Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 4, pp. 933-939

Title:
Sufficient conditions for univalence and starlikeness
Author(s):
M. Nunokawa, J. Sokół and N. E. Cho

Published by Iranian Mathematical Society
http://bims.ims.ir

SUFFICIENT CONDITIONS FOR UNIVALENCE AND STARLIKENESS

M. NUNOKAWA, J. SOKÓŁ AND N. E. CHO*

(Communicated by Ali Abkar)

Abstract

It is known that the condition $\mathfrak{R e}\left\{z f^{\prime}(z) / f(z)\right\}>0,|z|<1$ is a sufficient condition for $f, f(0)=f^{\prime}(0)-1=0$ to be starlike in $|z|<1$. The purpose of this work is to present some new sufficient conditions for univalence and starlikeness. Keywords: Analytic functions, convex functions, starlike functions, univalent functions. MSC(2010): Primary: 30C45; Secondary: 30C80.

1. Introduction

Let \mathcal{H} denote the class of analytic functions in the unit disc $\mathbb{D}=\{z \in \mathbb{C}$: $|z|<1\}$ on the complex plane \mathbb{C}. We will use the following notations:

$$
\left\{\begin{align*}
J_{\mathcal{C} \mathcal{V}}(f ; z) & :=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \tag{1.1}\\
J_{\mathcal{S} \mathcal{T}}(f ; z) & :=\frac{z f^{\prime}(z)}{f(z)}
\end{align*}\right.
$$

Let the function $f \in \mathcal{H}$ be univalent in the unit disc \mathbb{D} with the normalization $f(0)=0$. Then f maps \mathbb{D} onto a starlike domain with respect to $w_{0}=0$ if and only if [3]

$$
\begin{equation*}
\mathfrak{R e} J_{\mathcal{S} \mathcal{T}}(f ; z)>0, \quad z \in \mathbb{D} \tag{1.2}
\end{equation*}
$$

and such a function f is said to be starlike in \mathbb{D} with respect to $w_{0}=0$ (or briefly starlike). Recall that a set $E \subset \mathbb{C}$ is said to be starlike with respect to a point $w_{0} \in E$ if and only if the linear segment joining w_{0} to every other point $w \in E$ lies entirely in E, while a set E is said to be convex if and only if it is starlike with respect to each of its points, that is if and only if the linear

[^0]segment joining any two points of E lies entirely in E. An univalent function f maps \mathbb{D} onto a convex domain E if and only if [13]
\[

$$
\begin{equation*}
\mathfrak{R e} J_{\mathcal{C} \mathcal{V}}(f ; z)>0, \quad z \in \mathbb{D} \tag{1.3}
\end{equation*}
$$

\]

and then f is said to be convex in \mathbb{D} (or briefly convex). It is well known that if an analytic function f satisfies (1.2) and $f(0)=0, f^{\prime}(0) \neq 0$ then f is univalent and starlike in \mathbb{D}. Let \mathcal{A} denote the subclass of \mathcal{H} consisting of functions normalized by $f(0)=0, f^{\prime}(0)=1$. The set of all functions $f \in \mathcal{A}$ that are starlike univalent in \mathbb{D} will be denoted by \mathcal{S}^{*}, and the set of all functions $f \in \mathcal{A}$ that are convex univalent in \mathbb{D} by \mathcal{K}.

To prove the main results, we also need the following generalization of the Nunokawa's lemma, [4,5].
Lemma 1.1. [4], [5] Let $p(z)=1+\sum_{n=m}^{\infty} c_{n} z^{n}, c_{m} \neq 0$ be an analytic function in \mathbb{D} with $p(z) \neq 0$. If there exists a point $z_{0},\left|z_{0}\right|<1$, such that

$$
|\arg \{p(z)\}|<\frac{\pi \beta}{2} \quad \text { for } \quad|z|<\left|z_{0}\right|
$$

and

$$
\left|\arg \left\{p\left(z_{0}\right)\right\}\right|=\frac{\pi \beta}{2}
$$

for some $\beta>0$, then we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=\frac{2 i k \arg \left\{p\left(z_{0}\right)\right\}}{\pi}
$$

for some $k \geq m\left(a+a^{-1}\right) / 2>m$, where

$$
\left\{p\left(z_{0}\right)\right\}^{1 / \beta}= \pm i a, \quad \text { and } a>0
$$

2. Main results

Theorem 2.1. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be analytic in \mathbb{D}. If f satisfies the condition

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\frac{3}{2}\left|\frac{z f^{\prime}(z)}{f(z)}\right|+\frac{1}{2}\left|\frac{f(z)}{z f^{\prime}(z)}\right|<\infty, \quad z \in \mathbb{D} \tag{2.1}
\end{equation*}
$$

then f is starlike in $|z| \leq 1$.
Proof. Let us put

$$
p(z)=\frac{z f^{\prime}(z)}{f(z)}, \quad z \in \mathbb{D}
$$

If there exists a point $z=\alpha,|\alpha|<1$ for which $p(\alpha)=0$, then we can put $f^{\prime}(z)=(z-\alpha)^{n} g(z)$, where n is a positive integer and $g(z)$ is analytic in $|z|<1$ and $g(\alpha) \neq 0$. Moreover, it follows that

$$
1+z f^{\prime \prime}(z) / f^{\prime}(z)=1+n z /(z-\alpha)+z g^{\prime}(z) / g(z)
$$

As $z \rightarrow \alpha$, the right hand side of the above equation becomes infinite. This is in contradiction with (2.1). Since, we have proved

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \neq 0, \quad z \in \mathbb{D} \tag{2.2}
\end{equation*}
$$

Therefore, we have $p(0)=1$, and by (2.2) we have $p(z) \neq 0$ in \mathbb{D}. Moreover, (2.1) becomes

$$
\begin{align*}
& \left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|-\frac{3}{2}\left|\frac{z f^{\prime}(z)}{f(z)}\right|-\frac{1}{2}\left|\frac{f(z)}{z f^{\prime}(z)}\right| \\
= & \left|p(z)+\frac{z p^{\prime}(z)}{p(z)}\right|-\frac{3}{2}|p(z)|-\frac{1}{2}\left|\frac{1}{p(z)}\right|<0, \quad z \in \mathbb{D} . \tag{2.3}
\end{align*}
$$

We want to show the starlikeness of f or equivalently $\mathfrak{R e}\{p(z)\}>0$ in the unit disc \mathbb{D}. Assume on contrary, that there exists a point $z_{0} \in \mathbb{D}$ such that

$$
\begin{equation*}
p\left(z_{0}\right)= \pm i a, a>0 \tag{2.4}
\end{equation*}
$$

Then by Lemma 1.1, we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=\frac{2 i k \arg \left\{p\left(z_{0}\right)\right\}}{\pi},
$$

for some

$$
\begin{equation*}
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \tag{2.5}
\end{equation*}
$$

Then applying (2.4) and (2.5) in (2.3), we have

$$
\begin{aligned}
& \left|1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right|-\frac{3}{2}\left|\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right|-\frac{1}{2}\left|\frac{f\left(z_{0}\right)}{z_{0} f^{\prime}\left(z_{0}\right)}\right| \\
= & \left|p\left(z_{0}\right)+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right|-\frac{3}{2}\left|p\left(z_{0}\right)\right|-\frac{1}{2}\left|\frac{1}{p\left(z_{0}\right)}\right| \\
= & \left| \pm i a+\frac{2 i k \arg \left\{p\left(z_{0}\right)\right\}}{\pi}\right|-\frac{3}{2}|i a|-\frac{1}{2}\left|\frac{1}{i a}\right| \\
= & | \pm i a \pm k i|-\frac{3}{2} a-\frac{1}{2 a} \\
\geq & a+\frac{1}{2}\left(a+\frac{1}{a}\right)-\frac{3}{2} a-\frac{1}{2 a} \\
= & 0
\end{aligned}
$$

and this contradicts (2.3). Therefore, $\mathfrak{R e}\{p(z)\}>0$ in the whole unit disc \mathbb{D} or equivalently f is a starlike function.

We have $3 x / 2+1 /(2 x) \geq \sqrt{3}$ for $x \geq 0$, since

$$
\frac{3}{2}\left|\frac{z f^{\prime}(z)}{f(z)}\right|+\frac{1}{2}\left|\frac{f(z)}{z f^{\prime}(z)}\right| \geq \sqrt{3}, \quad z \in \mathbb{D}
$$

and therefore, we obtain the following corollary.
Corollary 2.2. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be analytic in \mathbb{D}. If f satisfies the condition

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\sqrt{3}, \quad z \in \mathbb{D} \tag{2.6}
\end{equation*}
$$

then f is starlike in $|z| \leq 1$.
For example, let $g(z)=\log (1-x z)=z+\ldots$, where $x=(3-\sqrt{3}) / 3$. Then

$$
\left|1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right|=\left|\frac{1}{1-x z}\right|<\left|\frac{1}{1-x}\right|=\sqrt{3}, \quad z \in \mathbb{D}
$$

Therefore, by Corollary 2.2, $g(z)=\log (1-x z)$ is a starlike function. The starlikeness implies the univalence thus the above theorems are also certain univalence conditions. Recall that Umezawa [14] proved that

$$
\begin{equation*}
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq \sqrt{6}, \quad|z| \leq 1 \tag{2.7}
\end{equation*}
$$

implies the univalence of $f(z)$ in $|z| \leq 1$. Notice also here that in [6] Ozaki proved that if $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ is analytic in \mathbb{D}, with $f(z) f^{\prime}(z) / z \neq 0$ there, and if either

$$
\mathfrak{R e}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \geq-\frac{1}{2}
$$

or

$$
\begin{equation*}
\mathfrak{R e}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \leq \frac{3}{2} \tag{2.8}
\end{equation*}
$$

holds throughout \mathbb{D}, then f is univalent and convex in at least one direction in \mathbb{D}. Moreover, R. Singh and S. Singh [8] proved that (2.8) implies that $f(z)$ is close-to-convex and bounded in \mathbb{D}. Recall here that an analytic function f is said to be a close-to-convex function of order $\beta, \beta \in[0,1)$, if and only if there exist a number $\varphi \in \mathbb{R}$ and a function $g \in \mathcal{K}$, such that

$$
\begin{equation*}
\mathfrak{R e}\left(e^{i \varphi} \frac{f^{\prime}(z)}{g^{\prime}(z)}\right)>\beta, \quad z \in \mathbb{D} \tag{2.9}
\end{equation*}
$$

The the number $\sqrt{6}$ in (2.7), was improved to $3.05 \ldots$ in [1]. In [7], the following interesting result is proved. Let $f \in \mathcal{A}$ with $f(z) f^{\prime}(z) / z \neq 0$ in $|z|<1$. Then, for each $\alpha \in[-1 / 2,0)$, there exists a function f which satisfies

$$
1+\mathfrak{R e} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>\alpha, \quad z \in \mathbb{D}
$$

but f is not starlike in $|z|<1$. Another type sufficient conditions for starlikeness are contained in the recent papers [9-11] and [12].

One can consider the maximum value of λ such that the condition

$$
\begin{equation*}
\left|1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\lambda, \quad|z| \leq 1 \tag{2.10}
\end{equation*}
$$

implies that f is univalent in the unit disc. The radius of univalence of the function $g(z)=\left(e^{\pi z}-1\right) / \pi$ is $r=1$ and

$$
\left|1+\frac{z_{0} g^{\prime \prime}\left(z_{0}\right)}{g^{\prime}\left(z_{0}\right)}\right|=1+\pi \quad \text { at } z_{0}=1
$$

Therefore, $\lambda \leq 1+\pi$.
Conjecture. The maximum value of λ such that the condition (2.10) implies univalence of f is $\lambda=1+\pi$.

Theorem 2.3. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be analytic in \mathbb{D}. If f satisfies the condition

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\sqrt{1+\left\{\frac{3}{2}\left|\frac{z f^{\prime}(z)}{f(z)}\right|+\frac{1}{2}\left|\frac{f(z)}{z f^{\prime}(z)}\right|\right\}^{2}}<\infty, \quad z \in \mathbb{D} \tag{2.11}
\end{equation*}
$$

then f is starlike in $|z| \leq 1$.
Proof. Let us put

$$
p(z)=\frac{z f^{\prime}(z)}{f(z)}, \quad z \in \mathbb{D}
$$

Then $p(0)=1$, and as in the proof of Theorem 2.1 we obtain $p(z) \neq 0$ in \mathbb{D}. Moreover, by (2.11) we have

$$
\begin{gathered}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|-\sqrt{1+\left\{\frac{3}{2}\left|\frac{z f^{\prime}(z)}{f(z)}\right|+\frac{1}{2}\left|\frac{f(z)}{z f^{\prime}(z)}\right|\right\}^{2}} \\
(2.12)=\left|p(z)-1+\frac{z p^{\prime}(z)}{p(z)}\right|-\sqrt{1+\left\{\frac{3}{2}|p(z)|+\frac{1}{2}\left|\frac{1}{p(z)}\right|\right\}^{2}}<0, \quad z \in \mathbb{D} .
\end{gathered}
$$

We want to show the starlikeness of f or equivalently that $\mathfrak{R e}\{p(z)\}>0$ in the unit disc \mathbb{D}. Assume on contrary, that there exists a point $z_{0} \in \mathbb{D}$ such that

$$
\begin{equation*}
p\left(z_{0}\right)= \pm i a, a>0 \tag{2.13}
\end{equation*}
$$

Then by Lemma 1.1, we have

$$
\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=\frac{2 i k \arg \left\{p\left(z_{0}\right)\right\}}{\pi}
$$

for some

$$
\begin{equation*}
k \geq \frac{1}{2}\left(a+\frac{1}{a}\right) \tag{2.14}
\end{equation*}
$$

Then applying (2.13) and (2.14) in (2.12), we have

$$
\begin{aligned}
& \left|\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right|-\sqrt{1+\left\{\frac{3}{2}\left|\frac{z_{0} f^{\prime}\left(z_{0}\right)}{f\left(z_{0}\right)}\right|+\frac{1}{2}\left|\frac{f\left(z_{0}\right)}{z_{0} f^{\prime}\left(z_{0}\right)}\right|\right\}^{2}} \\
= & \left|p\left(z_{0}\right)-1+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right|-\sqrt{1+\left\{\frac{3}{2}\left|p\left(z_{0}\right)\right|+\frac{1}{2}\left|\frac{1}{p\left(z_{0}\right)}\right|\right\}^{2}} \\
= & \left| \pm i a-1+\frac{2 i k \arg \left\{p\left(z_{0}\right)\right\}}{\pi}\right|-\sqrt{1+\left\{\frac{3}{2}| \pm i a|+\frac{1}{2}\left|\frac{1}{ \pm i a}\right|\right\}^{2}} \\
= & |-1 \pm i a \pm k i|-\sqrt{1+\left\{\frac{3 a}{2}+\frac{1}{2 a}\right\}^{2}} \\
\geq & \sqrt{1+\left(a+\frac{1}{2}\left(a+\frac{1}{a}\right)\right)^{2}}-\sqrt{1+\left\{\frac{3 a}{2}+\frac{1}{2 a}\right\}^{2}} \\
= & 0
\end{aligned}
$$

and this contradicts (2.12). Therefore, $\mathfrak{R e}\{p(z)\}>0$ in the whole unit disc \mathbb{D} or equivalently f is a starlike function.

We have $\sqrt{1+(3 x / 2+1 /(2 x))^{2}} \geq 2$ for $x \geq 0$ since

$$
\sqrt{1+\left\{\frac{3}{2}\left|\frac{z f^{\prime}(z)}{f(z)}\right|+\frac{1}{2}\left|\frac{f(z)}{z f^{\prime}(z)}\right|\right\}^{2}} \geq 2, \quad z \in \mathbb{D}
$$

and therefore, we obtain the following corollary.
Corollary 2.4. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be analytic in \mathbb{D}. If f satisfies the condition

$$
\begin{equation*}
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<2, \quad z \in \mathbb{D} \tag{2.15}
\end{equation*}
$$

then f is starlike in $|z| \leq 1$.
Corollary 2.5. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be analytic in \mathbb{D}. If f satisfies the condition

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\sqrt{1+\left\{\frac{3}{2}\left|\frac{z f^{\prime}(z)}{f(z)}\right|\right\}^{2}}<\infty, \quad z \in \mathbb{D}
$$

then f is starlike in $|z| \leq 1$.
Corollary 2.6. Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ be analytic in \mathbb{D}. If f satisfies the condition

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\sqrt{1+\left\{\frac{1}{2}\left|\frac{f(z)}{z f^{\prime}(z)}\right|\right\}^{2}}<\infty, \quad z \in \mathbb{D}
$$

then f is starlike in $|z| \leq 1$.
Remark 2.7. The above Corollary 2.4 is the result proved earlier by Miller and Mocanu [2]. Therefore, Theorem 2.3 is a generalization of their result.

Acknowledgements

This work was supported by a Research Grant of Pukyong National Univer$\operatorname{sity}(2015$ year $)$

References

[1] S. N. Kudryashov, On some criteria of schlichtness of analytic functions (Russian), Mat. Zametki 13 (1973) 359-366.
[2] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 32 (1985) 185-195.
[3] R. Nevanlinna, Über die konforme Abbildund Sterngebieten, Oversikt av FinskaVetenskaps Societen Forhandlingar, 63 (A) (1921), no. 6, 48-403.
[4] M. Nunokawa, On properties of non-Carathéodory functions, Proc. Japan Acad. Ser. A 68 (1992), no. 6, 152-153.
[5] M. Nunokawa, On the order of strongly starlikeness of strongly convex functions, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 7, 234-237.
[6] S. Ozaki, On the theory of multivalent functions II, Sci. Rep. Tokyo Bunrika Daigaku A 4 (1941) 45-87.
[7] J. A. Pfaltzgraff, M. O. Reade and T. Umezawa, Sufficient Conditions for Univalence, Ann. Fac. Sci. de Kinshasa, Zaïre; Sec. Math. Phys. 2 (1976), no. 2, 94-100.
[8] R. Singh and R. Singh, Some sufficient conditions for univalence and starlikeness, Colloq. Math. 47 (1982) no. 2, 309-314.
[9] J. Sokół, On sufficient condition to be in a certain subclass of starlike functions defined by subordination, Appl. Math. Comput. 190 (2007), no. 1, 237-241.
[10] J. Sokól, Starlikeness of Hadamard product of certain analytic functions, Appl. Math. Comp. 190 (2007), no. 2, 1157-1160.
[11] J. Sokól, On a condition for alpha-starlikeness, J. Math. Anal. Appl. 352 (2009), 696701.
[12] J. Sokół, M. Nunokawa, On some sufficient condition for starlikeness, J. Inequal. Appl. 2012, 2012:282.
[13] E. Study, Konforme Abbildung Einfachzusammenhangender Bereiche, B. C. Teubner, Leipzig und Berlin, 1913.
[14] T. Umezawa, On the theory of univalent functions, Tohoku Math. J. (2) 7 (1955) 212228.
(M. Nunokawa) University of Gunma, Hoshikuki-cho 798-8, Chuou-Ward, Chiba 260-0808, Japan.

E-mail address: mamoru_nuno@doctor.nifty.jp
(Janusz Sokół) Department of Mathematics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland.

E-mail address: jsokol@prz.edu.pl
(Nak Eun Cho) Department of Applied Mathematics, College of Natural Sciences, Pukyong National University, Busan 608-737, Korea.

E-mail address: necho@pknu.ac.kr

[^0]: Article electronically published on August 20, 2016.
 Received: 31 October 2014, Accepted: 13 June 2015.

 * Corresponding author.

