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Abstract. Let (R,P ) be a Noetherian unique factorization domain (UFD)

and M be a finitely generated R-module. Let I(M) be the first nonzero

Fitting ideal of M and the order of M , denoted ordR(M), be the largest
integer n such that I(M) ⊆ Pn. In this paper, we show that if M is a
module of order one, then either M is isomorphic with direct sum of a
free module and a cyclic module or M is isomorphic with a special mod-

ule represented in the text. We also assert some properties of M while
ordR(M) = 2.
Keywords: Fitting ideals, minimal free presentation, order of a module.
MSC(2010): Primary: 13C05; Secondary: 13D05, 11Y50.

1. Introduction

Throughout this paper R denotes a Noetherian commutative ring with iden-
tity and all modules are unital. Let M be a finitely generated R-module. For
a set {x1, . . . , xn} of generators of M there exists a complex

Rs
φ // Rr

ψ // M // 0 , where Rr and Rs are free R-modules and the
set {e1, . . . , er} is a basis for Rr and the R-homomorphism ψ is defined by

ψ(ej) = xj . The complex Rs
φ // Rr

ψ // M // 0 is called a free pre-
sentation of M . Let the kernel of ψ be generated by ui = a1ie1 + . . . + arier,
1 ≤ i ≤ s and A = (aij) ∈Mr×s(R) be the matrix presentation of φ and Ij(φ)
be the ideal of R generated by the minors of size j of matrix A. By convention,
the determinant of the 0× 0 matrix is 1. In general, we set Ij(φ) = R if j ≤ 0.

By Fitting’s Lemma [3, Corollary 20.4], the ideals Ir−j(φ), 0 ≤ j < ∞, are
independent of the choice of free presentation of M . So, we define the jth
Fitting ideal of M to be the ideal Fittj(M) = Ir−j(φ). The most important
Fitting ideal of M is the first of the Fittj(M) that is nonzero. We shall denote
this Fitting ideal by I(M). Thus, I(M) = Irankφ(φ). Hence, we have R =
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I0(φ) ⊇ I1(φ) ⊇ · · · ⊇ Irankφ(φ) ⊋ 0. Let P be a prime ideal of R and MP

and φP be the localization of M and φ in P , respectively. Note that if I(M)
contains a nonzerodivisor, then rank(φ) = rank(φP ) and so I(MP ) = I(M)P .
Let I be an ideal of a Noetherian local ring (R,P ), by definition, ordR(I) is
the largest integer n such that I ⊆ Pn. We define the order of M , denoted
ordR(M), to be ordR(I(M)) [5].

2. Module of order one

A complex F : . . . // Fn
φn // Fn−1

// . . . of free modules Fi, over a

local ring (R,P ) is called minimal if the maps in the complex F ⊗ R/P are
all 0. This simply means that any matrix representing φn has all its entries in
P . By [3, Theorem 20.2], there is, up to isomorphism, only one minimal free
resolution of M .

Theorem 2.1. Let (R,P ) be a Noetherian local ring and I be an ideal of R.
Then, ordR(I) = 1 if and only if, for every finitely generated R-module M ,
I ⊆ Fitt0(M) implies that M is cyclic.

Proof. Let F
φ // G // M // 0 be a free presentation ofM and (aij) ∈

Mm×n(R) be a matrix presentation of φ. By [3, Corollary 20.4], we can as-

sume that F
φ // G // M // 0 is a minimal free presentation of M .

Thus, aij ∈ P , for all i, j. Let ordR(I) = 1 and M be a finitely generated
R-module such that I ⊆ Fitt0(M). Therefore, ordR(Fitt0(M)) = 1. Let M be
generated by r elements. So, Fitt0(M) = Ir(M) ⊆ P r. Hence, r = 1 and M
is cyclic. Conversely, assume that I ⊆ Fitt0(M) implies that M is cyclic, for
every finitely generated R-module M . If I ⊆ P 2, put M = R/P ⊕R/P . Then,
I ⊆ Fitt0(M) = P 2 and M is not cyclic, a contradiction. □
Proposition 2.2. Let (R,P ) be a Noetherian local ring and let M be a finitely

generated R-module with F
φ // G

ψ // M // 0 as a minimal free pre-
sentation of M . If ordR(M) = n, then rank(φ) ≤ n.

Proof. If rank(φ) ≥ n+ 1, then I(M) ⊆ Pn+1, a contradiction. □
Note that in a unique factorization domain (UFD), a greatest common di-

visor (GCD) of any collection of elements always exists. Also, for every a, b, c
in a UFD, if a | bc and a, b are relatively prime, then a | c.

Theorem 2.3. Let (R,P ) be a Noetherian local UFD and let M be a finitely
generated R-module. If ordR(M) = 1 then
(i) M is isomorphic to Rn/ < (a1, . . . , an)

t >, where I(M) =< a1, . . . , an >
and n is a positive integer if M is torsionfree, and
(ii) M is isomorphic to Rn ⊕R/I(M), for some positive integer n if M is not
torsionfree.
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Proof. Let F
φ // G

ψ // M // 0 be a free presentation ofM and (aij) ∈
Mm×n(R) be a matrix presentation of φ. By [3, Corollary 20.4], we can assume

that F
φ // G

ψ // M // 0 is a minimal free presentation of M . Thus,
aij ∈ P , for all i, j. Without loss of generality, we may assume that ai1 ̸= 0,
1 ≤ i ≤ t and a(t+1)1 = . . . = am1 = 0. Put di = GCD(ai1, a(i+1)1), 1 ≤ i ≤ t
and, for the moment, fix j, 2 ≤ j ≤ n. Since rank(φ) = 1, for i = 1, . . . , t,

then we have ai1a(i+1)j = aija(i+1)1. Thus,
ai1
di
a(i+1)j = aij

a(i+1)1

di
and so

ai1
di

| aij which implies that there exists rij ∈ R such that aij =
ai1
di
rij and so

a(i+1)j =
a(i+1)1

di
rij , 1 ≤ i ≤ t. Therefore, aij =

ai1
di
rij =

ai1
di−1

r(i−1)j , 2 ≤ i ≤ t

and a1j =
a11
d1
r1j . Hence, rijdi−1 = r(i−1)jdi. Now, by induction on i, we show

that
di

GCD(d1, . . . , di)
| rij , 1 ≤ i ≤ t. For i = 2, since r2jd1 = r1jd2, then

d2
GCD(d1, d2)

| r2j . Assume that disi = rijGCD(d1, . . . , di), for some si ∈ R.

We have r(i+1)jdisi = rijdi+1si. Thus,

(2.1) r(i+1)jGCD(d1, . . . , di) = di+1si.

On the other hand, from r(i+1)jdi = rijdi+1 we obtain
di+1

GCD(di, di+1)
| r(i+1)j

and so there exists s′i ∈ R such that

(2.2) r(i+1)jGCD(di, di+1) = di+1s
′
i.

Combining (2.1) and (2.2), we have

di+1siGCD(di, di+1) = r(i+1)jGCD(d1, . . . , di)GCD(di, di+1)

= di+1s
′
iGCD(d1, . . . , di).

Thus, siGCD(di, di+1) = s′iGCD(d1, . . . , di) and so
GCD(di, di+1)

GCD(d1, . . . , di+1)
| s′i.

Now, by (2.2), we have
di+1GCD(di, di+1)

GCD(d1, . . . , di+1)
| r(i+1)jGCD(di, di+1) and hence

di+1

GCD(d1, . . . , di+1)
| r(i+1)j which completes the induction. If i = t, then

(2.3)
dt

GCD(d1, . . . , dt)
| rtj .

Now, we consider two cases.
Case 1: Suppose that GCD(a11, . . . , am1) = 1. By (2.3), dt | rtj . Since
rtjdt−1 = r(t−1)jdt, then dt−1 | r(t−1)j . Continuing this process, we have

di | rij , 1 ≤ i ≤ t. As a consequence, aij =
ai1
di
rij = ai1

rij
di

, 1 ≤ i ≤ t,
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2 ≤ j ≤ n. So, I(M) =< a11, . . . , am1 >. It is easily seen that kerψ = Imφ =<

(a11, . . . , am1)
t >. This means there exists 0 // R // G // M // 0 ,

a free resolution ofM . Therefore, M is isomorphic to Rm/ < (a11, . . . , am1)
t >

and pdR(M) = 1.

Case 2: Suppose that GCD(a11, . . . , am1) = x0 ∈ P and, for the moment,

fix j, 2 ≤ j ≤ n. By (2.3),
dt

GCD(d1, . . . , dt)
| rtj which implies that

dt
x0

| rtj .

Therefore, there exists r′tj ∈ R such that rtj =
dt
x0
r′tj . Thus, atj =

at1
x0
r′tj .

On the other hand, r(t−1)jdt = rtjdt−1. Hence, r(t−1)jdt =
dt
x0
r′tjdt−1 and so

r(t−1)j = r′tj
dt−1

x0
. Therefore, a(t−1)j =

a(t−1)1

d(t−1)j
r(t−1)j =

a(t−1)1

x0
r′tj . Continu-

ing this process we obtain rij = r′tj
di
x0

and so aij =
ai1
x0
r′tj , 1 ≤ i ≤ t, 2 ≤ j ≤ n.

If there exists some r′tj , 2 ≤ j ≤ n, such that r′tj ̸∈ P , then I(M) =<
a11
x0

, . . . ,
am1

x0
> and as in Case 1, kerψ = Imφ =< (

a11
x0

, . . . ,
am1

x0
)t > which

implies that M is isomorphic to Rm/ < (
a11
x0

, . . . ,
am1

x0
)t > and pdR(M) = 1.

Now, suppose r′tj ∈ P , 2 ≤ j ≤ n. Since aij =
ai1
x0
r′tj , then I =< aij : 1 ≤ i ≤

m, 1 ≤ j ≤ n >=< xo, r
′
tj : 2 ≤ j ≤ n >. If for all i, 1 ≤ i ≤ t,

ai1
x0

∈ P , then

I(M) ⊆ P 2 a contradiction. Without loss of generality, suppose
a11
x0

̸∈ P .

Put di1...ij := GCD(ai11, . . . , aij1). Define θ : Rm // Rm−1 ⊕R/I(M)

by θ(x1, . . . , xm)t = (
a21
x0

x1 − a11
x0

x2, . . . ,
am1

x0
x1 − a11

x0
xm, x1 + I(M))t. Let

(x1, . . . , xm)t ∈ kerθ, so that
ai1
xo
x1 =

a11
x0

xi, 2 ≤ i ≤ m and x1 ∈ I(M).

Therefore,
ai1
d1i

| xi, which implies that there exists s1i ∈ R such that x1 =

a11
d1i

s1i and xi =
ai1
d1i

s1i, 2 ≤ i ≤ m. Therefore,
a11
d12

s12 =
a11
d13

s13. ¡Thus¿,

s12
d13
d123

= s13
d12
d123

. Hence, there exists s123 ∈ R such that s12 =
d12
d123

s123

and s13 =
d13
d123

s123. Again, by induction on i, we show that s1i =
d1i
d12...i

s12...i

and s12...i =
d12...i

d12...(i+1)
s12...(i+1), for some s12...i ∈ R, 2 ≤ i ≤ t. Let s12...i =

d12...i
d12...(i+1)

s12...(i+1) and s1i =
d1i
d12...i

s12...i. We have
a11
d1i

s1i =
a11

d1(i+1)
s1(i+1).
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So, s1id1(i+1) = s1(i+1)d1i. Therefore,
d1i
d12...i

d1(i+1)s12...i = s1(i+1)d1i. Hence,

s12...i
d1(i+1)

d12...(i+1)
= s1(i+1)

d12...i
d12...(i+1)

. So, there exists s12...(i+1) ∈ R such that

s1(i+1) =
d1(i+1)

d12...(i+1)
s12...(i+1) and s12...i =

d12...i
d12...(i+1)

s12...(i+1). This com-

pletes the induction. Hence, s1t =
d1t
d12...t

s12...t. Put s = s12...t. Therefore,

s1t =
d1t
x0
s. So, x1 =

a11
d1t

s1t =
a11
x0

s. Also, xi =
ai1
d1i

s1i =
ai1
d12...i

s12...i =

ai1
d12...(i+1)

s12...(i+1) = . . . =
ai1
d12...t

s12...t =
ai1
x0
s, 2 ≤ i ≤ t. On the other hand,

a11
x0

s = x1 ∈ I(M) and
a11
x0

̸∈ P . Therefore, s ∈ I(M). Since I(M) =<

xo, r
′
tj : 2 ≤ j ≤ n >, then there exists ri ∈ R, 0 ≤ i ≤ n, i ̸= 1, such that

s = r0x0+r2r
′
t2+· · ·+rnr′tn. So, xi =

ai1
x0
s =

ai1
x0

(r0x0+r2r
′
t2+· · ·+rnr′tn) =

r0ai1 + r2ai2 + · · ·+ rnain. So, (x1, . . . , xm)t ∈ Imφ. This means kerθ ⊆ Imφ.

It is clear that Imφ ⊆ kerθ. Since
a11
x0

̸∈ P , it is easily seen that θ is an

epimorphism. Therefore, M is isomorphic to Rm−1⊕R/I(M) in this case. □
Lemma 2.4. Let R be a Noetherian ring and P1, ..., Pn be distinct maximal
ideals of R. Suppose that M be a finitely generated R-module such that MPi

∼=
RPi/P

ti
i RPi , for some ti ∈ N, 1 ≤ i ≤ n, and for every maximal ideal Q ̸= Pi,

1 ≤ i ≤ n, MQ = 0. Then, M ∼= R/P t11 ⊕ ...⊕R/P tnn .

Proof. Put Ai = {annR(y) : MPi = ⟨y/1⟩}, for i = 1, ..., n. Let MPi = ⟨xi/1⟩
such that annR(xi) is maximal in Ai. Assume that i, 1 ≤ i ≤ n, be arbitrary

and fixed. Let r ∈ P tii . Then,
r

1

xi
1

= 0. So, there exists s ∈ R \ Pi such

that rsxi = 0. Since MPi = ⟨sxi/1⟩ and annR(xi) is maximal in Ai, then

r ∈ annR(sxi) = annR(xi). Now, let r ∈ annR(xi). So,
r

1
∈ P tii RPi . Since

P tii is Pi-primary, then r ∈ P tii . Hence, annR(xi) = P tii . Put P = ∩ni=1P
ti
i

and define f : R/P −→ M ; f(r + P ) = r(x1 + ... + xn). For every j ̸= i,

let sj ∈ P
tj
j \ Pi. Then,

xj
1

=
sjxj
sj

= 0 in MPi . On the other hand for

every maximal ideal Q ̸= Pi, fQ = 0 is an isomorphism between two zero
modules. Thus, fq is an isomorphism for every maximal ideal q of R. Hence,

M ∼= R/P ∼= R/P t11 ⊕ ...⊕R/P tnn . □
Recall that an R-module M is projective of constant rank n if and only if

MP is free of rank n over RP , for every prime ideal P of R.

Proposition 2.5. Let R be Noetherian UFD and M be a finitely generated
nontorsionfree R-module. Suppose that P1, ..., Pn be distinct maximal ideals of
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R such that I(M) = P1...Pn. Then, M ∼= P ⊕R/P1 ⊕ ...⊕R/Pn where P is a
projective R-module (of constant rank).

Proof. Since I(MPi) = PiRPi , then by Theorem 2.3, MPi
∼= Rmi

Pi
⊕ (R/Pi)Pi

for some positive integers mi, 1 ≤ i ≤ n. Let Q ̸= Pi be a maximal ideal of
R. Then, I(MQ) = RQ. Hence, by [2, Lemma1], MQ is a free RQ-module,
for every maximal ideal Q ̸= Pi, 1 ≤ i ≤ n. Thus, for every maximal ideal q
of R, (M/T (M))q is free. Since R is a domain, then by [1, Remark, p. 112],
(M/T (M)) is projective of constant rank. Hence, M ∼= (M/T (M)) ⊕ T (M).
On the other hand T (M)Pi = T (MPi)

∼= RPi/PiRPi and T (M)Q = 0, for
every maximal ideal Q ̸= Pi, 1 ≤ i ≤ n. Therefore, by Lemma 2.4, T (M) ∼=
R/P1 ⊕ ... ⊕ R/Pn. Hence, M ∼= P ⊕ R/P1 ⊕ ... ⊕ R/Pn, for some projective
R-module P . □

Lemma 2.6. Let (R,P ) be a regular local ring and M be a finitely generated
R-module. If dim(R) ≤ 2 and ordR(annR(M)) = 1, thenM ∼= R/I1⊕...⊕R/Ik
for some ideals Ii, 1 ≤ i ≤ k.

Proof. If dim(R) = 1, then R is a PID. Hence, M ∼= R/I1 ⊕ ... ⊕ R/Ik, for
some ideals Ii, 1 ≤ i ≤ k. Let dim(R) = 2 and annR(M) ⊈ P 2. Then, there is

an element y ∈ annR(M)\P 2. Put R = R/⟨y⟩. Then, R is a regular local ring
of dimension 1. Hence, M ∼= R/I1 ⊕ ...⊕ R/Ik = R/J1 ⊕ ...⊕ R/Jk, for some
ideals Ii and Ji, 1 ≤ i ≤ k. □

Theorem 2.7. Let (R,P ) be a regular local ring and M be a finitely generated
R-module. If dim(R) = n ≥ 3 and there exist x1, x2, ..., xn−1 ∈ annR(M) \ P 2

such that annR(M) ⊈ P 2 + ⟨x1, ..., xn−2⟩, then M ∼= R/I1 ⊕ ... ⊕ R/Ik, for
some ideals Ii, 1 ≤ i ≤ k.

Proof. ¡The proof is¿ by induction on n. Let n = 3. Put R = R/⟨x1⟩. Then,
R is a regular local ring of dimension 2. Since annR(M) ⊈ P 2 + ⟨x1⟩, then
annR(M) ⊈ P 2 then by Lemma 2.6, M ∼= R/I1 ⊕ ... ⊕ R/Ik. Assume that

dim(R) = n. Put R = R/⟨x1⟩. Then, R is a regular local ring of dimension n−
1. Since annR(M) ⊈ P 2 + ⟨x1, ..., xn−2⟩, then annR(M) ⫅̸ P 2 + ⟨x2, ..., xn−2⟩.
By induction hypothesis M ∼= R/I1 ⊕ ...⊕R/Ik = R/J1 ⊕ ...⊕R/Jk, for some
ideals Ji, 1 ≤ i ≤ k. □

3. Some othre cases

Theorem 3.1. Let (R,P ) be a Noetherian local UFD and let M be a finitely
generated R-module. Assume that there exists a free presentation

Rn
φ // Rm

ψ // M // 0 ofM such that rank(φ) = 1. If ordR(M) = 2,
then
(i) If M is torsionfree, then M ∼= Rm/ < (a1, . . . , am)t >, for some ai ∈ R,
1 ≤ i ≤ m.
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(ii) If M is not torsionfree, then M ∼= Rm−1 ⊕ R/I(M) or M ∼= Rm/J <
(a1, . . . , am)t > , for some ideal J ̸= R and for some ai ∈ R, 1 ≤ i ≤ m.

Proof. By [3, Corollary 20.4], we can assume that

Rn
φ // Rm

ψ // M // 0 is a minimal free presentation of M . Let
(aij) ∈ Mm×n(R) be a matrix presentation of φ. Thus, aij ∈ P , for all
i, j. Without loss of generality, we may assume that ai1 ̸= 0, 1 ≤ i ≤ t
and a(t+1)1 = . . . = am1 = 0. Put di = GCD(ai1, a(i+1)1), 1 ≤ i ≤ t and,
for the moment, fix j, 2 ≤ j ≤ n. Since rank(φ) = 1, then for i = 1, . . . , t,
we have ai1a(i+1)j = aija(i+1)1. Similar to the proof of Theorem 2.3, we have

dt
GCD(d1, . . . , dt)

| rtj . We consider two cases.

Case 1: Suppose that GCD(a11, . . . , am1) = 1. Therefore, M is isomorphic to
Rm/ < (a11, . . . , am1)

t > and pdR(M) = 1.
Case 2: Suppose that GCD(a11, . . . , am1) = x0 ∈ P and, for the moment,
fix j, 2 ≤ j ≤ n. By the same argument and notation as in Case 1, we

have aij =
ai1
x0
r′tj , for some r′tj , 1 ≤ i ≤ t, 2 ≤ j ≤ n. If there exists some

r′tj , 2 ≤ j ≤ n, such that r′tj ̸∈ P , then I(M) =<
a11
x0

, . . . ,
am1

x0
> which

implies that M is isomorphic to Rm/ < (
a11
x0

, . . . ,
am1

x0
)t >. Now, suppose

r′tj ∈ P, for all j, 2 ≤ j ≤ n. Put J =< xo, r
′
tj : 2 ≤ j ≤ n >. If for all

i, 1 ≤ i ≤ t,
ai1
x0

∈ I(M), then I(M) ⊆ P 3, a contradiction. Without loss

of generality suppose
a11
x0

̸∈ I(M). If
a11
x0

̸∈ P , then J = I(M) and M is

isomorphic to Rm−1 ⊕ R/I(M) in this case. Now, assume that
ai1
x0

∈ P for

all 1 ≤ i ≤ m. It is easily seen that M ∼= Rm/J < (a1, . . . , am)t >, where
ordR(J) = ordR⟨a1, ..., am⟩ = 1 and J⟨a1, ..., am⟩ = I(M). □

The following theorem represents some properties of module M with
Fitt0(M) = Pn.

Theorem 3.2. Let (R,P ) be a Noetherian local ring and M be a finitely gen-
erated R-module with Fitt0(M) = Pn, for some positive integer n. Then,
(i) M is generated by n elements.
(ii) M is an Artinian R-module.
(iii) Every submodule of M is P -primary, particularly Ass(M) = {P}.
(iv) M/Pn−1M is cyclic if and only if M ∼= R/Pn.
(v) If pdR(M) <∞, then pdR(M) = depth(P,R).

Proof. (i) Let Fitt0(M) = Pn and M be generated by r elements. Then,
Pn = Fitt0(M) = Ir(M) ⊆ P r. So, by Nakayama’s Lemma r ≤ n.
(ii) Since Fitt0(M) = Pn ⊆ annR(M), then Pn−1M is an R/P -module. So,
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there exists positive integers m such that Pn−1M ∼= (R/P )m. Hence, Pn−1M
is Artinian. Since Pn−1 ⊆ annR(M/Pn−1M), then M/Pn−1M is (R/Pn−1)-
module. Since R/Pn−1 is an Artinian ring and M/Pn−1M is a finitely gener-
ated module, then M/Pn−1M is Artinian. So, 0 −→ Pn−1M −→ M −→
M/Pn−1M −→ 0 is an exact sequence of R-modules. Since Pn−1M and
M/Pn−1M are Artinian R-modules, then M is Artinian.
(iii) Let N be a proper submodule of M . Since Pn = Fitt0(M) ⊆ annR(M) ⊆
(N :M), then

√
(N :M) = P . It is easily seen that N is P -primary submodule

of M .
(iv) If n = 1, then Fitt0(M) = P ⊆ ann(M). Thus, M ∼= R/P . Let n ≥
2 and M/Pn−1M is cyclic. By proof of (ii) we have the exact sequence

0 // Pn−1M
φ // M

ψ // R/P // 0 . By (i) there exist x1, ..., xn in

M such that M = ⟨x1, ..., xn⟩. Since ψ is onto, then there is m ∈M such that
ψ(m) = 1+P . Let m = r1x1+ ...+ rnxn for some ri ∈ R, 1 ≤ i ≤ n. If ri ∈ P ,
for every i, then ψ(m) = r1ψ(x1) + ...+ rnψ(xn) = 0 = 1+P , a contradiction.
Let r1 /∈ P . Then,M = ⟨m,x2, ..., xn⟩. On the other hand, for i = 2, ..., n there
exists ai ∈ R such that ψ(xi) = ai+P = aiψ(m) = ψ(aim). Hence, xi−aim ∈
kerψ = Imφ = Pn−1M . We have M = ⟨m,x2, ..., xn⟩ = Pn−1M + ⟨m⟩. So,
Pn−1M = Pn−1(Pn−1M + ⟨m⟩) = Pn−1m and M = Pn−1m + ⟨m⟩ = ⟨m⟩.
Hence, M ∼= R/annR(M). Since Fitt0(M) = Pn, then M ∼= R/Pn.
(v) By Auslander-Buchsbaum formula we have,
pdR(M) = depth(P,R)− depth(P,M). By (iii), Ass(M) = {P}, so pdR(M) =
depth(P,R). □

Example 3.3. Let R be the ring K[[x, y]] of formal power series over a field K.
It is known that R = K[[x, y]] is a Noetherian local ring with maximal ideal

P = ⟨x, y⟩. Consider M = R2/<

(
x y 0
0 x y

)
> as an R-module. Then,

Fitt0(M) = P 2.

Let M be an R-module. We say that M is a prime module if annR(N) =
annR(M) for every non-zero submodule N of M [8].
Let (R,P ) be a Noetherian local ring and M be a finitely generated prime R-
module with Fitt0(M) = Pn, for some positive integer n. By Theorem 3.2, part
(iii), P ∈ Ass(M). So, there exists an element x ∈M such that P = annR(x).
Since M is prime, then annR(M) = P , consequently M ∼= (R/P )n.
An R-module M is called a multiplication module if for each submodule N of
M , N = IM for some ideal I of R. In this case we can take I = (N :M) [8].

Let (R,P ) be a Noetherian local ring and M be a finitely generated R-
module. Let M be a multiplication module with Fitt0(M) = Pn, for some
positive integer n. Let N be a submodule of M such that PM ⊆ N . There
exists an ideal I of R such that N = IM . So, PM ⊆ N = IM ⊆ PM . This
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implies that PM is a maximal submodule ofM . Thus,M/PM ∼= R/P . Hence,
by Theorem 3.2, part (iv), M ∼= R/Pn.
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