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Abstract. It is known that the condition Re {zf ′(z)/f(z)} > 0, |z| < 1
is a sufficient condition for f , f(0) = f ′(0)−1 = 0 to be starlike in |z| < 1.
The purpose of this work is to present some new sufficient conditions for
univalence and starlikeness.
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1. Introduction

Let H denote the class of analytic functions in the unit disc D = {z ∈ C :
|z| < 1} on the complex plane C. We will use the following notations:

(1.1)

{
JCV(f ; z) := 1 + zf ′′(z)

f ′(z) ,

JST (f ; z) := zf ′(z)
f(z) .

Let the function f ∈ H be univalent in the unit disc D with the normalization
f(0) = 0. Then f maps D onto a starlike domain with respect to w0 = 0 if and
only if [3]

(1.2) ReJST (f ; z) > 0, z ∈ D,

and such a function f is said to be starlike in D with respect to w0 = 0 (or
briefly starlike). Recall that a set E ⊂ C is said to be starlike with respect
to a point w0 ∈ E if and only if the linear segment joining w0 to every other
point w ∈ E lies entirely in E, while a set E is said to be convex if and only if
it is starlike with respect to each of its points, that is if and only if the linear
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segment joining any two points of E lies entirely in E. An univalent function
f maps D onto a convex domain E if and only if [13]

(1.3) ReJCV(f ; z) > 0, z ∈ D,

and then f is said to be convex in D (or briefly convex). It is well known
that if an analytic function f satisfies (1.2) and f(0) = 0, f ′(0) ̸= 0 then f
is univalent and starlike in D. Let A denote the subclass of H consisting of
functions normalized by f(0) = 0, f ′(0) = 1. The set of all functions f ∈ A that
are starlike univalent in D will be denoted by S∗, and the set of all functions
f ∈ A that are convex univalent in D by K.

To prove the main results, we also need the following generalization of the
Nunokawa’s lemma, [4, 5].

Lemma 1.1. [4], [5] Let p(z) = 1 +
∑∞

n=m cnz
n, cm ̸= 0 be an analytic

function in D with p(z) ̸= 0. If there exists a point z0, |z0| < 1, such that

|arg {p(z)} | < πβ

2
for |z| < |z0|

and

|arg {p(z0)} | =
πβ

2
for some β > 0, then we have

z0p
′(z0)

p(z0)
=

2ik arg {p(z0)}
π

,

for some k ≥ m(a+ a−1)/2 > m, where

{p(z0)}1/β
= ±ia, and a > 0.

2. Main results

Theorem 2.1. Let f(z) = z +
∑∞

n=2 anz
n be analytic in D. If f satisfies the

condition ∣∣∣∣1 + zf ′′(z)

f ′(z)

∣∣∣∣ < 3

2

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣+ 1

2

∣∣∣∣ f(z)

zf ′(z)

∣∣∣∣ < ∞, z ∈ D(2.1)

then f is starlike in |z| ≤ 1.

Proof. Let us put

p(z) =
zf ′(z)

f(z)
, z ∈ D.

If there exists a point z = α, |α| < 1 for which p(α) = 0, then we can put
f ′(z) = (z − α)ng(z), where n is a positive integer and g(z) is analytic in
|z| < 1 and g(α) ̸= 0. Moreover, it follows that

1 + zf ′′(z)/f ′(z) = 1 + nz/(z − α) + zg′(z)/g(z).
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As z → α, the right hand side of the above equation becomes infinite. This is
in contradiction with (2.1). Since, we have proved

(2.2)
zf ′(z)

f(z)
̸= 0, z ∈ D.

Therefore, we have p(0) = 1, and by (2.2) we have p(z) ̸= 0 in D. Moreover,
(2.1) becomes ∣∣∣∣1 + zf ′′(z)

f ′(z)

∣∣∣∣− 3

2

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣− 1

2

∣∣∣∣ f(z)

zf ′(z)

∣∣∣∣
=

∣∣∣∣p(z) + zp′(z)

p(z)

∣∣∣∣− 3

2
|p(z)| − 1

2

∣∣∣∣ 1

p(z)

∣∣∣∣ < 0, z ∈ D.(2.3)

We want to show the starlikeness of f or equivalently Re{p(z)} > 0 in the unit
disc D. Assume on contrary, that there exists a point z0 ∈ D such that

p(z0) = ±ia, a > 0.(2.4)

Then by Lemma 1.1, we have

z0p
′(z0)

p(z0)
=

2ik arg {p(z0)}
π

,

for some

k ≥ 1

2

(
a+

1

a

)
.(2.5)

Then applying (2.4) and (2.5) in (2.3), we have∣∣∣∣1 + z0f
′′(z0)

f ′(z0)

∣∣∣∣− 3

2

∣∣∣∣z0f
′(z0)

f(z0)

∣∣∣∣− 1

2

∣∣∣∣ f(z0)

z0f ′(z0)

∣∣∣∣
=

∣∣∣∣p(z0) +
z0p

′(z0)

p(z0)

∣∣∣∣− 3

2
|p(z0)| −

1

2

∣∣∣∣ 1

p(z0)

∣∣∣∣
=

∣∣∣∣±ia+
2ik arg {p(z0)}

π

∣∣∣∣− 3

2
|ia| − 1

2

∣∣∣∣ 1ia
∣∣∣∣

= |±ia± ki| − 3

2
a− 1

2a

≥ a+
1

2

(
a+

1

a

)
− 3

2
a− 1

2a

= 0

and this contradicts (2.3). Therefore, Re{p(z)} > 0 in the whole unit disc D
or equivalently f is a starlike function. □

We have 3x/2 + 1/(2x) ≥
√
3 for x ≥ 0, since

3

2

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣+ 1

2

∣∣∣∣ f(z)

zf ′(z)

∣∣∣∣ ≥ √
3, z ∈ D,
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and therefore, we obtain the following corollary.

Corollary 2.2. Let f(z) = z +
∑∞

n=2 anz
n be analytic in D. If f satisfies the

condition ∣∣∣∣1 + zf ′′(z)

f ′(z)

∣∣∣∣ < √
3, z ∈ D(2.6)

then f is starlike in |z| ≤ 1.

For example, let g(z) = log(1− xz) = z + . . ., where x = (3−
√
3)/3. Then∣∣∣∣1 + zg′′(z)

g′(z)

∣∣∣∣ = ∣∣∣∣ 1

1− xz

∣∣∣∣ < ∣∣∣∣ 1

1− x

∣∣∣∣ = √
3, z ∈ D.

Therefore, by Corollary 2.2, g(z) = log(1 − xz) is a starlike function. The
starlikeness implies the univalence thus the above theorems are also certain
univalence conditions. Recall that Umezawa [14] proved that

(2.7)

∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ ≤ √
6, |z| ≤ 1,

implies the univalence of f(z) in |z| ≤ 1. Notice also here that in [6] Ozaki
proved that if f(z) = z+a2z

2+a3z
3+· · · is analytic in D, with f(z)f ′(z)/z ̸= 0

there, and if either

Re

(
1 +

zf ′′(z)

f ′(z)

)
≥ −1

2
or

(2.8) Re

(
1 +

zf ′′(z)

f ′(z)

)
≤ 3

2

holds throughout D, then f is univalent and convex in at least one direction in
D. Moreover, R. Singh and S. Singh [8] proved that (2.8) implies that f(z) is
close-to-convex and bounded in D. Recall here that an analytic function f is
said to be a close-to-convex function of order β, β ∈ [0, 1), if and only if there
exist a number φ ∈ R and a function g ∈ K, such that

(2.9) Re

(
eiφ

f ′(z)

g′(z)

)
> β, z ∈ D.

The the number
√
6 in (2.7), was improved to 3.05 . . . in [1]. In [7], the following

interesting result is proved. Let f ∈ A with f(z)f ′(z)/z ̸= 0 in |z| < 1. Then,
for each α ∈ [−1/2, 0), there exists a function f which satisfies

1 +Re
zf ′′(z)

f ′(z)
> α, z ∈ D,

but f is not starlike in |z| < 1. Another type sufficient conditions for starlike-
ness are contained in the recent papers [9–11] and [12].
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One can consider the maximum value of λ such that the condition

(2.10)

∣∣∣∣1 + zf ′′(z)

f ′(z)

∣∣∣∣ < λ, |z| ≤ 1,

implies that f is univalent in the unit disc. The radius of univalence of the
function g(z) = (eπz − 1)/π is r = 1 and∣∣∣∣1 + z0g

′′(z0)

g′(z0)

∣∣∣∣ = 1 + π at z0 = 1.

Therefore, λ ≤ 1 + π.

Conjecture. The maximum value of λ such that the condition (2.10) im-
plies univalence of f is λ = 1 + π.

Theorem 2.3. Let f(z) = z +
∑∞

n=2 anz
n be analytic in D. If f satisfies the

condition∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ <
√

1 +

{
3

2

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣+ 1

2

∣∣∣∣ f(z)

zf ′(z)

∣∣∣∣}2

< ∞, z ∈ D(2.11)

then f is starlike in |z| ≤ 1.

Proof. Let us put

p(z) =
zf ′(z)

f(z)
, z ∈ D.

Then p(0) = 1, and as in the proof of Theorem 2.1 we obtain p(z) ̸= 0 in D.
Moreover, by (2.11) we have∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣−
√
1 +

{
3

2

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣+ 1

2

∣∣∣∣ f(z)

zf ′(z)

∣∣∣∣}2

=

∣∣∣∣p(z)− 1 +
zp′(z)

p(z)

∣∣∣∣−
√
1 +

{
3

2
|p(z)|+ 1

2

∣∣∣∣ 1

p(z)

∣∣∣∣}2

< 0, z ∈ D.(2.12)

We want to show the starlikeness of f or equivalently that Re{p(z)} > 0 in the
unit disc D. Assume on contrary, that there exists a point z0 ∈ D such that

p(z0) = ±ia, a > 0.(2.13)

Then by Lemma 1.1, we have

z0p
′(z0)

p(z0)
=

2ik arg {p(z0)}
π

,

for some

k ≥ 1

2

(
a+

1

a

)
.(2.14)
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Then applying (2.13) and (2.14) in (2.12), we have∣∣∣∣z0f
′′(z0)

f ′(z0)

∣∣∣∣−
√
1 +

{
3

2

∣∣∣∣z0f ′(z0)

f(z0)

∣∣∣∣+ 1

2

∣∣∣∣ f(z0)

z0f ′(z0)

∣∣∣∣}2

=

∣∣∣∣p(z0)− 1 +
z0p

′(z0)

p(z0)

∣∣∣∣−
√

1 +

{
3

2
|p(z0)|+

1

2

∣∣∣∣ 1

p(z0)

∣∣∣∣}2

=

∣∣∣∣±ia− 1 +
2ik arg {p(z0)}

π

∣∣∣∣−
√
1 +

{
3

2
|±ia|+ 1

2

∣∣∣∣ 1

±ia

∣∣∣∣}2

= |−1± ia± ki| −

√
1 +

{
3a

2
+

1

2a

}2

≥

√
1 +

(
a+

1

2

(
a+

1

a

))2

−

√
1 +

{
3a

2
+

1

2a

}2

= 0

and this contradicts (2.12). Therefore, Re{p(z)} > 0 in the whole unit disc D
or equivalently f is a starlike function. □

We have
√
1 + (3x/2 + 1/(2x))2 ≥ 2 for x ≥ 0 since√
1 +

{
3

2

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣+ 1

2

∣∣∣∣ f(z)

zf ′(z)

∣∣∣∣}2

≥ 2, z ∈ D,

and therefore, we obtain the following corollary.

Corollary 2.4. Let f(z) = z +
∑∞

n=2 anz
n be analytic in D. If f satisfies the

condition ∣∣∣∣f ′′(z)

f ′(z)

∣∣∣∣ < 2, z ∈ D(2.15)

then f is starlike in |z| ≤ 1.

Corollary 2.5. Let f(z) = z +
∑∞

n=2 anz
n be analytic in D. If f satisfies the

condition ∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ <
√

1 +

{
3

2

∣∣∣∣zf ′(z)

f(z)

∣∣∣∣}2

< ∞, z ∈ D

then f is starlike in |z| ≤ 1.

Corollary 2.6. Let f(z) = z +
∑∞

n=2 anz
n be analytic in D. If f satisfies the

condition ∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ <
√

1 +

{
1

2

∣∣∣∣ f(z)

zf ′(z)

∣∣∣∣}2

< ∞, z ∈ D
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then f is starlike in |z| ≤ 1.

Remark 2.7. The above Corollary 2.4 is the result proved earlier by Miller
and Mocanu [2]. Therefore, Theorem 2.3 is a generalization of their result.
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(Janusz Sokó l) Department of Mathematics, Rzeszów University of Technology,
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