Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 4, pp. 923-931

Title:

On the order of a module

Author(s):

S. HadJirezaei and S. Karimzadeh

ON THE ORDER OF A MODULE

S. HADJIREZAEI* AND S. KARIMZADEH
(Communicated by Mohammad-Taghi Dibaei)

Abstract

Let (R, P) be a Noetherian unique factorization domain (UFD) and M be a finitely generated R-module. Let $I(M)$ be the first nonzero Fitting ideal of M and the order of M, denoted $\operatorname{ord}_{R}(M)$, be the largest integer n such that $I(M) \subseteq P^{n}$. In this paper, we show that if M is a module of order one, then either M is isomorphic with direct sum of a free module and a cyclic module or M is isomorphic with a special module represented in the text. We also assert some properties of M while $\operatorname{ord}_{R}(M)=2$. Keywords: Fitting ideals, minimal free presentation, order of a module. MSC(2010): Primary: 13C05; Secondary: 13D05, 11 Y 50.

1. Introduction

Throughout this paper R denotes a Noetherian commutative ring with identity and all modules are unital. Let M be a finitely generated R-module. For a set $\left\{x_{1}, \ldots, x_{n}\right\}$ of generators of M there exists a complex
$R^{s} \xrightarrow{\varphi} R^{r} \xrightarrow{\psi} M \longrightarrow 0$, where R^{r} and R^{s} are free R-modules and the set $\left\{e_{1}, \ldots, e_{r}\right\}$ is a basis for R^{r} and the R-homomorphism ψ is defined by $\psi\left(e_{j}\right)=x_{j}$. The complex $R^{s} \xrightarrow{\varphi} R^{r} \xrightarrow{\psi} M \longrightarrow 0$ is called a free presentation of M. Let the kernel of ψ be generated by $u_{i}=a_{1 i} e_{1}+\ldots+a_{r i} e_{r}$, $1 \leq i \leq s$ and $A=\left(a_{i j}\right) \in M_{r \times s}(R)$ be the matrix presentation of φ and $I_{j}(\varphi)$ be the ideal of R generated by the minors of size j of matrix A. By convention, the determinant of the 0×0 matrix is 1 . In general, we set $I_{j}(\varphi)=R$ if $j \leq 0$.

By Fitting's Lemma [3, Corollary 20.4], the ideals $I_{r-j}(\varphi), 0 \leq j<\infty$, are independent of the choice of free presentation of M. So, we define the j th Fitting ideal of M to be the ideal $\operatorname{Fitt}_{j}(M)=I_{r-j}(\varphi)$. The most important Fitting ideal of M is the first of the $\operatorname{Fitt}_{j}(M)$ that is nonzero. We shall denote this Fitting ideal by $I(M)$. Thus, $I(M)=I_{\text {rank } \varphi}(\varphi)$. Hence, we have $R=$

[^0]$I_{0}(\varphi) \supseteq I_{1}(\varphi) \supseteq \cdots \supseteq I_{\text {rank } \varphi}(\varphi) \supsetneq 0$. Let P be a prime ideal of R and M_{P} and φ_{P} be the localization of M and φ in P, respectively. Note that if $I(M)$ contains a nonzerodivisor, then $\operatorname{rank}(\varphi)=\operatorname{rank}\left(\varphi_{P}\right)$ and so $I\left(M_{P}\right)=I(M)_{P}$. Let I be an ideal of a Noetherian local ring (R, P), by definition, $\operatorname{ord}_{R}(I)$ is the largest integer n such that $I \subseteq P^{n}$. We define the order of M, denoted $\operatorname{ord}_{R}(M)$, to be $\operatorname{ord}_{R}(I(M))$ [5].

2. Module of order one

A complex $\mathcal{F}: \ldots \longrightarrow F_{n} \xrightarrow{\varphi_{n}} F_{n-1} \longrightarrow \ldots$ of free modules F_{i}, over a local ring (R, P) is called minimal if the maps in the complex $\mathcal{F} \otimes R / P$ are all 0 . This simply means that any matrix representing φ_{n} has all its entries in P. By [3, Theorem 20.2], there is, up to isomorphism, only one minimal free resolution of M.
Theorem 2.1. Let (R, P) be a Noetherian local ring and I be an ideal of R. Then, $\operatorname{ord}_{R}(I)=1$ if and only if, for every finitely generated R-module M, $I \subseteq$ Fitt $_{0}(M)$ implies that M is cyclic.

Proof. Let $F \xrightarrow{\varphi} G \longrightarrow M \longrightarrow 0$ be a free presentation of M and $\left(a_{i j}\right) \in$ $M_{m \times n}(R)$ be a matrix presentation of φ. By [3, Corollary 20.4], we can assume that $F \xrightarrow{\varphi} G \longrightarrow M \longrightarrow 0$ is a minimal free presentation of M. Thus, $a_{i j} \in P$, for all i, j. Let $\operatorname{ord}_{R}(I)=1$ and M be a finitely generated R-module such that $I \subseteq \operatorname{Fitt}_{0}(M)$. Therefore, $\operatorname{ord}_{R}\left(\operatorname{Fitt}_{0}(M)\right)=1$. Let M be generated by r elements. So, $\operatorname{Fitt}_{0}(M)=I_{r}(M) \subseteq P^{r}$. Hence, $r=1$ and M is cyclic. Conversely, assume that $I \subseteq \operatorname{Fitt}_{0}(M)$ implies that M is cyclic, for every finitely generated R-module M. If $I \subseteq P^{2}$, put $M=R / P \oplus R / P$. Then, $I \subseteq \operatorname{Fitt}_{0}(M)=P^{2}$ and M is not cyclic, a contradiction.

Proposition 2.2. Let (R, P) be a Noetherian local ring and let M be a finitely generated R-module with $F \xrightarrow{\varphi} G \xrightarrow{\psi} M \longrightarrow 0$ as a minimal free presentation of M. If $\operatorname{ord}_{R}(M)=n$, then $\operatorname{rank}(\varphi) \leq n$.
Proof. If $\operatorname{rank}(\varphi) \geq n+1$, then $I(M) \subseteq P^{n+1}$, a contradiction.
Note that in a unique factorization domain (UFD), a greatest common divisor (GCD) of any collection of elements always exists. Also, for every a, b, c in a UFD, if $a \mid b c$ and a, b are relatively prime, then $a \mid c$.

Theorem 2.3. Let (R, P) be a Noetherian local UFD and let M be a finitely generated R-module. If $\operatorname{ord}_{R}(M)=1$ then
(i) M is isomorphic to $R^{n} /<\left(a_{1}, \ldots, a_{n}\right)^{t}>$, where $I(M)=<a_{1}, \ldots, a_{n}>$ and n is a positive integer if M is torsionfree, and
(ii) M is isomorphic to $R^{n} \oplus R / I(M)$, for some positive integer n if M is not torsionfree.

Proof. Let $F \xrightarrow{\varphi} G \xrightarrow{\psi} M \longrightarrow 0$ be a free presentation of M and $\left(a_{i j}\right) \in$ $M_{m \times n}(R)$ be a matrix presentation of φ. By [3, Corollary 20.4], we can assume that $F \stackrel{\varphi}{\longrightarrow} G \stackrel{\psi}{\longrightarrow} M \longrightarrow 0$ is a minimal free presentation of M. Thus, $a_{i j} \in P$, for all i, j. Without loss of generality, we may assume that $a_{i 1} \neq 0$, $1 \leq i \leq t$ and $a_{(t+1) 1}=\ldots=a_{m 1}=0$. Put $d_{i}=G C D\left(a_{i 1}, a_{(i+1) 1}\right), 1 \leq i \leq t$ and, for the moment, fix $j, 2 \leq j \leq n$. Since $\operatorname{rank}(\varphi)=1$, for $i=1, \ldots, t$, then we have $a_{i 1} a_{(i+1) j}=a_{i j} a_{(i+1) 1}$. Thus, $\frac{a_{i 1}}{d_{i}} a_{(i+1) j}=a_{i j} \frac{a_{(i+1) 1}}{d_{i}}$ and so $\left.\frac{a_{i 1}}{d_{i}} \right\rvert\, a_{i j}$ which implies that there exists $r_{i j} \in R$ such that $a_{i j}=\frac{a_{i 1}}{d_{i}} r_{i j}$ and so $a_{(i+1) j}=\frac{a_{(i+1) 1}}{d_{i}} r_{i j}, 1 \leq i \leq t$. Therefore, $a_{i j}=\frac{a_{i 1}}{d_{i}} r_{i j}=\frac{a_{i 1}}{d_{i-1}} r_{(i-1) j}, 2 \leq i \leq t$ and $a_{1 j}=\frac{a_{11}}{d_{1}} r_{1 j}$. Hence, $r_{i j} d_{i-1}=r_{(i-1) j} d_{i}$. Now, by induction on i, we show that $\left.\frac{d_{i}}{G C D\left(d_{1}, \ldots, d_{i}\right)} \right\rvert\, r_{i j}, 1 \leq i \leq t$. For $i=2$, since $r_{2 j} d_{1}=r_{1 j} d_{2}$, then $\left.\frac{d_{2}}{G C D\left(d_{1}, d_{2}\right)} \right\rvert\, r_{2 j}$. Assume that $d_{i} s_{i}=r_{i j} G C D\left(d_{1}, \ldots, d_{i}\right)$, for some $s_{i} \in R$. We have $r_{(i+1) j} d_{i} s_{i}=r_{i j} d_{i+1} s_{i}$. Thus,

$$
\begin{equation*}
r_{(i+1) j} G C D\left(d_{1}, \ldots, d_{i}\right)=d_{i+1} s_{i} \tag{2.1}
\end{equation*}
$$

On the other hand, from $r_{(i+1) j} d_{i}=r_{i j} d_{i+1}$ we obtain $\left.\frac{d_{i+1}}{G C D\left(d_{i}, d_{i+1}\right)} \right\rvert\, r_{(i+1) j}$ and so there exists $s_{i}^{\prime} \in R$ such that

$$
\begin{equation*}
r_{(i+1) j} G C D\left(d_{i}, d_{i+1}\right)=d_{i+1} s_{i}^{\prime} \tag{2.2}
\end{equation*}
$$

Combining (2.1) and (2.2), we have

$$
\begin{gathered}
d_{i+1} s_{i} G C D\left(d_{i}, d_{i+1}\right)=r_{(i+1) j} G C D\left(d_{1}, \ldots, d_{i}\right) G C D\left(d_{i}, d_{i+1}\right) \\
=d_{i+1} s_{i}^{\prime} G C D\left(d_{1}, \ldots, d_{i}\right)
\end{gathered}
$$

Thus, $s_{i} G C D\left(d_{i}, d_{i+1}\right)=s_{i}^{\prime} G C D\left(d_{1}, \ldots, d_{i}\right)$ and so $\left.\frac{G C D\left(d_{i}, d_{i+1}\right)}{G C D\left(d_{1}, \ldots, d_{i+1}\right)} \right\rvert\, s_{i}^{\prime}$.
Now, by (2.2), we have $\left.\frac{d_{i+1} G C D\left(d_{i}, d_{i+1}\right)}{G C D\left(d_{1}, \ldots, d_{i+1}\right)} \right\rvert\, r_{(i+1) j} G C D\left(d_{i}, d_{i+1}\right)$ and hence $\left.\frac{d_{i+1}}{G C D\left(d_{1}, \ldots, d_{i+1}\right)} \right\rvert\, r_{(i+1) j}$ which completes the induction. If $i=t$, then

$$
\begin{equation*}
\left.\frac{d_{t}}{G C D\left(d_{1}, \ldots, d_{t}\right)} \right\rvert\, r_{t j} \tag{2.3}
\end{equation*}
$$

Now, we consider two cases.
Case 1: Suppose that $G C D\left(a_{11}, \ldots, a_{m 1}\right)=1$. By (2.3), $d_{t} \mid r_{t j}$. Since $r_{t j} d_{t-1}=r_{(t-1) j} d_{t}$, then $d_{t-1} \mid r_{(t-1) j}$. Continuing this process, we have $d_{i} \mid r_{i j}, 1 \leq i \leq t$. As a consequence, $a_{i j}=\frac{a_{i 1}}{d_{i}} r_{i j}=a_{i 1} \frac{r_{i j}}{d_{i}}, 1 \leq i \leq t$,
$2 \leq j \leq n$. So, $I(M)=<a_{11}, \ldots, a_{m 1}>$. It is easily seen that $\operatorname{ker} \psi=\operatorname{Im} \varphi=<$ $\left(a_{11}, \ldots, a_{m 1}\right)^{t}>$. This means there exists $0 \longrightarrow R \longrightarrow G \longrightarrow M \longrightarrow 0$, a free resolution of M. Therefore, M is isomorphic to $R^{m} /<\left(a_{11}, \ldots, a_{m 1}\right)^{t}>$ and $p d_{R}(M)=1$.

Case 2: Suppose that $\operatorname{GCD}\left(a_{11}, \ldots, a_{m 1}\right)=x_{0} \in P$ and, for the moment, fix $j, 2 \leq j \leq n$. By (2.3), $\left.\frac{d_{t}}{G C D\left(d_{1}, \ldots, d_{t}\right)} \right\rvert\, r_{t j}$ which implies that $\left.\frac{d_{t}}{x_{0}} \right\rvert\, r_{t j}$. Therefore, there exists $r_{t j}^{\prime} \in R$ such that $r_{t j}=\frac{d_{t}}{x_{0}} r_{t j}^{\prime}$. Thus, $a_{t j}=\frac{a_{t 1}}{x_{0}} r_{t j}^{\prime}$. On the other hand, $r_{(t-1) j} d_{t}=r_{t j} d_{t-1}$. Hence, $r_{(t-1) j} d_{t}=\frac{d_{t}}{x_{0}} r_{t j}^{\prime} d_{t-1}$ and so $r_{(t-1) j}=r_{t j}^{\prime} \frac{d_{t-1}}{x_{0}}$. Therefore, $a_{(t-1) j}=\frac{a_{(t-1) 1}}{d_{(t-1) j}} r_{(t-1) j}=\frac{a_{(t-1) 1}}{x_{0}} r_{t j}^{\prime}$. Continuing this process we obtain $r_{i j}=r_{t j}^{\prime} \frac{d_{i}}{x_{0}}$ and so $a_{i j}=\frac{a_{i 1}}{x_{0}} r_{t j}^{\prime}, 1 \leq i \leq t, 2 \leq j \leq n$. If there exists some $r_{t j}^{\prime}, 2 \leq j \leq n$, such that $r_{t j}^{\prime} \notin P$, then $I(M)=<$ $\frac{a_{11}}{x_{0}}, \ldots, \frac{a_{m 1}}{x_{0}}>$ and as in Case $1, \operatorname{ker} \psi=\operatorname{Im} \varphi=<\left(\frac{a_{11}}{x_{0}}, \ldots, \frac{a_{m 1}}{x_{0}}\right)^{t}>$ which implies that M is isomorphic to $R^{m} /<\left(\frac{a_{11}}{x_{0}}, \ldots, \frac{a_{m 1}}{x_{0}}\right)^{t}>$ and $p d_{R}(M)=1$. Now, suppose $r_{t j}^{\prime} \in P, 2 \leq j \leq n$. Since $a_{i j}=\frac{a_{i 1}}{x_{0}} r_{t j}^{\prime}$, then $I=<a_{i j}: 1 \leq i \leq$ $m, 1 \leq j \leq n>=<x_{o}, r_{t j}^{\prime}: 2 \leq j \leq n>$. If for all $i, 1 \leq i \leq t, \frac{a_{i 1}}{x_{0}} \in P$, then $I(M) \subseteq P^{2}$ a contradiction. Without loss of generality, suppose $\frac{a_{11}}{x_{0}} \notin P$. Put $d_{i_{1} \ldots i_{j}}:=G C D\left(a_{i_{1} 1}, \ldots, a_{i_{j} 1}\right)$. Define $\theta: R^{m} \longrightarrow R^{m-1} \oplus R / I(M)$ by $\theta\left(x_{1}, \ldots, x_{m}\right)^{t}=\left(\frac{a_{21}}{x_{0}} x_{1}-\frac{a_{11}}{x_{0}} x_{2}, \ldots, \frac{a_{m 1}}{x_{0}} x_{1}-\frac{a_{11}}{x_{0}} x_{m}, x_{1}+I(M)\right)^{t}$. Let $\left(x_{1}, \ldots, x_{m}\right)^{t} \in k e r \theta$, so that $\frac{a_{i 1}}{x_{o}} x_{1}=\frac{a_{11}}{x_{0}} x_{i}, 2 \leq i \leq m$ and $x_{1} \in I(M)$. Therefore, $\left.\frac{a_{i 1}}{d_{1 i}} \right\rvert\, x_{i}$, which implies that there exists $s_{1 i} \in R$ such that $x_{1}=$ $\frac{a_{11}}{d_{1 i}} s_{1 i}$ and $x_{i}=\frac{a_{i 1}}{d_{1 i}} s_{1 i}, 2 \leq i \leq m$. Therefore, $\frac{a_{11}}{d_{12}} s_{12}=\frac{a_{11}}{d_{13}} s_{13} . \quad$ iThus $\dot{\iota}$, $s_{12} \frac{d_{13}}{d_{123}}=s_{13} \frac{d_{12}}{d_{123}}$. Hence, there exists $s_{123} \in R$ such that $s_{12}=\frac{d_{12}}{d_{123}} s_{123}$ and $s_{13}=\frac{d_{13}}{d_{123}} s_{123}$. Again, by induction on i, we show that $s_{1 i}=\frac{d_{1 i}}{d_{12 \ldots i}} s_{12 \ldots i}$ and $s_{12 \ldots i}=\frac{d_{12 \ldots i}}{d_{12 \ldots(i+1)}} s_{12 \ldots(i+1)}$, for some $s_{12 \ldots i} \in R, 2 \leq i \leq t$. Let $s_{12 \ldots i}=$ $\frac{d_{12 \ldots i}}{d_{12 \ldots(i+1)}} s_{12 \ldots(i+1)}$ and $s_{1 i}=\frac{d_{1 i}}{d_{12 \ldots i}} s_{12 \ldots i}$. We have $\frac{a_{11}}{d_{1 i}} s_{1 i}=\frac{a_{11}}{d_{1(i+1)}} s_{1(i+1)}$.

So, $s_{1 i} d_{1(i+1)}=s_{1(i+1)} d_{1 i}$. Therefore, $\frac{d_{1 i}}{d_{12 \ldots i}} d_{1(i+1)} s_{12 \ldots i}=s_{1(i+1)} d_{1 i}$. Hence, $s_{12 \ldots i} \frac{d_{1(i+1)}}{d_{12 \ldots(i+1)}}=s_{1(i+1)} \frac{d_{12 \ldots i}}{d_{12 \ldots(i+1)}}$. So, there exists $s_{12 \ldots(i+1)} \in R$ such that $s_{1(i+1)}=\frac{d_{1(i+1)}}{d_{12 \ldots(i+1)}} s_{12 \ldots(i+1)}$ and $s_{12 \ldots i}=\frac{d_{12 \ldots i}}{d_{12 \ldots(i+1)}} s_{12 \ldots(i+1)}$. This completes the induction. Hence, $s_{1 t}=\frac{d_{1 t}}{d_{12 \ldots t}} s_{12 \ldots t}$. Put $s=s_{12 \ldots t}$. Therefore, $s_{1 t}=\frac{d_{1 t}}{x_{0}} s . \quad$ So, $x_{1}=\frac{a_{11}}{d_{1 t}} s_{1 t}=\frac{a_{11}}{x_{0}} s$. Also, $x_{i}=\frac{a_{i 1}}{d_{1 i}} s_{1 i}=\frac{a_{i 1}}{d_{12 \ldots i}} s_{12 \ldots i}=$ $\frac{a_{i 1}}{d_{12 \ldots(i+1)}} s_{12 \ldots(i+1)}=\ldots=\frac{a_{i 1}}{d_{12 \ldots t}} s_{12 \ldots t}=\frac{a_{i 1}}{x_{0}} s, 2 \leq i \leq t$. On the other hand, $\frac{a_{11}}{x_{0}} s=x_{1} \in I(M)$ and $\frac{a_{11}}{x_{0}} \notin P$. Therefore, $s \in I(M)$. Since $I(M)=<$ $x_{o}, r_{t j}^{\prime}: 2 \leq j \leq n>$, then there exists $r_{i} \in R, 0 \leq i \leq n, i \neq 1$, such that $s=r_{0} x_{0}+r_{2} r_{t 2}^{\prime}+\cdots+r_{n} r^{\prime}{ }_{t n}$. So, $x_{i}=\frac{a_{i 1}}{x_{0}} s=\frac{a_{i 1}}{x_{0}}\left(r_{0} x_{0}+r_{2} r_{t 2}^{\prime}+\cdots+r_{n} r^{\prime}{ }_{t n}\right)=$ $r_{0} a_{i 1}+r_{2} a_{i 2}+\cdots+r_{n} a_{i n}$. So, $\left(x_{1}, \ldots, x_{m}\right)^{t} \in \operatorname{Im} \varphi$. This means $\operatorname{ker} \theta \subseteq \operatorname{Im} \varphi$. It is clear that $\operatorname{Im} \varphi \subseteq k e r \theta$. Since $\frac{a_{11}}{x_{0}} \notin P$, it is easily seen that θ is an epimorphism. Therefore, M is isomorphic to $R^{m-1} \oplus R / I(M)$ in this case.

Lemma 2.4. Let R be a Noetherian ring and P_{1}, \ldots, P_{n} be distinct maximal ideals of R. Suppose that M be a finitely generated R-module such that $M_{P_{i}} \cong$ $R_{P_{i}} / P_{i}^{t_{i}} R_{P_{i}}$, for some $t_{i} \in \mathbb{N}, 1 \leq i \leq n$, and for every maximal ideal $Q \neq P_{i}$, $1 \leq i \leq n, M_{Q}=0$. Then, $M \cong R / P_{1}^{t_{1}} \oplus \ldots \oplus R / P_{n}^{t_{n}}$.
Proof. Put $A_{i}=\left\{\operatorname{ann}_{R}(y): M_{P_{i}}=\langle y / 1\rangle\right\}$, for $i=1, \ldots, n$. Let $M_{P_{i}}=\left\langle x_{i} / 1\right\rangle$ such that $\operatorname{ann}_{R}\left(x_{i}\right)$ is maximal in A_{i}. Assume that $i, 1 \leq i \leq n$, be arbitrary and fixed. Let $r \in P_{i}^{t_{i}}$. Then, $\frac{r}{1} \frac{x_{i}}{1}=0$. So, there exists $s \in R \backslash P_{i}$ such that $r s x_{i}=0$. Since $M_{P_{i}}=\left\langle s x_{i} / 1\right\rangle$ and $\operatorname{ann}_{R}\left(x_{i}\right)$ is maximal in A_{i}, then $r \in \operatorname{ann}_{R}\left(s x_{i}\right)=\operatorname{ann}_{R}\left(x_{i}\right)$. Now, let $r \in \operatorname{ann}_{R}\left(x_{i}\right)$. So, $\frac{r}{1} \in P_{i}^{t_{i}} R_{P_{i}}$. Since $P_{i}^{t_{i}}$ is P_{i}-primary, then $r \in P_{i}^{t_{i}}$. Hence, $\operatorname{ann}_{R}\left(x_{i}\right)=P_{i}^{t_{i}}$. Put $P=\cap_{i=1}^{n} P_{i}^{t_{i}}$ and define $f: R / P \longrightarrow M ; f(r+P)=r\left(x_{1}+\ldots+x_{n}\right)$. For every $j \neq i$, let $s_{j} \in P_{j}^{t_{j}} \backslash P_{i}$. Then, $\frac{x_{j}}{1}=\frac{s_{j} x_{j}}{s_{j}}=0$ in $M_{P_{i}}$. On the other hand for every maximal ideal $Q \neq P_{i}, f_{Q}=0$ is an isomorphism between two zero modules. Thus, f_{q} is an isomorphism for every maximal ideal q of R. Hence, $M \cong R / P \cong R / P_{1}^{t_{1}} \oplus \ldots \oplus R / P_{n}^{t_{n}}$.

Recall that an R-module M is projective of constant rank n if and only if M_{P} is free of rank n over R_{P}, for every prime ideal P of R.

Proposition 2.5. Let R be Noetherian UFD and M be a finitely generated nontorsionfree R-module. Suppose that P_{1}, \ldots, P_{n} be distinct maximal ideals of
R such that $I(M)=P_{1} \ldots P_{n}$. Then, $M \cong P \oplus R / P_{1} \oplus \ldots \oplus R / P_{n}$ where P is a projective R-module (of constant rank).
Proof. Since $I\left(M_{P_{i}}\right)=P_{i} R_{P_{i}}$, then by Theorem 2.3, $M_{P_{i}} \cong R_{P_{i}}^{m_{i}} \oplus\left(R / P_{i}\right)_{P_{i}}$ for some positive integers $m_{i}, 1 \leq i \leq n$. Let $Q \neq P_{i}$ be a maximal ideal of R. Then, $I\left(M_{Q}\right)=R_{Q}$. Hence, by [2, Lemma1], M_{Q} is a free R_{Q}-module, for every maximal ideal $Q \neq P_{i}, 1 \leq i \leq n$. Thus, for every maximal ideal q of $R,(M / T(M))_{q}$ is free. Since R is a domain, then by [1, Remark, p. 112], $(M / T(M))$ is projective of constant rank. Hence, $M \cong(M / T(M)) \oplus T(M)$. On the other hand $T(M)_{P_{i}}=T\left(M_{P_{i}}\right) \cong R_{P_{i}} / P_{i} R_{P_{i}}$ and $T(M)_{Q}=0$, for every maximal ideal $Q \neq P_{i}, 1 \leq i \leq n$. Therefore, by Lemma 2.4, $T(M) \cong$ $R / P_{1} \oplus \ldots \oplus R / P_{n}$. Hence, $M \cong P \oplus R / P_{1} \oplus \ldots \oplus R / P_{n}$, for some projective R-module P.

Lemma 2.6. Let (R, P) be a regular local ring and M be a finitely generated R-module. If $\operatorname{dim}(R) \leq 2$ and $\operatorname{ord}_{R}\left(\operatorname{ann}_{R}(M)\right)=1$, then $M \cong R / I_{1} \oplus \ldots \oplus R / I_{k}$ for some ideals $I_{i}, 1 \leq i \leq k$.
Proof. If $\operatorname{dim}(R)=1$, then R is a PID. Hence, $M \cong R / I_{1} \oplus \ldots \oplus R / I_{k}$, for some ideals $I_{i}, 1 \leq i \leq k$. Let $\operatorname{dim}(R)=2$ and $\operatorname{ann}_{R}(M) \nsubseteq P^{2}$. Then, there is an element $y \in \operatorname{ann}_{R}(M) \backslash P^{2}$. Put $\bar{R}=R /\langle y\rangle$. Then, \bar{R} is a regular local ring of dimension 1. Hence, $M \cong \bar{R} / \overline{I_{1}} \oplus \ldots \oplus \bar{R} / \overline{I_{k}}=R / J_{1} \oplus \ldots \oplus R / J_{k}$, for some ideals I_{i} and $J_{i}, 1 \leq i \leq k$.

Theorem 2.7. Let (R, P) be a regular local ring and M be a finitely generated R-module. If $\operatorname{dim}(R)=n \geq 3$ and there exist $x_{1}, x_{2}, \ldots, x_{n-1} \in a n n_{R}(M) \backslash P^{2}$ such that $\operatorname{ann}_{R}(M) \nsubseteq P^{2}+\left\langle x_{1}, \ldots, x_{n-2}\right\rangle$, then $M \cong R / I_{1} \oplus \ldots \oplus R / I_{k}$, for some ideals $I_{i}, 1 \leq i \leq k$.

Proof. ;The proof is; by induction on n. Let $n=3$. Put $\bar{R}=R /\left\langle x_{1}\right\rangle$. Then, \bar{R} is a regular local ring of dimension 2 . Since $\operatorname{ann}_{R}(M) \nsubseteq P^{2}+\left\langle x_{1}\right\rangle$, then $\operatorname{ann}_{\bar{R}}(M) \nsubseteq \overline{P^{2}}$ then by Lemma $2.6, M \cong R / I_{1} \oplus \ldots \oplus R / I_{k}$. Assume that $\operatorname{dim}(R)=n$. Put $\bar{R}=R /\left\langle x_{1}\right\rangle$. Then, \bar{R} is a regular local ring of dimension $n-$ 1. Since $\operatorname{ann}_{R}(M) \nsubseteq P^{2}+\left\langle x_{1}, \ldots, x_{n-2}\right\rangle$, then $\operatorname{ann}_{\bar{R}}(M) \nsubseteq \overline{P^{2}}+\overline{\left\langle x_{2}, \ldots, x_{n-2}\right\rangle}$. By induction hypothesis $M \cong \bar{R} / \overline{I_{1}} \oplus \ldots \oplus \bar{R} / \overline{I_{k}}=R / J_{1} \oplus \ldots \oplus R / J_{k}$, for some ideals $J_{i}, 1 \leq i \leq k$.

3. Some othre cases

Theorem 3.1. Let (R, P) be a Noetherian local UFD and let M be a finitely generated R-module. Assume that there exists a free presentation

$$
R^{n} \xrightarrow{\varphi} R^{m} \xrightarrow{\psi} M \longrightarrow 0 \text { of } M \text { such that } \operatorname{rank}(\varphi)=1 . \text { If } \text { ord }_{R}(M)=2
$$ then

(i) If M is torsionfree, then $M \cong R^{m} /<\left(a_{1}, \ldots, a_{m}\right)^{t}>$, for some $a_{i} \in R$, $1 \leq i \leq m$.
(ii) If M is not torsionfree, then $M \cong R^{m-1} \oplus R / I(M)$ or $M \cong R^{m} / J<$ $\left(a_{1}, \ldots, a_{m}\right)^{t}>$, for some ideal $J \neq R$ and for some $a_{i} \in R, 1 \leq i \leq m$.

Proof. By [3, Corollary 20.4], we can assume that
$R^{n} \xrightarrow{\varphi} R^{m} \xrightarrow{\psi} M \longrightarrow 0$ is a minimal free presentation of M. Let $\left(a_{i j}\right) \in M_{m \times n}(R)$ be a matrix presentation of φ. Thus, $a_{i j} \in P$, for all i, j. Without loss of generality, we may assume that $a_{i 1} \neq 0,1 \leq i \leq t$ and $a_{(t+1) 1}=\ldots=a_{m 1}=0$. Put $d_{i}=G C D\left(a_{i 1}, a_{(i+1) 1}\right), 1 \leq i \leq t$ and, for the moment, fix $j, 2 \leq j \leq n$. Since $\operatorname{rank}(\varphi)=1$, then for $i=1, \ldots, t$, we have $a_{i 1} a_{(i+1) j}=a_{i j} a_{(i+1) 1}$. Similar to the proof of Theorem 2.3, we have $\left.\frac{d_{t}}{G C D\left(d_{1}, \ldots, d_{t}\right)} \right\rvert\, r_{t j}$. We consider two cases.
Case 1: Suppose that $G C D\left(a_{11}, \ldots, a_{m 1}\right)=1$. Therefore, M is isomorphic to $R^{m} /<\left(a_{11}, \ldots, a_{m 1}\right)^{t}>$ and $p d_{R}(M)=1$.
Case 2: Suppose that $G C D\left(a_{11}, \ldots, a_{m 1}\right)=x_{0} \in P$ and, for the moment, fix $j, 2 \leq j \leq n$. By the same argument and notation as in Case 1, we have $a_{i j}=\frac{a_{i 1}}{x_{0}} r_{t j}^{\prime}$, for some $r_{t j}^{\prime}, 1 \leq i \leq t, 2 \leq j \leq n$. If there exists some $r_{t j}^{\prime}, 2 \leq j \leq n$, such that $r_{t j}^{\prime} \notin P$, then $I(M)=<\frac{a_{11}}{x_{0}}, \ldots, \frac{a_{m 1}}{x_{0}}>$ which implies that M is isomorphic to $R^{m} /<\left(\frac{a_{11}}{x_{0}}, \ldots, \frac{a_{m 1}}{x_{0}}\right)^{t}>$. Now, suppose $r_{t j}^{\prime} \in P$, for all $j, 2 \leq j \leq n$. Put $J=<x_{o}, r_{t j}^{\prime}: 2 \leq j \leq n>$. If for all $i, 1 \leq i \leq t, \frac{a_{i 1}}{x_{0}} \in I(M)$, then $I(M) \subseteq P^{3}$, a contradiction. Without loss of generality suppose $\frac{a_{11}}{x_{0}} \notin I(M)$. If $\frac{a_{11}}{x_{0}} \notin P$, then $J=I(M)$ and M is isomorphic to $R^{m-1} \oplus R / I(M)$ in this case. Now, assume that $\frac{a_{i 1}}{x_{0}} \in P$ for all $1 \leq i \leq m$. It is easily seen that $M \cong R^{m} / J<\left(a_{1}, \ldots, a_{m}\right)^{t}>$, where $\operatorname{ord}_{R}(J)=\operatorname{ord}_{R}\left\langle a_{1}, \ldots, a_{m}\right\rangle=1$ and $J\left\langle a_{1}, \ldots, a_{m}\right\rangle=I(M)$.

The following theorem represents some properties of module M with $\operatorname{Fitt}_{0}(M)=P^{n}$.

Theorem 3.2. Let (R, P) be a Noetherian local ring and M be a finitely generated R-module with $\operatorname{Fitt}_{0}(M)=P^{n}$, for some positive integer n. Then,
(i) M is generated by n elements.
(ii) M is an Artinian R-module.
(iii) Every submodule of M is P-primary, particularly Ass $(M)=\{P\}$.
(iv) $M / P^{n-1} M$ is cyclic if and only if $M \cong R / P^{n}$.
(v) If $p d_{R}(M)<\infty$, then $p d_{R}(M)=\operatorname{depth}(P, R)$.

Proof. (i) Let $\operatorname{Fitt}_{0}(M)=P^{n}$ and M be generated by r elements. Then, $P^{n}=\operatorname{Fitt}_{0}(M)=I_{r}(M) \subseteq P^{r}$. So, by Nakayama's Lemma $r \leq n$.
(ii) Since $\operatorname{Fitt}_{0}(M)=P^{n} \subseteq \operatorname{ann}_{R}(M)$, then $P^{n-1} M$ is an R / P-module. So,
there exists positive integers m such that $P^{n-1} M \cong(R / P)^{m}$. Hence, $P^{n-1} M$ is Artinian. Since $P^{n-1} \subseteq \operatorname{ann}_{R}\left(M / P^{n-1} M\right)$, then $M / P^{n-1} M$ is $\left(R / P^{n-1}\right)$ module. Since R / P^{n-1} is an Artinian ring and $M / P^{n-1} M$ is a finitely generated module, then $M / P^{n-1} M$ is Artinian. \quad So, $0 \longrightarrow P^{n-1} M \longrightarrow M \longrightarrow$ $M / P^{n-1} M \longrightarrow 0$ is an exact sequence of R-modules. Since $P^{n-1} M$ and $M / P^{n-1} M$ are Artinian R-modules, then M is Artinian.
(iii) Let N be a proper submodule of M. Since $P^{n}=\operatorname{Fitt}_{0}(M) \subseteq \operatorname{ann}_{R}(M) \subseteq$ $(N: M)$, then $\sqrt{ }(N: M)=P$. It is easily seen that N is P-primary submodule of M.
(iv) If $n=1$, then $\operatorname{Fitt}_{0}(M)=P \subseteq \operatorname{ann}(M)$. Thus, $M \cong R / P$. Let $n \geq$ 2 and $M / P^{n-1} M$ is cyclic. By proof of (ii) we have the exact sequence
$0 \longrightarrow P^{n-1} M \xrightarrow{\varphi} M \xrightarrow{\psi} R / P \longrightarrow 0$. By (i) there exist x_{1}, \ldots, x_{n} in M such that $M=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. Since ψ is onto, then there is $m \in M$ such that $\psi(m)=1+P$. Let $m=r_{1} x_{1}+\ldots+r_{n} x_{n}$ for some $r_{i} \in R, 1 \leq i \leq n$. If $r_{i} \in P$, for every i, then $\psi(m)=r_{1} \psi\left(x_{1}\right)+\ldots+r_{n} \psi\left(x_{n}\right)=0=1+P$, a contradiction. Let $r_{1} \notin P$. Then, $M=\left\langle m, x_{2}, \ldots, x_{n}\right\rangle$. On the other hand, for $i=2, \ldots, n$ there exists $a_{i} \in R$ such that $\psi\left(x_{i}\right)=a_{i}+P=a_{i} \psi(m)=\psi\left(a_{i} m\right)$. Hence, $x_{i}-a_{i} m \in$ ker $\psi=\operatorname{Im} \varphi=P^{n-1} M$. We have $M=\left\langle m, x_{2}, \ldots, x_{n}\right\rangle=P^{n-1} M+\langle m\rangle$. So, $P^{n-1} M=P^{n-1}\left(P^{n-1} M+\langle m\rangle\right)=P^{n-1} m$ and $M=P^{n-1} m+\langle m\rangle=\langle m\rangle$. Hence, $M \cong R / \operatorname{ann}_{R}(M)$. Since $\operatorname{Fitt}_{0}(M)=P^{n}$, then $M \cong R / P^{n}$.
(v) By Auslander-Buchsbaum formula we have,
$p d_{R}(M)=\operatorname{depth}(P, R)-\operatorname{depth}(P, M)$. By $(i i i), \operatorname{Ass}(M)=\{P\}$, so $p d_{R}(M)=$ $\operatorname{depth}(P, R)$.

Example 3.3. Let R be the ring $K[[x, y]]$ of formal power series over a field K. It is known that $R=K[[x, y]]$ is a Noetherian local ring with maximal ideal $P=\langle x, y\rangle$. Consider $M=R^{2} /<\left(\begin{array}{ccc}x & y & 0 \\ 0 & x & y\end{array}\right)>$ as an R-module. Then, $\operatorname{Fitt}_{0}(M)=P^{2}$.

Let M be an R-module. We say that M is a prime module if $\operatorname{ann}_{R}(N)=$ $\operatorname{ann}_{R}(M)$ for every non-zero submodule N of M [8].
Let (R, P) be a Noetherian local ring and M be a finitely generated prime R module with $\operatorname{Fitt}_{0}(M)=P^{n}$, for some positive integer n. By Theorem 3.2, part (iii), $P \in \operatorname{Ass}(M)$. So, there exists an element $x \in M$ such that $P=\operatorname{ann}_{R}(x)$. Since M is prime, then $\operatorname{ann}_{R}(M)=P$, consequently $M \cong(R / P)^{n}$.
An R-module M is called a multiplication module if for each submodule N of $M, N=I M$ for some ideal I of R. In this case we can take $I=(N: M)$ [8].

Let (R, P) be a Noetherian local ring and M be a finitely generated R module. Let M be a multiplication module with $\operatorname{Fitt}_{0}(M)=P^{n}$, for some positive integer n. Let N be a submodule of M such that $P M \subseteq N$. There exists an ideal I of R such that $N=I M$. So, $P M \subseteq N=I M \subseteq P M$. This
implies that $P M$ is a maximal submodule of M. Thus, $M / P M \cong R / P$. Hence, by Theorem 3.2, part (iv), $M \cong R / P^{n}$.

Acknowledgments

The authors would like to thank the referee(s) for their useful comments and suggestions.

References

[1] N. Bourbaki, Commutative Algebra, Springer-Verlag, Berlin, 1998.
[2] D. A. Buchsbaum and D. Eisenbud, What makes a complex exact? J. Algebra 25 (1973) 259-268.
[3] D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Springerverlag, New York, 1995.
[4] S. Hadjirezaei and S. Hedayat, On the first nonzero Fitting ideal of a module over a UFD, Comm. Algebra 41 (2013), no. 1, 361-366.
[5] V. Kodiyalam, Integrally closed modules over two-dimensional regular local ring, Trans. Amer. math. soc. 347 (1995), no. 9, 3551-3573.
[6] J. Lipman, On the Jacobian ideal of the module of differentials, Proc. Amer. Math. Soc. 21 (1969) 423-426.
[7] J. Ohm, On the first nonzero Fitting ideal of a module, J. Algebra 320 (2008), no. 1, 417-425.
[8] Y. Tiras and M. Alkan, Prime modules and submodules, Comm. Algebra 31 (2003), no. 11, 5253-5261.
(S. Hadjirezaei) Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7718897111, Rafsanjan, Iran.

E-mail address: s.hajirezaei@vru.ac.ir
(S. Karimzadeh) Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O. Box 7718897111 , Rafsanjan, Iran.

E-mail address: karimzadeh@vru.ac.ir

[^0]: Article electronically published on August 20, 2016.
 Received: 14 May 2014, Accepted: 2 June 2015.

 * Corresponding author.

