = F (t, x, u). If any
such solution is singular, i.e. does not form a group, then we have found the
nonclassical symmetries, otherwise one obtains the classical symmetries [27].

3. Nonclassical symmetries of Eq. (1.1)

We use a simple MAPLE program to derive the Heir-equations. In particular
the G−equation of (1.1) is:

Gt +BuGu +A2x (Gx +GGu) +
1

2
A2x2Gxx = 0,



907 Hashemi

and the η−equation is

A2x2 (GηηuG +Gηxu + ηηxG) +ηt +Bη +A2η +
A2x2

2

(
G2ηuu + ηxx + η2ηGG

)
+Bxηx +Buηu +A2x (ηηG + 2Gηu + 2ηx) = 0.(3.1)

The particular solution of the η-equation that we are looking for is

(3.2) η(t, x, u,G) =
2 (V2G−BxG+Bu− F )

A2x2
,

that replaced into (3.1) yields an overdetermined system in the unknowns F ,
V2. Since we obtain a polynomial of third degree in G then we let MAPLE
evaluate the four coefficients that we call di, i = 0, 1, 2, 3 where i stands for
the corresponding power of G. We impose all of them to be zero. From d3 = 0,
we obtain

V2(t, x, u) = Θ1(t, x)u+Θ2(t, x),

while d2 yields

F (t, x, u) =
1

A2x2

(
2Θ2

1u
3

3
+ 2Θ1Θ2u

2 − 2BΘ1u
2

)
+

∂Θ1

∂x
u2

+Θ3(t, x)u+Θ4(t, x)

with Θj(t, x), j = 1, . . . , 4 arbitrary functions of t and x. Since d1 is a
polynomial of order 3 with respect to u, we set ej , j = 0, . . . , 3 as the coefficients
of uj , j = 0, . . . , 3. From e3 = 0 we get

(3.3) Θ1(t, x) = 0,

which implies also e1 = e2 = 0. Finally we have

e0 = −3A2x3

[
− xΘ2

(
B + 4

∂Θ2

∂x

)
+ 2Bx2 ∂Θ2

∂x
+A3x3

(
2
∂Θ3

∂x
− ∂2Θ2

∂x2

)
−2x

∂Θ2

∂t
+ 4Θ2

2

]
.

We consider the following special cases:

Case 1.: Θ2(t, x) = Θ̃2(t).

Case 2.: Θ2(t, x) = Θ̃2(x).

Case 1.
In this case by setting e0 equal zero, one can obtain:

Θ̃2(t) = c1e
−Bt, Θ3(t, x) =

c21e
−2Bt

A2x2
+ Θ̃3(t).

One time differentiation of d0 and setting it equal to zero yields

Θ̃3(t) = c2, c1 = 0.
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By using these values we can write d0 as follows:

(3.4) d0 = −A2x3

[
A2x2 ∂

2Θ4

∂x2
+ 2

∂Θ4

∂t
+ 2Bx

∂Θ4

∂x
− 2BΘ4

]
.

From d0 = 0 some subcases are considerable.

Subcase 1.1. Θ4(t, x) = Θ̃4(x)
In this subcase by using d0 = 0 we get

Θ̃4(x) = c3x+ c4x
−2B

A2 ,

where c3, c4 are arbitrary constants. In this step all of the unknowns are
determined and we have

V2(t, x, u) = 0, F (t, x, u) = c2u+ c3x+ c4x
−2B

A2 ,

and Eq. (3.2) becomes

η =
2
(
−BxG+Bu− c2u− c3x− c4x

−2B

A2

)
A2x2

,

namely

(3.5) uxx =
2
(
−Bxux +Bu− c2u− c3x− c4x

−2B

A2

)
A2x2

.

Eq. (3.5) is a linear ordinary differential equation with respect to x and its
solution is given by:

u(t, x) = Ψ1(t)x
A2−2B+λ

2A2 +Ψ2(t)x
A2−2B−λ

2A2 − c3x
2 + c4x

A2−2B

A2

c2x
,(3.6)

where λ =
√
A4 + 4B2 + 4BA2 − 8c2A2. Substituting (3.6) into (1.1) yields

the following nonclassical symmetry solution

u(t, x) = c5e
c2tx

A2−2B+λ

2A2 + c6e
c2tx

A2−2B−λ

2A2 − c3x
2 + c4x

A2−2B

A2

c2x
,(3.7)

with ck, k = 2, . . . , 6 arbitrary constants.

Subcase 1.2. Θ4(t, x) = Θ̃4(t)
From d0 = 0 we get

Θ̃4(t) = c3e
Bt.

Therefore

V2(t, x, u) = 0, F (t, x, u) = c2u+ c3e
Bt,

and form (3.2), η-equation is as follows:

η =
2
(
Bu−BxG− c2u− c3e

Bt
)

A2x2
,
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which is equivalent to

uxx =
2
(
Bu−Bxux − c2u− c3e

Bt
)

A2x2
.

Obtained equation is an ODE with respect to x and its solution is given by

(3.8) u(t, x) = Ψ1(t)x
B+1−λ

2 +Ψ2(t)x
B+λ

2 +
c3e

Bt

B − c2
,

where λ =
√
(B − 1)2 + 4c2. Substituting (3.8) into (1.1) yields another non-

classical symmetry solution of (1.1) with
(3.9)

Ψ1(t) = c4e
−

t((2+A2)(B2−Bλ−B)+2A2c2)
4 , Ψ2(t) = c5e

−
t((2+A2)(B2+Bλ−B)+2A2c2)

4 ,

where ck, k = 2, . . . , 5 are arbitrary constants and λ is defined as before.

Case 2.
In this case e0 = 0 becomes as follows:
(3.10)

e0 = 3A2x3

[
−2A2x3 ∂Θ3

∂x
+A2x3 d

2Θ̃2

dx2
+(4xΘ̃2−2Bx2)

dΘ̃2

dx
−4Θ̃2

2+2BxΘ̃2

]
= 0.

To solve this equation, we consider the following subcases.

Subcase 2.1. Θ3(t, x) =
1
2
dΘ̃2(x)

dx

Eq. (3.10) yields Θ̃2(x) = c1x and therefore (3.4) becomes

d0 = x

[
A2x2 ∂

2Θ4

∂x2
+ 2Bx

∂Θ4

∂x
+ 2

∂Θ4

∂t
− 2BΘ4

]
.(3.11)

By setting Θ4(t, x) = Θ̃4(x) in (3.11), and solving d0 = 0 we get

Θ̃4(x) = A1x+A2x
− 2B

A2 .

Therefore

V2(t, x, u) = c1x, F (t, x, u) =
1

2
c1u+A1x+A2x

− 2B
A2 ,

and η-equation becomes

η =
2(c1 −B)xG+ 2Bu− c1u− 2A1x− 2A2x

− 2B
A2

A2x2
,

in other words:

uxx =
2(c1 −B)xux + 2Bu− c1u− 2A1x− 2A2x

− 2B
A2

A2x2
,(3.12)
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Eq. (3.5) is obtainable from Eq. (3.12) by setting c1 = B
2 = 2c2. Thus we scape

from the calculation of solutions for this case.
However, setting Θ4(t, x) = Θ̃4(t) in (3.11), and solving d0 = 0 yields

Θ̃4(t) = A1e
Bt.

Therefore

V2(t, x, u) = c1x, F (t, x, u) =
1

2
c1u+A1e

Bt.

Thus η-equation becomes

η =
2(c1 −B)xG+ 2Bu− c1u− 2A1e

Bt

A2x2
,

in other words:

uxx =
2(c1 −B)xux + (2B − c1)u− 2A1e

Bt

A2x2
.(3.13)

Solving the obtained ODE yields:

u(t, x) = Ψ1(t)x
2c1−2B+A2−λ

2A2 +Ψ2(t)x
2c1−2B+A2+λ

2A2 +
2A1e

Bt

2B − c1
,(3.14)

where λ =
√
4(c1 −B)2 + 4A2B +A4. Another nonclassical symmetry solu-

tion of (1.1) is obtainable as following, by substituting (3.14) into (1.1)

Ψ1(t) = A2e
c1t

(
2B−2c1+λ

2A2

)
,

Ψ2(t) = A3e
c1t

(
2B−2c1+λ

2A2

)
+ e

c1t
(

2B−2c1+λ

2A2

)
×

4A1B(2B − 2c1 + λ)x
2B−2c1−λ−A2

2A2 e
t

(
2BA2−2Bc1+2c21+c1λ

2A2

)
c1(4B +A2)(2B − c1)

,

where Ak, k = 1, 2, 3 and c1 are arbitrary constants and λ is defined as before.

Subcase 2.2. Θ3(t, x) = Θ̃3(x)
From Eq. (3.10) we have

Θ̃3(x) =
Θ̃2(x)

2 −BΘ̃2(x)

A2x2
+

1

2

dΘ̃2(x)

dx
+A1.

By this value of Θ̃3(x), equation d0 = 0 becomes a polynomial of order one
with respect to u. A special solution of coefficient of u in d0 = 0 is

Θ̃2(x) =
x
(
A2 +

√
A4 + 8A2B + 8B2 − 16A2A1

)
4

.

Thus d0 = 0 becomes an equation without u, which by setting Θ4(t, x) = Θ̃4(t)
we get

Θ̃4(t) = k1e
Bt.
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Therefore

V2(t, x, u) =
(A2 + λ)x

4
,

F (t, x, u) =
(A2B +A4 + 2B2)u− λ(Bu−A2u2) + 4k1A

2eBt

4A2
,

where λ =
√
A4 + 8A2B + 8B2 − 16A1A2 and η-equation becomes

(3.15)

η =
A4xG+ λ(A2xG+Bu−A2u)− 4A2BxG

2A4x2
+
3A2Bu−A4u− 2B2u− 4k1A

2eBt

2A4x2
,

or equivalently

uxx =
A4xux + λ(A2xux +Bu−A2u)− 4A2Bxux

2A4x2

+
3A2Bu−A4u− 2B2u− 4k1A

2eBt

2A4x2
.(3.16)

Another nonclassical symmetry solution of Eq. (1.1) can be found by solving
Eq. (3.16) which is as follows:

(3.17) u(t, x) = Ψ1(t)x
A2−2B+λ

2A2 +Ψ2(t)x
A2−B

A2 − 4k1A
2eBt

(A2 −B)(A2 − 2B + λ)
,

where

Ψ1(t) = e
t

(
4A1A2−A2B−B2

2A2

)
, Ψ2(t) = e

tB
(

A2+B

2A2

)
,

and λ =
√
A4 + 8A2B + 8B2 − 16A1A2.

Also, if in d0 = 0 we set Θ4(t, x) = Θ̃4(x), then

Θ̃4(x) = k1x+ k2x
− 2B

A2 ,

and therefore

V2(t, x, u) =
x
(
A2 + λ

)
4

,

F (t, x, u) =
A2Bx2u− λ(Bx2 −A2X2)u+A4x2u

4A2x2

+
4k1A

2x3 + 2B2x2u+ 4k2A
2x

2
(

A2−B

A2

)
4A2x2

,(3.18)

where λ =
√
A4 + 8A2B + 8B2 − 16A1A2. Hence, η-equation is as follows:

η =
A4x3G+ λ(A2x3G+Bux2 −A2ux2)− 4A2Bx3G

2A4x4

+
3A2Bux2 −A4ux2 − 2B2ux2 − 4k1A

2x3 − 4k2A
2x

2
(

A2−B

A2

)
2A4x2

,
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in other words

uxx =
A4x3ux + λ(A2x3ux +Bux2 −A2ux2)− 4A2Bx3ux

2A4x4

+
3A2Bux2 −A4ux2 − 2B2ux2 − 4k1A

2x3 − 4k2A
2x

2A2−2B

A2

2A4x2
,

which its solution is given by

u(t, x) = Ψ1(t)x
A2−2B+λ

2A2 +Ψ2(t)x
A2−B

A2

+
2A2(A2 +B)(k1x

A2+2B

A2 µ− λB(k1x
A2+2B

A2 + k2))

x
2B
A2 (4A1A2 −A2B −B2)(λ−A2)(A2B +B2)

+
k2B(5A2B + 4B2 +A4 − 8A1A

2)

x
2B
A2 (4A1A2 −A2B −B2)(λ−A2)(A2B +B2)

where µ = 8A2A1 − 3A2B − 4B2 and similar to previous

Ψ1(t) = k3e
t

(
4A1A2−A2B−B2

2A2

)
, Ψ2(t) = k4e

tB
(

A2+B

2A2

)
.

Comparison of presented solutions of Eq. (1.1) in literature with nonclassical
solutions shows that reported solutions in this section are new.

4. Nonlinear self-adjointness and construction of conservation laws

In this section, after some preliminaries, we obtain conservation laws for the
Eq. (1.1) using the new conservation theorem introduced in [20].

4.1. Preliminary. Consider a kth-order PDE of n independent variables x =
(x1, x2, . . . , xn) and dependent variable u, viz.,

(4.1) F (x, u, u, u(1), . . . , u(k)) = 0,

where u(1) = {ui}, u(2) = {uij}, . . . and ui = Di(u), uij = DjDi(u), where

Di =
∂

∂xi
+ ui

∂

∂u
+ uij

∂

∂uj
+ · · · , i = 1, 2, . . . , n,

are the total derivative operators with respect to xis.
The Euler-Lagrange operator, by formal sum, is given by

(4.2)
δ

δu
=

∂

∂u
+
∑
s≥1

(−1)sDi1 · · · Dis

∂

∂ui1···is
.

Also, if A be the set of all differential functions of all finite orders, and ξi, η ∈ A,
then Lie-Bäcklund operator is

(4.3) X = ξi
∂

∂xi
+ η

∂

∂u
+ ζi

∂

∂ui
+ ζi1i2

∂

∂ui1i2

+ · · · ,
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where

ζi = Di

(
η
)
− ujDi

(
ξj
)
,(4.4)

ζi1...is = Dis

(
ζi1...is−1

)
− uji1...is−1Dis

(
ξj
)
, s > 1.(4.5)

One can write the Lie-Bäcklund operator (4.3) in characteristic form

X = ξiDi +W
∂

∂u
+
∑
s≥1

Di1 . . .Dis(W )
∂

∂ui1i2...is

,

where

(4.6) W = η − ξjuj ,

is the characteristic function.
Euler-Lagrange operators with respect to derivatives of u are obtained by re-
placing u and the corresponding derivatives in (4.2), e.g.

(4.7)
δ

δui
=

∂

∂ui
+
∑
s≥1

(−1)sDj1 · · · Djs

∂

∂uij1···js
.

There is a connection between the Euler-Lagrange, Lie-Bäcklund and the as-
sociated operators by the following identity:

X +Di(ξ
i) = W

δ

δu
+DiN i,

where

N i = ξi +W
δ

δui
+
∑
s≥1

Di1 · · · Dis(W )
δ

δuii1···is
, i = 1, . . . , n,

are the Noether operators associated with a Lie-Bäcklund symmetry operator.
The n-tuple vector T = (T 1, T 2, . . . , Tn), T i ∈ A, i = 1, . . . , n, is a conserved
vector of Eq. (4.1) if

(4.8) Di(T
i) = 0,

on the solution space of (4.1). The expression (4.8) is a local conservation law
of Eq. (4.1) and T i ∈ A are called the fluxes of the conservation law.

Definition 4.1. A local conservation law (4.8) of the PDE (4.1) is trivial if
its fluxes are of the form T i = M i + Hi, where M i and Hi are functions of
x, u and derivatives of u such that M i vanishes on the solutions of the system
(4.1), and DiH

i = 0 is identically divergence-free.

In particular, a trivial conservation law contains no information about a
given PDE (4.1) and arises in two cases:
1. Each of its fluxes vanishes identically on the solutions of the given PDE.
2. The conservation law vanishes identically as a differential identity. In par-
ticular, this second type of trivial conservation law is simply an identity holding
for arbitrary fluxes. These T = (T 1, T 2, ..., Tn) are called null divergences.
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The adjoint equation to the kth-order differential Eq. (4.1) is defined by

(4.9) F ∗(x, u, v, u(1), v(1), . . . , u(k), v(k)) = 0,

where

F ∗(x, u, v, u(1), v(1), . . . , u(k), v(k)) =
δ(vβFβ)

δu
, v = v(x),

and v = (v1, v2, . . . , vm) are new dependent variables.
We recall here the following results as given in Ibragimov’s paper [20].

Definition 4.2. ( [20]) Eq. (4.1) is said to be self-adjoint if the substitution
of v = u into adjoint Eq. (4.9) yields the same Eq. (4.1).

Definition 4.3. ( [21]) Eq. (4.1) is said to be quasi self-adjoint if the equation
obtained from the adjoint Eq. (4.9) by the substitution v = h(u), with a certain
function h(u) such that h′(u) ̸= 0, is identical to the original equation.

Definition 4.4. ( [12]) Eq. (4.1) is said to be weakly self-adjoint if the equation
obtained from the adjoint Eq. (4.9) by the substitution v = h(t, x, u), with a
certain function h(t, x, u) such that ht(t, x, u) ̸= 0, (or hx(t, x, u) ̸= 0) and
hu(t, x, u) ̸= 0 is identical to the original equation.

Definition 4.5. ( [22]) Eq. (4.1) is said to be nonlinearly self-adjoint if
the equation obtained from the adjoint Eq. (4.9) by the substitution v =
h(x, u, u(1), . . .), with a certain function h(x, u, u(1), . . .) such that h(x, u, u(1), . . .)

̸= constant is identical to the original equation (4.1).

Main theorem which in this paper is used to construct the conservation laws
is given as follows:

Theorem 4.6. ( [20]) Every Lie point, Lie Bäcklund, and non local symmetry
admitted by the Eq. (4.1) gives rise to a conservation law for the system con-
sisting of the Eq. (4.1) and the adjoint Eq. (4.9) where the components T i of
the conserved vector T = (T 1, . . . , Tn) are determined by

(4.10) T i = ξiL+W
δL
δui

+
∑
s≥1

Di1 . . .Dis(W )
δL

δuii1i2...is

, i = 1, . . . n,

with Lagrangian given by

L = vF (x, u, . . . , u(k)).

4.2. Construction of conservation laws for Eq. (1.1). Adjoint equation
for Eq. (1.1) is as follows:

F ∗ =
δ(vF )

δu
=

δ
(
v
[
ut +

1
2A

2x2uxx +Bxux −Bu
])

δu
,
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which by some simplifications we get

(4.11) F ∗ = −2Bv − vt −Bxvx +A2v + 2A2xvx +
1

2
A2x2vxx = 0.

By setting t = x1 and x = x2, the conservation law will be written

Dt(T
t
i ) +Dx(T

x
i ) = 0, i = 1, . . . , 7.

Now, we discuss about self-adjointness of Eq. (1.1) by the following theorem.

Theorem 4.7. Eq .(1.1) is neither quasi self-adjoint nor weakly self-adjoint,
however Eq. (1.1) is nonlinearly self-adjoint for

(4.12) h(t, x, u) = ec1t
(
c2x

2B−3A2+χ

2A2 + c3x
2B−3A2−χ

2A2

)
,

where χ =
√
4B2 + 4BA2 +A4 + 8A2c1.

Proof. By few computations we can show that Eq. (1.1) is neither quasi self-
adjoint nor weakly self-adjoint. To demonstrate the nonlinear self-adjointness,
setting v = h(t, x, u) in Eq. (4.11) we get

−2Bh+A2h−Bx(hx + huux) + 2A2x (hx + huux)− ht − huut

+
1

2
A2x2(hxx + 2hxuux + huuu

2
x + huuxx) = 0,

which yields:

F ∗ − λ

(
ut +

1

2
A2x2uxx +Bxux −Bu

)
= −λut − λBxux + λBu− 2hB − ht

+A2h− huut +
1

2
A2x2(hxx + huuu

2
x + huuxx − λuxx + 2hxuux)−Bxhx

−Bxhuux + 2A2x(hx + huux) = 0.

Comparing the coefficients for the different derivatives of u we obtain some
conditions which one of them is λ+hu = 0. Thus by setting λ = −hu in (4.13)
we get

A2x2(huuxx + hxuux)−Bhuu− 2Bh− ht −Bxhx +A2h+ 2A2x(hx + huux)

+
1

2
A2x2(hxx + huuu

2
x) = 0.

As previous, comparing the coefficients for the different derivatives of u, we
have the following condition:

A2x2

2
hxx + (2A2 −B)xhx + (A2 − 2B)h− ht = 0,(4.13)

which solving this system completes the Proof. □

Here infinite dimensional Lie algebras of Eq. (1.1) presented in [24] are used
to construct the infinite number of conservation laws.
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Eq. (1.1) admits six-dimensional Lie algebras, thus we consider the following
three cases:

(i) We first consider the Lie point symmetry generator X1 = ∂
∂t . By using

(4.10), the components of the conserved vector are given by

T t
1 =

1

2
A2x2vuxx +Bxvux −Bvu,

T x
1 = −Bxvut +A2xvut +

1

2
A2x2(utvx − vutx).

By setting c1 = c3 = 0 and c2 = 1 in Theorem 2, we have

T t
1 |v= 1

x2
=

A2

2
uxx +

B

x
ux − B

x2
u = Dx

(
A2

2
ux +

B

x
u

)
,

T x
1 |v= 1

x2
= −A2

2
utx − B

x
ut = −Dt

(
A2

2
ux +

B

x
u

)
.

Then transferring the terms Dx(· · · ) from T t
1 to T x

1 , provides the null diver-
gence T1 = (T t

1 , T
x
1 ) = (0, 0).

(ii) Using Lie point symmetry generator X2 = x ∂
∂x and (4.10), the compo-

nents of the conserved vector are given by

T t
2 = −xvux,

T x
2 = xvut −Bxvu+

1

2
A2x2(vux + xuxvx).

Setting v = h(t, x, u) = 1
x2 into T t

2 , T x
2 and after reckoning, we have

T t
2 |v= 1

x2
= − u

x2
+Dx

(
−u

x

)
,

T x
2 |v= 1

x2
= −B

x
u− A2

2
ux −Dt

(
−u

x

)
.

Therefore T2 = (T t
2 , T

x
2 ) = (− u

x2 ,−B
x u− A2

2 ux).

(iii) Using Lie point symmetry generator X3 = u ∂
∂u and (4.10), one can

obtain the conserved vector whose components are

T t
3 = uv,

T x
3 =

1

2
A2x2(vux − uvx) +Bxvu−A2xuv.
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Setting v = 1
x2 concludes the previous conserved vectors, however c1 = c2 = 0

and c3 = 1 in (4.12) yields

T t
3 |

v=x(
2B
A2 −1) = x(

2B
A2 −1)u,

T x
3 |

v=x(
2B
A2 −1) =

A2

2

(
x(

2B
A2 +1)ux − x(

2B
A2 )u

)
.

(iv)Using Lie point symmetry generatorX4 = 2tx ∂
∂x

+
(
tu− 2Btu

A2 + 2u ln(x)

A2

)
∂
∂u

and (4.10), one can obtain the conserved vector whose components are

T t
4 =

(
A2tu− 2Btu+ 2u ln(x)− 2A2txux

)
v,

T x
4 = −1

2
x

(
− 4A2tvut + 2A2Btxvux − 2A2Btvu− 2A2vu− 2BA2xtuvx

+A4t(2uv + xuvx − 2x2uxvx − 3xuxv) + 4B2tuv

+ ln(x)(4A2uv − 4Buv + 2A2xuvx − 2A2xvux)

)
.

Substituting v = 1
x2 into the components above, we obtain

T t
4 |v= 1

x2
=

(
2 ln(x)−A2t− 2Bt

x2

)
u+Dx

(
−2A2tu

x

)
,

T x
4 |v= 1

x2
=

−2A2Btxux − 2A2Btu− 4B2tu+ 4Bu ln(x)−A4txux

2x

+
2A2x ln(x)ux − 2A2u

2x
−Dt

(
−2A2tu

x

)
.

Then transferring the terms Dx(· · · ) from T t
4 to T x

4 , provides

T t
4 |v= 1

x2
=

(
2 ln(x)−A2t− 2Bt

x2

)
u,

T x
4 |v= 1

x2
=

−2A2Btxux − 2A2Btu− 4B2tu+ 4Bu ln(x)−A4txux

2x

+
2A2x ln(x)ux − 2A2u

2x
.(4.14)

(v) Using Lie point symmetry generator

X5 = 8t
∂

∂t
+4x ln(x)

∂

∂x
+

(
A2tu+4Btu+

4B2tu

A2
+2u ln(x)− 4Bu ln(x)

A2

)
∂

∂u
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and (4.10), one can obtain the conserved vector whose components are

T t
5 = v

(
4A4tx2uxx + 8A2Btxux − 4A2Btu+A4tu+ 4B2tu

+ ln(x)(2A2u− 4Bu− 4A2xux)

)
,

T x
5 =−1

2
x

(
6A4Btuv +A6tx(uvx − vux) + 16A2Btvut + 4B2A2txuvx + 2A6tuv

+A4tx(8vutx − 8utvx − 4Bvux + 4Buvx)

+A4 ln(x)(2xuvx − 6xvux − 4x2uxvx + 4uv)

−4A2Bvu ln(x)− 4A2B2txvux + 4A2Bx ln(x)(vux − uvx)

−8A2 ln(x)vut − 16A4tutv

−8B3tuv + 4A2Bvu+ 4A4xvux + 8B2u ln(x)v − 2A4vu

)
,

which by setting v = 1
x2 we get

T t
5 |v= 1

x2
=

4A2Bt+ 4A2 − 2A2 ln(x) +A4t+ 4B2t− 4B ln(x)

x2
u

+Dx

(
4A4tux + (8A2Bt− 4A2 ln(x))

u

x

)
,

T x
5 |v= 1

x2
=

1

2x

(
12A2Bu+ 4A4xux +A6txux + 2A4Btu− 4A2B ln(x)u

−2A4x ln(x)ux + 8A2B2tu+ 4A4Btxux + 4A2B2txux − 4A2Bx ln(x)ux

+2A4u+ 8B3tu− 8B2 ln(x)u

)
−Dt

(
4A4tux + (8A2Bt− 4A2 ln(x))

u

x

)
.

Therefore

T t
5 |v= 1

x2
=

4A2Bt+ 4A2 − 2A2 ln(x) +A4t+ 4B2t− 4B ln(x)

x2
u,

T x
5 |v= 1

x2
=

1

2x

(
12A2Bu+ 4A4xux +A6txux + 2A4Btu− 4A2B ln(x)u

−2A4x ln(x)ux + 8A2B2tu+ 4A4Btxux + 4A2B2txux

−4A2Bx ln(x)ux + 2A4u+ 8B3tu− 8B2 ln(x)u

)
.

(vi) Using Lie point symmetry generator

X6 = 8t2
∂

∂t
+ 8tx ln(x)

∂

∂x
+

(
A2t2u− 4tu+ 4Bt2u+ 4tu ln(x)

+
4B2t2u

A2
− 8Btu ln(x)

A2
+

4u ln2(x)

A2

)
∂

∂u
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and (4.10), one can obtain the conserved vector whose components are

T t
6 = v

(
4A4t2x2uxx + 8A2Bt2xux − 4A2Bt2u+A4t2u− 4A2tu+ 4B2t2u

+ ln(x)(4A2tu− 8Btu− 8A2txux) + 4u ln(x)2
)
,

T x
6 =−1

2
x

(
16A2Btvu− 4A4txuvx + 12A4txuxv + 8A4tu ln(x)v − 16A2t ln(x)vut

+A4t2(6Buv − 8xutvx + 8xvutx − 16utv − 4Bxvux) + 16A2Bt2utv

−4A2B2xt2vux + ln(x)2(4A2xuvx + 8A2uv − 4A2xvux − 8Buv) +A6t2xuvx

+16B2tu ln(x)v + ln(x)(−8A2Btvu+ 4A4txuvx − 12A4txuxv)

−8A4tx2 ln(x)uxvx + 4A4Bxt2uvx + 4A2B2t2xuvx + ln(x)(8A2Bxtvux

−8A2Bxtuvx − 8A2uv) + 2A6t2uv + 12A4tuv − 8B3t2uv −A6t2xvux

)
.

Setting v = 1
x2 into the components of T t

6 and T x
6 we get

T t
6 |v= 1

x2
=

4A2Bt2 +A4t2 + 4A2t+ 4B2t2 − 4A2t ln(x)− 8Bt ln(x) + 4 ln2(x)

x2
u

+Dx

(
4A4t2ux + (8A2Bt2 − 8A2t ln(x))

u

x

)
,

T x
6 |v= 1

x2
=

1

2x

(
− 8A2Btx ln(x)ux +A6t2xux + 16A2Btu+ 4A4txux + 2A4Bt2u

−16B2t ln(x)u+ 4A2x ln2(x)ux + 8A2B2t2u+ 4A4Bt2xux + 4A2B2t2xux

−8A2Bt ln(x)u−4A4tx ln(x)ux+4A4tu−8A2 ln(x)u+8B3t2u+ 8B ln2(x)u

)
−Dt

(
4A4t2ux + (8A2Bt2 − 8A2t ln(x))

u

x

)
,

thus

T t
6 |v= 1

x2
=

4A2Bt2 +A4t2 + 4A2t+ 4B2t2 − 4A2t ln(x)− 8Bt ln(x) + 4 ln2(x)

x2
u,

T x
6 |v= 1

x2
=

1

2x

(
− 8A2Btx ln(x)ux +A6t2xux + 16A2Btu+ 4A4txux + 2A4Bt2u

−16B2t ln(x)u+ 4A2x ln2(x)ux + 8A2B2t2u+ 4A4Bt2xux + 4A2B2t2xux

−8A2Bt ln(x)u−4A4tx ln(x)ux+4A4tu−8A2 ln(x)u+8B3t2u+8B ln2(x)u

)
.

(vii) Using Lie point symmetry generator X7 = φ(t, x) ∂
∂u

where φ(t, x) satisfies
following equation:

2φt − 2Bφ+ 2Bxφx +A2x2φxx = 0
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and (4.10), one can obtain the conserved vector whose components are

T t
7 = vφ,

T x
7 =

1

2
x

(
(2Bv − 2A2v −A2xvx)φ+A2xvφx

)
.

Substituting v = 1
x2 into the components above, we obtain

T t
7 |v= 1

x2
=

φ

x2
,

T x
7 |v= 1

x2
=

2Bφ+A2xφx

2x
.

Since

(4.15) Dt

( φ

x2

)
+Dx

(
2Bφ+A2xφx

2x

)
= 0,

it follows that the vector T7 = (T t
7 , T

x
7 ) is a local conserved current for equation (1.1).

5. Final remarks

The application of the nonclassical symmetry method to equation (1.1) yields some
of it exact solutions by the application of the Heir-equations. We investigated the
nonlinear self-adjointness of (1.1) and we found the nontrivial conservation laws, using
the Ibragimov’s conservation theorem.As mentioned before, Edelstein and Govinder
in [7] have found the conservation laws of Eq. (1.1), by a method which is based upon
the point symmetries. Their applied method, directly calculate the conservation laws
using the symmetries whereas in this paper the adjoint equation of Eq. (1.1) was
firstly obtained and then its Lagrangian before determining the conservation laws
has been determined. Six conserved vectors for Eq. (1.1) have been reported in [7],
whereas in this paper we present infinite number of conservation laws which are
different. However, since two approaches are complementary, it is not possible to
compare them.
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