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Abstract. Let R be an associative ring and let M be a left R-module.
Let SpecR(M) be the collection of all prime submodules of M (equipped

with classical Zariski topology). It is conjectured that every irreducible
closed subset of SpecR(M) has a generic point. In this article we give an
affirmative answer to this conjecture and show that if M has a Noetherian
spectrum, then SpecR(M) is a spectral space.
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1. Introduction

Throughout this article, all rings are associative rings with identity elements,
and all modules are unital left modules. N, Z and Q will denote respectively
the natural numbers, the ring of integers, and the field of quotients of Z. We
use ⊆ and ⊂ for weak and strong inclusion, respectively. Also for a topological
space X, dim(X) denotes the combinatorial dimension of X.

Let M be a left R-module. For any submodule N of M we denote the
annihilator of the module M/N by (N :R M), i.e. (N :R M) = {r ∈ R|rM ⊆
N}. A submodule P of M is called prime if P ̸= M and whenever r ∈ R and
e ∈ M satisfy re ∈ P then r ∈ (P :R M) or e ∈ P .

Let SpecR(M) be the collection of all prime submodules of M . Put V (N) =
{P ∈ SpecR(M)|P ⊇ N} and Ω = {V (N)|N is a submodule of M}. Then
there exists a topology τ on SpecR(M) having Ω as the set of its closed subsets
if and only if Ω is closed under the finite union. When this is the case, M is
called a top R-module [15].
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Put

Ωc =

{∩
i∈I

( ni∪
j=1

V (Ni,j)

)
|V (Ni,j) ∈ Ω, ni ∈ N, I is an index set

}
.

Then the elements of Ωc satisfy the axioms for closed sets in a topological
space on SpecR(M) ( [5] and [6]). This topology is called the classical Zariski
topology of M . We denote this topology by τ c.

X is irreducible if X ̸= ∅ and for every decomposition X = A1 ∪ A2 with
closed subsets Ai ⊆ X, i = 1, 2, we have A1 = X or A2 = X. A subset T of
X is irreducible if T is irreducible as a space with the relative topology. For
this to be so, it is necessary and sufficient that, for every pair of sets F , G
which are closed in X and satisfy T ⊆ F ∪G, T ⊆ F or T ⊆ G. An irreducible
component of X is a maximal irreducible subset of X. Every irreducible subset
of X is contained in an irreducible component of X, and X is the union of its
irreducible components.

A topological space X is a spectral space if X is homeomorphic to Spec(S)
for some ring S. This concept plays an important role in studying algebraic
properties of an R-moduleM when we have a related topology. For an example,
when SpecR(M) (with classical Zariski topology) is homeomorphic to Spec(S),
where S is a commutative ring, we can transfer some of known topological
properties of Spec(S) to SpecR(M) and then by using these properties explore
some of the algebraic properties of M .

Spectral spaces have been characterized by M. Hochster as quasi-compact T0-
spaces X having a quasi-compact open base closed under finite intersection and
each irreducible closed subset of X has a generic point [8, p. 52, Proposition.
4].

The concept of prime submodule has led to the development of topologies
on the spectrum of modules. A brief history of this is given by Lu in [13]. More
information in this regard can be found in [1, 2, 17].

In [5, p. 126], there is a conjecture which says that every irreducible closed
subset of SpecR(M) has a generic point. Also in [6, Question 3.5], there is
a question as follows: Let M be an R-module with Noetherian spectrum. Is
(SpecR(M), τ c) a spectral space? In Section 2, we will give affirmative answers
to both conjecture and open question (see Theorem 2.2 and Corollary 2.4). Also
we define (FC) property for classical Zariski topology and obtain its relation
with minimal prime divisors of submodules of M .

2. Main results

Let Z be a subset of a topological space W . Then the notion Z will denote
the closure of Z in W .

Lemma 2.1. Let M be a left R-module and Y be a nonempty subset of SpecR(M).

Then Y =
∪

P∈Y V (P ). In particular, when Y is closed we have Y =
∪

P∈Y V (P ).
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Proof. This is straightforward.
□

In [3, Theorem 3.8 (a)], the authors showed that if M is an X-injective
module over a PID ring R, then every irreducible closed subset of SpecR(M)
has a generic point. In below we drop the restrictions and prove this conjecture
in a general case.

Theorem 2.2. For any R-module M, every irreducible closed subset of SpecR(M)

has a generic point. In particular, this is true when M is a top module.

Proof. Let Y be an irreducible closed subset of SpecR(M) and
∩

P∈Y P = Q.
By [5, Theorem 3.4], Q is a prime submodule of M . It is enough to prove that
Y = V (Q). We show that

∪
P∈Y V (P ) = V (Q). Clearly

∪
P∈Y V (P ) ⊆ V (Q).

To see the reverse inclusion, let F be a closed subset of SpecR(M) containing∪
P∈Y V (P ). Since F is closed, F =

∩
i∈Λ

∪ni

j=1 V (Ni,j) for some submodules

Ni,j of M . We may assume (without loss of generality) that F = V (E)∪V (L),
where E and L are submodules of M . By Lemma 2.1,

∪
P∈Y V (P ) = Y is

irreducible. Since
∪

P∈Y V (P ) ⊆ V (E) ∪ V (L), it follows that
∪

P∈Y V (P ) ⊆
V (E) or

∪
P∈Y V (P ) ⊆ V (L). This implies that

∩
P∈Y P ⊇ E or

∩
P∈Y P ⊇ L.

Thus V (Q) ⊆ V (E) or V (Q) ⊆ V (L), so V (Q) ⊆ F . By the above arguments,
we have V (Q) ⊆

∪
P∈Y V (P ). □

Definition 2.3. Let M be an R-module and let N be a proper submodule of
M . P ∈ V (N) is called a minimal prime submodule over N if there does not
exist Q ∈ V (N) such that Q ⊂ P . If V (N) ̸= ∅, then the existence of minimal
prime submodules over N can be verified easily by using Zorn’s lemma.We say
P is a prime divisor (resp. minimal prime divisor) of N if P ∈ V (N) (resp.
P ∈ Min(V (N))).

The prime dimension of an R-module M , denoted by dim(M), is defined to
be the supremum of the length of the strictly chains of prime submodules of
M if Specs(M) ̸= ∅ and -1 otherwise [14].

Corollary 2.4. Let M be a left R-module. Then the following hold.

(a) Let Y be a closed subset of SpecR(M). Then Z is an irreducible com-
ponent of Y if and only if Z = V (P ) for some minimal element P of
Y .

(b) dim(SpecR(M)) = dim(M).
(c) If M has a Noetherian spectrum, then SpecR(M) is a spectral space.

In particular, this is true when M is a top module.

Proof. (a) Let Y be a closed subset of SpecR(M) and let Z be an irreducible
component of Y . Since every irreducible components is closed, Z is closed in
Y . But every irreducible closed subset of Y is an irreducible closed subset
of SpecR(M). Therefore Z = V (P ) for some prime submodule P of M by
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Theorem 2.2. Since Z = V (P ) ⊆ Y is a component of Y , we conclude that P
is a minimal element of Y by [5, Lemma 3.3]. Conversely, let P be a minimal
element of Y . Then V (P ) is an irreducible closed subset of SpecR(M) by [5,
Lemma 3.3]. Since P ∈ Y , then V (P ) ⊆ Y by Lemma 2.1. This implies that
V (P ) ⊆ Y . But V (P ) is an irreducible closed subset of SpecR(M). It follows
that V (P ) is an irreducible closed subset of Y . Now let V (P ) ⊆ T , where T
is an irreducible subset of Y . Then V (P ) ⊆ T ⊆ T . Since T is an irreducible
closed subset of SpecR(M), then T = V (Q) for some prime submodule Q of
M by Theorem 2.2. It follows that Q = P , whence T = V (P ). By the above
arguments, V (P ) is an irreducible component of Y .

(b) Let Z0 ⊂ Z1 ⊂ ... ⊂ Zt be a strictly increasing chain of irreducible
closed subsets Zi of SpecR(M) of length t. By Theorem 2.2, for each i we have
Zi = V (Pi) for some Pi ∈ SpecR(M). On the other hand V (Pi) ⊂ V (Pj) if and
only if Pi ⊃ Pj . Hence P0 ⊃ P1 ⊃ ... ⊃ Pt, is a strictly decreasing chain of prime
submodules of M . Conversely, for every strictly decreasing chain P0 ⊃ P1 ⊃
... ⊃ Pt of prime submodules of M of length t, V (P0) ⊂ V (P1) ⊂ ... ⊂ V (Pt) is
a strictly increasing chain of irreducible closed subsets of SpecR(M) of length
t. This in turn implies that dim(SpecR(M)) = dim(M) and this completes the
proof.

(c) Since SpecR(M) is Noetherian, it is quasi-compact and the quasi-compact
open subsets of SpecR(M) are closed under finite intersection and form an open
base [4, p. 79, Exer. 6]. Also, SpecR(M) is a T0-space by [5, Proposition 3.8(i)].
Now the result follows from Theorem 2.2 and the Hochster’s characterizations.

□

Definition 2.5. Let M be an R-module.

(a) We say thatM has property (FC) if every closed subset of (SpecR(M),
τ c) has a finite number of irreducible components.

(b) We say that M has property (FP ) if every submodule of M has a finite
number of minimal prime divisors.

It is well known that every closed subset of the prime spectrum of R has a
finite number of irreducible components if and only if every ideal of R has a
finite number of minimal prime divisors. Is it possible to extend this result to
module? This question is answered in the following theorem.

Theorem 2.6. Let M be a left R-module. Then we have the following.

(a) If M has property (FC), then M has property (FP ). However, the
converse is not true in general.

(b) M has property (FC) if and only if M has property (FP ) and γ(M) =
{
∩m

i=1 Fi|Fi ∈ β(M), m ∈ N} is closed under arbitrary intersection,
where β(M) = {V (N1) ∪ V (N2) ∪ ... ∪ V (Nk)|Ni is a
submodule of M and k ∈ N}.
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Proof. (a) Let N be a submodule of M and let P be a minimal prime
divisor of N . Then V (P ) is an irreducible component of V (N) by
Corollary 2.4. This in turn implies that every submodule of M has a
finite number of minimal prime divisors. To see the second assertion,
setM = Q⊕Q⊕Q⊕· · · and regardingM as Qmodule. Since the prime
submodules of a vector space are just the proper submodules, every
submodule of M has a finite number of minimal prime divisors, namely
itself. Now let P1 = (0)⊕Q⊕Q⊕ · · · , P2 = Q⊕ (0)⊕Q⊕ · · · , P3 =
Q⊕Q⊕(0)⊕Q⊕· · · , · · · , Q1 = Q⊕(0)⊕(0)⊕· · · , Q2 = (0)⊕Q⊕(0)⊕
· · · , Q3 = (0)⊕(0)⊕Q⊕(0)⊕· · · , · · · , and Y =

∩
i∈N(V (Pi)∪V (Qi)).

One can see that P1, P2, · · · are minimal elements of Y . Hence Y is a
closed subset of SpecR(M) with infinitely many irreducible components
by Corollary 2.4 (a).

(b) This follows from part (a), [7, Propositon 5, p. 95], and the fact that
V (N) ∩ V (K) = V (N +K) for every submodules N and K of M .

□

Corollary 2.7. Let M be an R-module with dim(M) < ∞. Then the following
hold.

(a) If M has property (FC), then SpecR(M) with classical Zariski topology
is a spectral space.

(b) If M is a top R-module with property (FP ), then SpecR(M) with clas-
sical Zariski topology is a spectral space.

Proof. Use Corollary 2.4, Theorem 2.6, and [16, Proposition 1.1].
□

Example 2.8. Set Q∗ = Q \ {0}, Ks = {(sn, n) : n ∈ Z}, where s ∈ Q∗, and
M = Q⊕ Z as Z-module. Then we have the following.

(a) MaxZ(M) = {Q⊕ piZ : i ∈ N}, where pi is a prime number.
(b) SpecZ(M) = MaxZ(M)∪{(0)⊕Z,Q⊕ (0), (0)⊕ (0)}∪{Ks : s ∈ Q∗}.
(c) Ω = {∅, SpecZ(M), V (Q⊕(0)), V ((0)⊕Z)} ∪ {V (Ks), V (Q⊕

∩
i∈Λ piZ),

V ((0)⊕
∩

i∈Λ piZ), V ((Q⊕
∩

i∈Λ piZ) ∩Ks)| s ∈ Q∗ and Λ is a finite
subset of N}, where Ω is a sub-basis of (SpecR(M),Ωc).

(d) M has both (FC) and (FP ) properties. Further M is not a top module
and SpecR(M) is a spectral space.

Proof. Let M be an R-module and N be a submodule of M . First we recall
the following facts:

(A1) If (N :R M) ∈ Max(R), then N ∈ SpecR(M). Also every maximal
submodule is prime submodule [9].

(A2) If M = M1 ⊕ M2 and P1 ∈ Specp(M1) with p ∈ V (AnnR(M)), then
P1 ⊕ M2 ∈ Specp(M) [12, Lemma 4.6]. (Here, for an R-module L,
Specp(L) denotes the set of all p-prime submodules of L.)
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(A3) Let R be an integral domain. If T (M) (i.e., the torsion submodule of
M) is a proper submodule of M , then T (M) is a (0)-prime submodule
of M [11, Lemma 4.5].

(A4) Let R be an integral domain which is not a field and k the field of
quotients of R. Then the R-module k has Max(k) = ∅ and SpecR(k) =
{(0)} [10, Theorem 1].

(A5) Let p be a prime ideal of R and K ∈ Specp(M), then K ∩ N = N or
K ∩N ∈ Specp(N) [15, Lemma 1.6].

(a) Let i ∈ N. Then M/piM ∼= Z/piZ. This implies that

{piM : i ∈ N} = {Q⊕ piZ : i ∈ N} ⊆ Max(M).

Now if K ∈ Max(M), then (K : M) = pj for some j ∈ N by A1, whence
pjM ⊆ K and, therefore, pjM = K. It follows that

Max(M) = {Q⊕ piZ : i ∈ N}.

(b) By A4, SpecZ(Q) = {(0)}. Thus (0)⊕Z, Q⊕(0) ∈ Spec(0)(M) by A2. Also
(0)⊕ (0) ∈ Spec(0)(M) by A3. It is not difficult to see that Ks is a (0)-prime
submodule of M for every s ∈ Q∗. Now let K be a (0)-prime submodule of M .
We can assume that K ̸= (0)⊕ (0). Now we consider the following cases:

(I) Q⊕ (0) ̸⊆ K and (0)⊕ Z ⊆ K. In this case we have (Q⊕ (0)) ∩K ∈
Spec(0)(Q ⊕ (0)) by A5. Hence (Q ⊕ (0)) ∩ K = (0) ⊕ (0). Thus we
have K = K ∩M = (K ∩ (Q⊕ (0)))⊕ (K ∩ ((0)⊕ Z)) = (0)⊕ Z.

(II) Q⊕ (0) ⊆ K and (0)⊕ Z ̸⊆ K. Similarly we have K = Q⊕ (0).
(III) Q⊕ (0) ̸⊆ K and (0)⊕ Z ̸⊆ K. In this case we have (Q⊕ (0)) ∩K =

((0)⊕Z)∩K = (0)⊕ (0). This implies that for every non-zero element
(x, y) of K, we have x ̸= 0 and y ̸= 0. Now we show that K = Kt

for some t ∈ Q∗. To see this, set A = {x/y| 0 ̸= (x, y) ∈ K} and
KA =

∪
s∈A Ks. It is enough to prove thatK = KA and A is a singleton

subset of Q∗. To see the first assumption, let (x, y) be a non-zero
element of K. By the above mentioned, we have y ̸= 0 and therefore
(x, y) = ((x/y)y, y) ∈ K(x/y). Hence K ⊆ KA. Now let (x, y) ∈ KA.
Then (x, y) ∈ Ks for some s ∈ A. Consequently, x/y = s = x1/y1 with
(x1, y1) ∈ K. Set x = r/s and x1 = r1/s1 where r, s, r1, s1 ∈ Z\{0}. It
is easy to see that syr1(r, sy) ∈ K. Since K is a (0)-prime submodule of
M , (r, sy) ∈ K, whence s(r/s, y) ∈ K. This implies that (x, y) ∈ K as
desired. To prove the next assertion let a/b and c/d be two elements of
A. Then there exists the elements r, s, p, and q of Z such that a = r/s
and c = p/q. It is not difficult to see that (0, psbqdsb− rqdqdsb) ∈ KA.
This in turn implies that a/b = c/d as desired.

(c) We can see that the following assertions:

(B1) ∀s, t ∈ Q∗ : s ̸= t =⇒ Ks ∩Kt = (0)⊕ (0).
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(B2) ∀s ∈ Q∗ : Ks ∩ (Q⊕ (0)) = Ks ∩ (Z⊕ (0)) = (0)⊕ (0).
(B3) ∀s ∈ Q∗, ∀Λ ⊆ N : if Λ is finite, then

V ((Q⊕
∩
i∈Λ

piZ) ∩Ks)) = {Ks,Q⊕ piZ | i ∈ Λ}.

(B4) V (N) = V (rad(N)) for every submodule N of M .

Let N be a submodule of M . If N = (0) ⊕ (0), there is nothing to prove.
Hence we assume that N ̸= (0) ⊕ (0). If V (N) ⊆ Max(M), then we con-
sider two cases : (1) |V (N)| = ∞, (2) |V (N)| < ∞. In case (1), N ⊆
Q ⊕ (0). Therefore V (N) = V (Q ⊕ (0)) = Max(M) by item B4. In case
(2), we may assume that V (N) = {Q ⊕ p1Z, Q ⊕ p2Z, ..., Q ⊕ pkZ}. Hence

V (N) = V (Q ⊕
∩k

i=1 piZ) by item B4. If V (N) ⊈ Max(M), then we can as-
sume V (N) = {Q⊕ p1Z, Q⊕ p2Z, ..., Q⊕ pkZ, Ks} for some s ∈ Q∗ by items

B1 and B2. Now items B3 and B4 implies that V (N) = V ((Q⊕
∩k

i=1 piZ)∩Ks).

(d) By [7, p. 97, Proposition 9], it is enough to show that every subspace of
(SpecZ(M), τ c) is quasi-compact. To see this, let Y be a subspace of SpecZ(M)
and let (Fi)i∈I be a family of closed subset of Y such that

∩
i∈I Fi = ∅. With-

out loss of generality we may assume that I is an infinite set. If for every
i ∈ I, Fi is infinite, then since Fi ⊇ V (Q ⊕ (0)) ∩ Y , we have

∩
i∈I Fi ̸= ∅

which is a contradiction. Hence there exists i0 ∈ I such that Fi0 is finite.
Set Fi0 = {a1, a2, ..., an}. Thus we can choose i1, i2, ..., in of I \ {i0} with
a1 ̸∈ Fi1 , a2 ̸∈ Fi2 , ..., an ̸∈ Fn. This implies that

∩n
k=0 Fik = ∅, as desired.

Therefore, SpecZ(M) is Noetherian and so M has (FC) and (FP ) properties
by [7, p. 98, Proposition 10] and Theorem 2.6. Moreover, SpecZ(M) is a spec-
tral space by Corollary 2.4 and M is not a top R-module by [15, Theorem
5.1]. □
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