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ABSTRACT. Let (R, P) be a Noetherian unique factorization domain (UFD)
and M be a finitely generated R-module. Let I(M) be the first nonzero
Fitting ideal of M and the order of M, denoted ordgr (M), be the largest
integer n such that I(M) C P™. In this paper, we show that if M is a
module of order one, then either M is isomorphic with direct sum of a
free module and a cyclic module or M is isomorphic with a special mod-
ule represented in the text. We also assert some properties of M while
ordr(M) = 2.

Keywords: Fitting ideals, minimal free presentation, order of a module.
MSC(2010): Primary: 13C05; Secondary: 13D05, 11Y50.

1. Introduction

Throughout this paper R denotes a Noetherian commutative ring with iden-
tity and all modules are unital. Let M be a finitely generated R-module. For

a set {x1,...,2,} of generators of M there exists a complex

RS2 Rr i M 0, where R" and R® are free R-modules and the
set {e1,...,e.} is a basis for R" and the R-homomorphism ¢ is defined by
¥ (e;) = ;. The complex R® LA U V) 0 is called a free pre-

sentation of M. Let the kernel of i) be generated by w; = a;e1 + ... + apier,
1<i<sand A= (a;;) € M,xs(R) be the matrix presentation of ¢ and I;(¢)
be the ideal of R generated by the minors of size j of matrix A. By convention,
the determinant of the 0 x 0 matrix is 1. In general, we set I;(¢) = R if j <0.

By Fitting’s Lemma [3, Corollary 20.4], the ideals I,_;(¢),0 < j < oo, are
independent of the choice of free presentation of M. So, we define the jth
Fitting ideal of M to be the ideal Fitt;(M) = I,_;(¢). The most important
Fitting ideal of M is the first of the Fitt; (M) that is nonzero. We shall denote
this Fitting ideal by I(M). Thus, I(M) = Lranke(p). Hence, we have R =
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In(p) 2 Ii(p) 2 -+ 2D Irankp(p) 2 0. Let P be a prime ideal of R and Mp
and @p be the localization of M and ¢ in P, respectively. Note that if I(M)
contains a nonzerodivisor, then rank(p) = rank(ep) and so I(Mp) = I(M)p.
Let I be an ideal of a Noetherian local ring (R, P), by definition, ordgr(I) is
the largest integer n such that I C P™. We define the order of M, denoted
ordr(M), to be ordg(I(M)) [5].

2. Module of order one

A complex F: ... —=F, —2 F, 1 — ... of free modules F}, over a

local ring (R, P) is called minimal if the maps in the complex F ® R/P are
all 0. This simply means that any matrix representing ¢,, has all its entries in
P. By [3, Theorem 20.2], there is, up to isomorphism, only one minimal free
resolution of M.

Theorem 2.1. Let (R, P) be a Noetherian local ring and I be an ideal of R.
Then, ordr(I) = 1 if and only if, for every finitely generated R-module M,
I C Fitty(M) implies that M is cyclic.

Proof. Let F —~ G M 0 be a free presentation of M and (a;;) €
M, xn(R) be a matrix presentation of ¢. By [3, Corollary 20.4], we can as-

sume that F ——= @ M 0 is a minimal free presentation of M.
Thus, a;; € P, for all 4,j. Let ordr(I) = 1 and M be a finitely generated
R-module such that I C Fitto(M). Therefore, ordg(Fitto(M)) = 1. Let M be
generated by r elements. So, Fitto(M) = I,(M) C P". Hence, r =1 and M
is cyclic. Conversely, assume that I C Fitto(M) implies that M is cyclic, for
every finitely generated R-module M. If I C P?, put M = R/P® R/P. Then,
I C Fitto(M) = P? and M is not cyclic, a contradiction. O

Proposition 2.2. Let (R, P) be a Noetherian local ring and let M be a finitely

generated R-module with F LANye 4 M 0 as a minimal free pre-

sentation of M. If ordg(M) = n, then rank(p) < n.
Proof. If rank(¢) > n + 1, then I(M) C P"*! a contradiction. O

Note that in a unique factorization domain (UFD), a greatest common di-
visor (GCD) of any collection of elements always exists. Also, for every a,b, ¢
in a UFD, if a | bc and a, b are relatively prime, then a | c.

Theorem 2.3. Let (R, P) be a Noetherian local UFD and let M be a finitely
generated R-module. If ordr(M) =1 then

(i) M is isomorphic to R/ < (a1,...,a,)t >, where [(M) =< ay,...,a, >
and n is a positive integer if M is torsionfree, and

(#) M is isomorphic to R @ R/I(M), for some positive integer n if M is not
torsionfree.
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Proof. Let F —~ G YoM 0 be a free presentation of M and (a;;) €

M wn(R) be a matrix presentation of . By [3, Corollary 20.4], we can assume

that [ — G v M 0 is a minimal free presentation of M. Thus,

a;; € P, for all 4,7. Without loss of generality, we may assume that a;; # 0,
1<i<tand agir)ys = ... = a1 = 0. Put d; = GOD(a;1,a341y1), 1 <i <t
and, for the moment, fix j, 2 < j < n. Since rank(p) = 1, for i = 1,...,t,

a;1 A(i4+1)1
then we have a;1a(;41); = aija(41y1- Thus, ?a(iﬂ)j = a;; 7

1 1
a1

CTi | a;; which implies that there exists r;; € R such that a;; = C;—iilrij and so

a(it1); = %”j’ 1 <4 < t. Therefore, a;; = %rij = dair(i_l)j, 2<¢<t
i i i—1

and a;; = %rlj. Hence, ryjd;_1 = r;_1);d;. Now, by induction on ¢, we show
d

GCD(dy,...,d;)

thdz) | 7o;. Assume that d;s; = r;;GCD(ds, ..., d;), for some s; € R.

We have 7(;41)jdis; = rijdit1s;. Thus,
(21) T(i_i_l)jGCD(dl,...,di) = di+18i.

and so

that

| 75, 1 < i < t. For i = 2, since r9;dy = r1;d2, then

dit1

On the other hand, from r(;41);d; = r;;d;11 we obtain m | 7(i41);

and so there exists s, € R such that
(2.2) 7(i+1;GCD(di, diy1) = diy15;.
Combining (2.1) and (2.2), we have
diy15:GCD(d;s, div1) = 7(i41); GCD(dy, . .., d;)GCD(d;, d;iy1)
=di418;GCD(dy,. .., d;).

GCD(d;, diy1) Y
GCD(dy,...,dip1) ' ©

| 7(i41);GCD(d;, di11) and hence

Thus, s;GCD(d;,di+1) = s;GCD(dy,...,d;) and so

di+1GCD(d7;, di+1)
GCD(dy,...,diy1)

| 7(i+1); which completes the induction. If ¢ = ¢, then

Now, by (2.2), we have

ditq
GCD(dy, ... dit1)

dy |
Ttq.
GCD(dy,....dy) " Y

(2.3)

Now, we consider two cases.

Case 1: Suppose that GCD(a11,...,am1) = 1. By (2.3), di | 7. Since
Tejdi—1 = T(;—1);ds, then di_1 | r(t—1);- Continuing this process, we have
a; T4

erij =an—>, 1 <i<t,

d; | rij, 1 < ¢ < t. As a consequence, a;; = R )
i i
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2<j<mn.So, I(M)=<ai,...,an >. Itis easily seen that kery) = Imyp =<
(@11, .., am1)" >. This means there exists 0 R G M 0,

a free resolution of M. Therefore, M is isomorphic to R™/ < (a11,...,am1)" >
and pdg(M) = 1.

Case 2: Suppose that GCD(a11,...,am1) = o € P and, for the moment,

, , dy dy
fix j, 2 < 7 <n. By (2.3), r¢; which implies that — | ry;.
J >7 > Y( ) GCD(d1,7dt) ‘ tj d p. 0 | 1)
Therefore, there exists ry; € R such that ry; = —tr,'fj. Thus, a;; = %rgj.
Xo Zo

d
On the other hand, rt—1);ds = Ty5ds—1. Hence, ry_qy;dy = —trgjdt,l and so
Zo

di_
=1 Therefore, ag—1); = T(t—1)j =
To

d(i—1); )

-1 = a(t_l)lr’ Continu-
b

_ A
T(t—1)j = Ttj

. . . i a1 . .
ing this process we obtain r;; = rgj—l and so a;; = irgj, 1<i<t,2<j<n.
Zo x

If there exists some 74,2 < j < n, such that rj; ¢ P, then I(M) =<

a a a a
g,...,ﬂ > and as in Case 1, kery = Imgp =< (i,...,ll)t > which
To Zo Zo To
. . . . m ail Am1 ¢
implies that M is isomorphic to R™/ < (—,...,——)" > and pdr(M) = 1.
i) o
a1

Now, suppose ry; € P, 2 < j <n. Since a;; = —ry;, then [ =< a;; : 1 <i <
xo
a
m,1§j§n>:<xo,r2j:2§j§n>. If for all 4, 1 <i <t —HGP,then
Zo
a
I(M) C P? a contradiction. Without loss of generality, suppose i ¢ P.
Zo

Put d;,..;; := GOD(a1,...,a;,1). Define § : R —— R™ '@ R/I(M)

ao1 a1 Am1 a1
by 0(x1,...,2m) = (—x1 — —T9,...,——=21 — —Tm, 21 + [(M))". Let
i) o o Zo
a; a :
(x1,...,xm)t € kerf, so that o = Am, 2 <i<mandz € I(M).
Lo Zo
a; . . . .
Therefore, d—zl | 2;, which implies that there exists s;; € R such that z; =
1i
a1 a1 . aii a1
sy; and 2; = ——514,2 < i < m. Therefore, —s15 = ——s13. jThus;,
dy; g di; di2 di3 p
Slgi = Slgi. Hence, there exists sj23 € R such that s15 = i5123
d123 d123 d123
and si13 = i5123. Again, by induction on i, we show that sy; = islgmi
dy23 dia..;
and $13..; = $512...(i+1)7 for some s12..; € R,2 < i <t. Let s12.; =
dia.. (i+1)
di2..; dy; ai a1
71512.__(“_1) and sp; = ' 519..;. We have —s1; = S1(i+1)-

dia.. (i+1) di2.i 1i di(it1)



927 Hadjirezaei and Karimzadeh

dy;
So, s1id1(i+1) = S1(i+1)d1i- Therefore, Kl'dl(z#l)slz..i = S1(i+1)d1i- Hence,

dy; dio.
slz“idl(ziﬂ) = 51(i+1)%- So, there exists s15..(;4+1) € R such that
12...(i+§) 12...(i+1)
. dio ]
S1(i+1) = &512 (i+1) and s12; = $812m(i+1). This com-
dia.. (i41) dia.. (i+1)
d
pletes the induction. Hence, si; = L S12..¢. Put s = s1o. ;. Therefore,
12...t
dyy a an ai1 a;1
S1t = x—s. So, x1 = —s814 = x—s. Also, x; = fsli = rslgmi =
ail 0 1t ail 0 ail . 14 12...4
TSy = = d S12..+ = —8, 2 < i < t. On the other hand,
12...(i+1) 12 .t Zo

M- z1 € I(M) and 21 L ¢ P. Thercfore, s € I(M). Since I(M) =<

To
xo,réj 2<5<n >, then there exists r; € R, 0 <1i <mn, i # 1, such that

a;1 a;1
s =1roro+rerigt-+rart,. So, x; = 5= - —(romo+rarigt+- - +rpr’in) =
0
Toi1 + T2l + -+ + Tplin. S0, (T1,...,Tm)t € Imp. This means kerf C I'mep.

It is clear that Imp C kerf. Since i ¢ P, it is easily seen that 6 is an
Zo
epimorphism. Therefore, M is isomorphic to R™~1 @ R/I(M) in this case. [

Lemma 2.4. Let R be a Noetherian ring and Py, ..., P, be distinct mazimal
ideals of R. Suppose that M be a finitely generated R-module such that Mp, =
Rp,/PlRp,, for some t; € N, 1 <i < n, and for every mazimal ideal Q # P;,
1<i<n, Mg=0. Then, M = R/P* & ...® R/P!».

Proof. Put A; = {anng(y) : Mp, = (y/1)}, for i = 1,...,n. Let Mp, = (x;/1)
such that anng(x;) is maximal in A;. Assume that ¢, 1 < i < n, be arbitrary

and fixed. Let r € Pztl Then, T 0. So, there exists s € R\ P; such

that rsx; = 0. Since Mp, = (sz;/1) and anng(z;) is maximal in A;, then
r € anng(sz;) = anng(z;). Now, let r € anng(x;). So, g c PfiRpi. Since

P! is Pi-primary, then r € P/*. Hence, anng(z;) = P/*. Put P = N, P}

?

and define f R/P — M; f(r + P) = r(z1 + ... + x,,). For every j # i,

let s; € P '\ P;. Then, xT = 9% _ g Mp,. On the other hand for
Sj

every maximal ideal @) # P;, fo = 0 is an isomorphism between two zero

modules. Thus, f; is an isomorphism for every maximal ideal g of R. Hence,

M=R/P=R/PI"®..0®R/P. O

Recall that an R-module M is projective of constant rank n if and only if
Mp is free of rank n over Rp, for every prime ideal P of R.

Proposition 2.5. Let R be Noetherian UFD and M be a finitely generated
nontorsionfree R-module. Suppose that Py, ..., P, be distinct maximal ideals of
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R such that I(M) = Py...P,,. Then, M 2 P® R/P, ®...® R/P, where P is a
projective R-module (of constant rank).

Proof. Since I(Mp,) = P;Rp,, then by Theorem 2.3, Mp, = R} @ (R/P;)p,
for some positive integers m;, 1 < ¢ < n. Let Q # P; be a maximal ideal of
R. Then, I(Mg) = Rg. Hence, by [2, Lemmal], Mg is a free Rg-module,
for every maximal ideal @ # P;, 1 < ¢ < n. Thus, for every maximal ideal g
of R, (M/T(M))q is free. Since R is a domain, then by [I, Remark, p. 112],
(M/T(M)) is projective of constant rank. Hence, M = (M/T(M)) & T(M).
On the other hand T(M)p, = T(Mp,) = Rp,/P;Rp, and T(M)g = 0, for
every maximal ideal @ # P;,1 < i < n. Therefore, by Lemma 2.4, T(M)
R/P®..®R/P,. Hence, M % P®R/P, ®...® R/P,, for some projective
R-module P. g

Lemma 2.6. Let (R, P) be a regular local ring and M be a finitely generated
R-module. If dim(R) < 2 and ordg(anng(M)) =1, then M =2 R/, ®...®R/I}
for some ideals I;, 1 <i < k.

Proof. If dim(R) = 1, then R is a PID. Hence, M = R/I} & ... ® R/I}, for
some ideals I;, 1 <14 < k. Let dim(R) = 2 and anng(M) ¢ P?. Then, there is
an element y € anng(M)\P2. Put R = R/(y). Then, R is a regular local ring
of dimension 1. Hence, M 2 R/Ty ® ... ® R/I; = R/J; ® ... ® R/ J}, for some
ideals I; and J;, 1 <1 < k. O

Theorem 2.7. Let (R, P) be a regular local ring and M be a finitely generated
R-module. If dim(R) =n > 3 and there exist x1,T2,...,Tn_1 € anng(M)\ P>
such that annp(M) ¢ P? + (x1,...,¥n_2), then M = R/I; & ... & R/I}, for
some ideals I;, 1 < i < k.

Proof. {The proof is; by induction on n. Let n = 3. Put R = R/(z1). Then,
R is a regular local ring of dimension 2. Since anng(M) ¢ P? + (1), then
anng(M) ¢ P? then by Lemma 2.6, M = R/I; @ ... ® R/I;. Assume that
dim(R) = n. Put R = R/(x1). Then, R is a regular local ring of dimension n —
1. Since anng(M) & P? + (1, ..., xn_2), then annyz(M) € P2 + (2, ..., Tn_2).
By induction hypothesis M 2 R/T} © ... ® R/I;, = R/J; & ... ® R/ J}, for some
ideals J;, 1 <1 < k. O

3. Some othre cases
Theorem 3.1. Let (R, P) be a Noetherian local UFD and let M be a finitely
generated R-module. Assume that there exists a free presentation

R Rrm YN 0 of M such that rank(p) = 1. Ifordg(M) = 2,
then

(i) If M is torsionfree, then M = R™/ < (ay,...,am)t >, for some a; € R,
1<i<m.
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(ii) If M is not torsionfree, then M = R™ Y@ R/I(M) or M = R™/J <
(a1,-..,am)t >, for some ideal J # R and for some a; € R, 1 <i < m.

Proof. By [3, Corollary 20.4], we can assume that

R" —%5 Rgm id M 0 is a minimal free presentation of M. Let

(aij) € Mpxn(R) be a matrix presentation of ¢. Thus, a;; € P, for all
1,7. Without loss of generality, we may assume that a;; # 0, 1 < ¢ < ¢
and ag41)1 = ... = am1 = 0. Put d; = GCD(ai1,a¢41)1), 1 <4 <t and,
for the moment, fix j, 2 < j < n. Since rank(y) = 1, then for i = 1,... ¢,
we have a;1a(;1); = aija(i41y1- Similar to the proof of Theorem 2.3, we have
t

GCD(dy,...,d)
Case 1: Suppose that GCD(aq1,...,am1) = 1. Therefore, M is isomorphic to
R™/ < (ai1,...,am1)" > and pdr(M) = 1.

Case 2: Suppose that GCD(a11,...,am1) = xo € P and, for the moment,
fix j, 2 < j < n. By the same argument and notation as in Case 1, we

| 7¢;. We consider two cases.

have a;; = — T for some rgj,l <i<t2<j<n. If there exists some
Zo
a a .
71,2 < j < n, such that rj; & P, then I(M) =< U2 S which
Zo Zo
a a
implies that M is isomorphic to R™/ < (—=,...,~2L)' > Now, suppose

i) i)
rngP,foraHj,QSan. PutJ:<xo,r,'5j:2§j§n>. If for all

i, 1 <1<t di ¢ I(M), then I(M) C P3, a contradiction. Without loss
Ty

of generality suppose a1 g I(M). If an ¢ P, then J = I(M) and M is
Zo Zo
isomorphic to R™~1 @& R/I(M) in this case. Now, assume that % € P for
0
all 1 < i < m. It is easily seen that M = R™/J < (ay,...,an)" >, where
ordr(J) = ordr{ay,...,anm) =1 and J{ay, ...,an) = I(M). O

The following theorem represents some properties of module M with
Fittg(M) = P™.

Theorem 3.2. Let (R, P) be a Noetherian local ring and M be a finitely gen-
erated R-module with Fitlo(M) = P™, for some positive integer n. Then,

(1) M is generated by n elements.

(i4) M is an Artinian R-module.

(#ii) Every submodule of M is P-primary, particularly Ass(M) = {P}.

(iv) M/P"~YM is cyclic if and only if M = R/P™.

(v) If pdr(M) < oo, then pdr(M) = depth(P, R).

Proof. (i) Let Fitto(M) = P™ and M be generated by r elements. Then,

P" = Fittg(M) = I,(M) C P". So, by Nakayama’s Lemma r < n.
(ii) Since Fitto(M) = P™ C anng(M), then P"~1M is an R/P-module. So,
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there exists positive integers m such that P"~'M = (R/P)™. Hence, P"~'*M
is Artinian. Since P"~! C anng(M/P"1M), then M/P"~*M is (R/P"1)-
module. Since R/P"~! is an Artinian ring and M/P"~1M is a finitely gener-
ated module, then M/P"~'M is Artinian. So, 0 — P" " 'M — M —
M/P" 1M — 0 is an exact sequence of R-modules. Since P"~!M and
M/P"~1M are Artinian R-modules, then M is Artinian.

(7i7) Let N be a proper submodule of M. Since P™ = Fitto(M) C anng(M) C
(N : M), then /(N : M) = P. It is easily seen that N is P-primary submodule
of M.

(i) If n = 1, then Fittog(M) = P C ann(M). Thus, M = R/P. Let n >
2 and M/P" 1M is cyclic. By proof of (ii) we have the exact sequence

0——=priyy 2 oY R/P 0. By (4) there exist x1,..., 2, in
M such that M = (x4, ...,2,). Since 9 is onto, then there is m € M such that
Y(m) =14+ P. Let m =rix1+ ...+ rpxy, forsome r, € Ry1<i<n. Ifr; € P,
for every 1, then ¥(m) = rp(x1) + ... + rpp(x,) = 0 = 14+ P, a contradiction.
Let r; ¢ P. Then, M = (m, 2o, ...,zy). On the other hand, for i = 2, ..., n there
exists a; € R such that ¢(x;) = a; + P = a;3p(m) = ¢ (a;m). Hence, x; —a;m €
keri) = Imp = P M. We have M = (m,xa,...,2,) = P" 1M + (m). So,
P IM = PY PP IM + (m)) = P" 'm and M = P" 'm + (m) = (m).
Hence, M = R/anng(M). Since Fittg(M) = P", then M = R/P"™.

(v) By Auslander-Buchsbaum formula we have,

pdr(M) = depth(P, R) — depth(P, M). By (iii), Ass(M) = {P}, so pdr(M) =
depth(P, R). O

Example 3.3. Let R be the ring K[z, y]] of formal power series over a field K.
It is known that R = K][[z,y]] is a Noetherian local ring with maximal ideal

P = (z,y). Consider M = R?/< < g Y 2 > > as an R-module. Then,
Fitto(M) = P2.

Let M be an R-module. We say that M is a prime module if anng(N) =
anng(M) for every non-zero submodule N of M [8].
Let (R, P) be a Noetherian local ring and M be a finitely generated prime R-
module with Fitto(M) = P, for some positive integer n. By Theorem 3.2, part
(#i2), P € Ass(M). So, there exists an element x € M such that P = anng(x).
Since M is prime, then anng(M) = P, consequently M = (R/P)™.
An R-module M is called a multiplication module if for each submodule N of
M, N = IM for some ideal I of R. In this case we can take I = (N : M) [8].
Let (R, P) be a Noetherian local ring and M be a finitely generated R-
module. Let M be a multiplication module with Fitto(M) = P™, for some
positive integer n. Let N be a submodule of M such that PM C N. There
exists an ideal I of R such that N = IM. So, PM C N = IM C PM. This
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implies that PM is a maximal submodule of M. Thus, M/PM = R/P. Hence,
by Theorem 3.2, part (iv), M = R/P™.
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