ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the Iranian Mathematical Society

Vol. 42 (2016), No. 4, pp. 949-958

Title:

Complexes of C-projective modules

Author(s):

E. Amanzadeh and M. T. Dibaei

Published by Iranian Mathematical Society http://bims.irs.ir

COMPLEXES OF C-PROJECTIVE MODULES

E. AMANZADEH* AND M. T. DIBAEI

(Communicated by Siamak Yassemi)

ABSTRACT. Inspired by a recent work of Buchweitz and Flenner, we show that, for a semidualizing bimodule C, C-perfect complexes have the ability to detect when a ring is strongly regular. It is shown that there exists a class of modules which admit minimal resolutions of C-projective modules

Keywords: Semidualizing, C-projective, \mathcal{P}_C -resolution, C-perfect complex, strongly regular.

MSC(2010): Primary: 13D05; Secondary: 16E05, 16E10.

1. Introduction

Let R be a left and right noetherian ring (not necessarily commutative), all modules left R-modules and C a semidualizing (R,R)-bimodule (Definition 2.1). A complex X_{\bullet} of R-modules is said to be C-perfect if it is quasiisomorphic to a finite complex

$$T_{\bullet} = 0 \longrightarrow C \otimes_R P_n \longrightarrow C \otimes_R P_{n-1} \longrightarrow \cdots \longrightarrow C \otimes_R P_1 \longrightarrow C \otimes_R P_0 \longrightarrow 0,$$

where each P_i is a finite (i.e. finitely generated) projective R-module. The width of such a C-perfect complex X_{\bullet} , denoted by wd(X_{\bullet}), is defined to be the minimal length n of a complex T_{\bullet} satisfying the above conditions. Recall from [3], a ring R is called strongly regular whenever there exists a non-negative integer r such that every R-perfect complex is quasiisomorphic to a direct sum of R-perfect complexes of width $\leq r$. Buchweitz and Flenner, in [3], characterize the commutative noetherian rings which are strongly regular.

Our first objective is to detect when a ring is strongly regular by means of C-perfect complexes (Theorem 3.8). We also prove that C-projective modules (i.e., modules of the form $C \otimes_R P$ with P projective) have the ability to detect when a ring is hereditary (Proposition 3.1).

Article electronically published on August 20, 2016. Received: 13 March 2015, Accepted: 17 June 2015.

^{*}Corresponding author.

Our second goal is to find a class of R-modules which admit minimal resolutions of C-projective modules (see Theorem 3.10).

2. Preliminaries

Throughout, R is a left and right noetherian ring (not necessarily commutative) and let all R-modules be left R-modules. Right R-modules are identified with left modules over the opposite ring R^{op} . An (R,R)-bimodule M is both left and right R-module with compatible structures.

Definition 2.1. [9, Definition 2.1] An (R,R)-bimodule C is semidualizing if it is a finite R-module, finite R^{op}-module, and the following conditions hold.

- (1) The homothety map $R \xrightarrow{R_{\gamma}} \operatorname{Hom}_{R^{op}}(C,C)$ is an isomorphism.
- (2) The homothety map $R \xrightarrow{\gamma^R} \operatorname{Hom}_R(C,C)$ is an isomorphism.
- (3) $\operatorname{Ext}_{R}^{\geqslant 1}(C, C) = 0.$ (4) $\operatorname{Ext}_{R^{\operatorname{op}}}^{\geqslant 1}(C, C) = 0.$

Assume that R is a commutative noetherian ring, then the above definition agrees with the definition of semidualizing R-module (see e.g. [9, 2.1]). Also, every finite projective R-module of rank 1 is semidualizing (see [11, Corollary 2.2.5]).

Definition 2.2. [9, Definition 3.1] A semidualizing (R, R)-bimodule C is said to be faithfully semidualizing if it satisfies the following conditions

- (a) If $\operatorname{Hom}_{R}(C, M) = 0$, then M = 0 for any R-module M;
- (b) If $\operatorname{Hom}_{R^{\operatorname{op}}}(C, N) = 0$, then N = 0 for any R^{op} -module N.

Note that over a commutative noetherian ring, all semidualizing modules are faithfully semidualizing, by [9, Proposition 3.1].

For the remainder of this section C denotes a semidualizing (R, R)-bimodule. The following class of modules, is already appeared in, for example, [8], [9], and [13].

Definition 2.3. An R-module is called C-projective if it has the form $C \otimes_R P$ for some projective R-module P. The class of (resp. finite) C-projective modules is denoted by \mathcal{P}_C (resp. \mathcal{P}_C^f).

A complex A of R-modules is called $\operatorname{Hom}_R(\mathcal{P}_C, -)$ -exact if $\operatorname{Hom}_R(C \otimes_R)$ P,A) is exact for each projective R-module P. The term $Hom_R(-,\mathcal{P}_C)$ -exact is defined dually.

For the notations in the next fact one may see [12, Definitions 1.4 and 1.5]. **Fact 2.1.** A \mathcal{P}_C -resolution of an R-module M is a complex X in \mathcal{P}_C with $X_{-n} = 0 = H_n(X)$ for all n > 0 and $M \cong H_0(X)$. The following exact sequence is the augmented \mathcal{P}_{C} -resolution of M associated to X:

$$X^{+} = \cdots \xrightarrow{\partial_{2}^{X}} C \otimes_{R} P_{1} \xrightarrow{\partial_{1}^{X}} C \otimes_{R} P_{0} \longrightarrow M \longrightarrow 0.$$

A \mathcal{P}_C -resolution X of M is called *proper* if in addition X^+ is $\operatorname{Hom}_R(\mathcal{P}_C, -)$ -exact.

The \mathcal{P}_{C} -projective dimension of M is the quantity

$$\mathcal{P}_C - \operatorname{pd}(M) = \inf \{ \sup\{n \ge 0 \mid X_n \ne 0 \} \mid X \text{ is an } \mathcal{P}_C - \operatorname{resolution of } M \}.$$

The objects of \mathcal{P}_C -projective dimension 0 are exactly C-projective R-modules. The notion (proper) \mathcal{P}_C -coresolution is defined dually. The augmented \mathcal{P}_C -coresolution associated to a \mathcal{P}_C -coresolution Y is denoted by ${}^+Y$.

In [13], the authors proved the following proposition for a commutative ring R. However, by an easy inspection, one can see that it is true even if R is non-commutative.

Proposition 2.4. Assume that C is a faithfully semidualizing (R, R)-bimodule and that M is an R-module. The following statements hold true.

(a) [13, Corollary 2.10(a)] The inequality $\mathcal{P}_C\text{-pd}(M) \leqslant n$ holds if and only if there is a complex

$$0 \longrightarrow C \otimes_R P_n \longrightarrow \cdots \longrightarrow C \otimes_R P_0 \longrightarrow M \longrightarrow 0$$

which is $\operatorname{Hom}_R(\mathcal{P}_C, -)$ -exact.

- (b) [13, Theorem 2.11(a)] $\operatorname{pd}_R(M) = \mathcal{P}_C \operatorname{-pd}_R(C \otimes_R M)$.
- (c) [13, Theorem 2.11(c)] \mathcal{P}_C -pd_R(M) = pd_R(Hom_R(C, M)).

Remark 2.5. By [9, Proposition 5.3] the class \mathcal{P}_C is precovering, that is, for an R-module M, there exists a projective R-module P and a homomorphism $\phi: C \otimes_R P \to M$ such that, for every projective Q, the induced map

$$\operatorname{Hom}_R(C \otimes_R Q, C \otimes_R P) \xrightarrow{\operatorname{Hom}_R(C \otimes_R Q, \phi)} \operatorname{Hom}_R(C \otimes_R Q, M)$$

is surjective. Then one can iteratively take precovers to construct a complex

$$(2.5.1) W = \cdots \xrightarrow{\partial_2^X} C \otimes_R P_1 \xrightarrow{\partial_1^X} C \otimes_R P_0 \longrightarrow 0$$

such that W^+ is $\operatorname{Hom}_R(\mathcal{P}_C, -)$ -exact, where

$$W^+ = \cdots \xrightarrow{\partial_2^X} C \otimes_R P_1 \xrightarrow{\partial_1^X} C \otimes_R P_0 \xrightarrow{\phi} M \longrightarrow 0.$$

For the notions precovering, covering, preenveloping and enveloping one can see [6].

Note that if C is faithfully semidualizing (R, R)-bimodule and M is an Rmodule, then, by Proposition 2.4(a), \mathcal{P}_C -pd(M) is equal to the length of the
shortest complex as (2.5.1). Thus for any R-module M, the quantity \mathcal{P}_C projective dimension of M, defined in [9] and [13], is equal to \mathcal{P}_C -pd(M) in
Fact 2.1.

3. Results

A ring R is (left) hereditary if every left ideal is projective. The Cartan-Eilenberg theorem [10, Theorem 4.19] shows that R is hereditary if and only if every submodule of a projective module is projective. We show that the quality of being hereditary can be detected by C-projective modules, which is interesting on its own.

Proposition 3.1. Assume that C runs through the class of faithfully semidualizing (R,R)-bimodules. The following statements are equivalent.

- (i) R is left hereditary.
- (ii) For any C, every submodule of a C-projective R-module is also C-projective.
- (iii) There exists a C such that every submodule of a C-projective R-module is also C-projective.

Proof. (i)⇒(ii). Let C be a faithfully semidualizing bimodule and N a submodule of $C \otimes_R P$, where P is a projective R-module. Then one gets the exact sequence $0 \longrightarrow \operatorname{Hom}_R(C,N) \longrightarrow P$. As R is left hereditary, $\operatorname{Hom}_R(C,N)$ is a projective R-module. By Proposition 2.4(c), \mathcal{P}_C -pd(N) = pd($\operatorname{Hom}_R(C,N)$) = 0. (ii)⇒(iii) is immediate.

(iii) \Rightarrow (i). As every submodule of a C-projective R-module is C-projective, for any R-module M one has \mathcal{P}_C -pd $(M) \leq 1$. Then for any R-module N one gets pd $(N) = \mathcal{P}_C$ -pd $(C \otimes_R N) \leq 1$, by Proposition 2.4(b). It follows that every submodule of a projective is projective and so, by [10, Theorem 4.19], R is left hereditary.

Definition 3.2. A complex X_{\bullet} of R-modules is called C-perfect if it is quasi-isomorphic to a finite complex

$$T_{\bullet} = 0 \longrightarrow C \otimes_R P_n \longrightarrow C \otimes_R P_{n-1} \longrightarrow \cdots \longrightarrow C \otimes_R P_1 \longrightarrow C \otimes_R P_0 \longrightarrow 0,$$

where P_i are finite projective R-modules. The width of such a C-perfect complex X_{\bullet} , denoted by $\operatorname{wd}(X_{\bullet})$, is defined to be the minimal length n of a complex T_{\bullet} satisfying the above conditions. A C-perfect complex X_{\bullet} is called indecomposable if it is not quasiisomorphic to a direct sum of two non-trivial C-perfect complexes.

Definition 3.3. [3, Definition 1.1] A ring R is called strongly r-regular if every perfect complex over R is quasiisomorphic to a direct sum of perfect complexes of width $\leq r$. If R is strongly r-regular for some r then it will be called strongly regular.

Remark 3.4. As Professor Ragnar-Olaf Buchweitz kindly pointed out in his personal communication with the authors, in [3] it should be added the blanket statement that rings are noetherian and modules are finite. Thus Definition 3.3

agrees with [3, Definition 1.1]. Indeed, over a noetherian ring every perfect complex has bounded and finite homology.

Note that a hereditary ring R is strongly 1-regular, see [3, Remark 1.2].

In order to bring the results Theorem 3.8 and Proposition 3.9, we quote some preliminaries.

Definition 3.5. [7, III.3.2(b)] and [4, Definition 2.2.8] Let $\alpha: A \to B$ be a morphism of R-complexes. The mapping cone of α , Cone(α), is a complex which is given by

$$(\operatorname{Cone}(\alpha))_n = B_n \oplus A_{n-1} \quad \text{and} \quad \partial_n^{\operatorname{Cone}(\alpha)} = \begin{pmatrix} \partial_n^B & \alpha_{n-1} \\ 0 & -\partial_{n-1}^A \end{pmatrix}.$$

It easy to see that the following lemma is also true if R is non-commutative.

Lemma 3.6. Let $\alpha: A \to B$ be a morphism of R-complexes and M be an R-module. The following statements hold true.

- (a) [4, Lemma 2.2.10] The morphism α is a quasiisomorphism if and only if $\operatorname{Cone}(\alpha)$ is acyclic.
- (b) [4, Lemma 2.3.11] $\operatorname{Cone}(\operatorname{Hom}_R(M, \alpha)) \cong \operatorname{Hom}_R(M, \operatorname{Cone}(\alpha)).$
- (c) [4, Lemma 2.4.11] $\operatorname{Cone}(M \otimes_R \alpha) \cong M \otimes_R \operatorname{Cone}(\alpha)$.

Remark 3.7. Let C be a semidualizing (R,R)-bimodule. Assume that $X=0 \to X_n \to X_{n-1} \to \cdots \to X_1 \to X_0 \to 0$ is an exact complex of R-modules.

- (a) If each X_i is a projective R-module, then it is easy to see that the induced complex $C \otimes_R X$ is exact.
- (b) If each X_i is a C-projective R-module, then the induced complex $\operatorname{Hom}_R(C,X)$ is exact, since $\operatorname{Ext}_R^{\geqslant 1}(C,X_i)=0$.

Theorem 3.8. The following statements are equivalent.

- (i) R is strongly r-regular.
- (ii) For any faithfully semidualizing bimodule C, every C-perfect complex is quasiisomorphic to a direct sum of C-perfect complexes of width $\leq r$.
- (iii) There exists a faithfully semidualizing bimodule C such that every Cperfect complex is quasiisomorphic to a direct sum of C-perfect complexes of width $\leq r$.

Proof. (i) \Rightarrow (ii). Let R be strongly r-regular, C a faithfully semidualizing bimodule. Assume that X_{\bullet} is a C-perfect complex. Then, by Definition 3.2, there exists a finite complex

$$T_{\bullet} = 0 \longrightarrow C \otimes_R P_n \longrightarrow C \otimes_R P_{n-1} \longrightarrow \cdots \longrightarrow C \otimes_R P_0 \longrightarrow 0,$$

such that each P_i is a finite projective R-module and X_{\bullet} is quasiisomorphic to T_{\bullet} . Therefore $\operatorname{Hom}_R(C, T_{\bullet}) \cong 0 \longrightarrow P_n \longrightarrow P_{n-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow 0$ is a perfect complex. By Definition 3.3, there is a quasiisomorphism α :

 $\operatorname{Hom}_R(C,T_ullet) \stackrel{\simeq}{\longrightarrow} igoplus_{i=1}^s F_ullet^{(i)},$ where each $F_ullet^{(i)}$ is a perfect complex of width $\leqslant r$. We may assume that each $F_ullet^{(i)}$ is a finite complex of finite projective R-modules. By Lemma 3.6(a), $\operatorname{Cone}(\alpha)$ is acyclic. As $\operatorname{Cone}(\alpha)$ is a finite complex of projective R-modules, Remark 3.7 implies that the complex $C \otimes_R \operatorname{Cone}(\alpha)$ is acyclic. By Lemma 3.6, the complex $\operatorname{Cone}(C \otimes_R \alpha)$ is acyclic too and so $C \otimes_R \alpha$ is quasiisomorphism. Therefore T_ullet is quasiisomorphic to $\bigoplus_{i=1}^s C \otimes_R F_ullet^{(i)}$. Note that each $C \otimes_R F_ullet^{(i)}$ is a C-perfect complex of width $\leqslant r$.

(ii)⇒(iii) is immediate.

(iii) \Rightarrow (i). Let Y_{\bullet} be a perfect complex. Then, by Definition 3.2, there is a finite complex $F_{\bullet} = 0 \longrightarrow P_m \longrightarrow P_{m-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow 0$ of finite projective modules which is quasiisomorphic to Y_{\bullet} . As $C \otimes_R F_{\bullet}$ is a C-perfect complex, our assumption implies that there is a quasiisomorphism $\beta: C \otimes_R F_{\bullet} \xrightarrow{\simeq} \bigoplus_{i=1}^s T_{\bullet}^{(i)}$, where each $T_{\bullet}^{(i)}$ is a C-perfect complex of width $\leqslant r$. We may assume that, for each i,

$$T^{(i)}_{\bullet} = 0 \longrightarrow C \otimes_R P^{(i)}_{n_i} \longrightarrow \cdots \longrightarrow C \otimes_R P^{(i)}_{0} \longrightarrow 0$$

where each $P_j^{(i)}$ is a finite projective R-module. Similar to the proof of (i) \Rightarrow (ii), one observes that $\operatorname{Hom}_R(C,\beta)$ is a quasiisomorphism. Therefore F_{ullet} is quasiisomorphic to $\bigoplus_{i=1}^s \operatorname{Hom}_R(C,T_{ullet}^{(i)})$. Note that each $\operatorname{Hom}_R(C,T_{ullet}^{(i)})$ is a perfect complex of width $\leqslant r$. Thus R is strongly r-regular. \square

In [2, Section 1], Avramov and Martsinkovsky define a general notion of minimality for complexes: A complex X is minimal if every homotopy equivalence $\sigma: X \longrightarrow X$ is an isomorphism. In [14, Lemma 4.8], it is proved that, over a commutative local ring R with maximal ideal \mathfrak{m} , a complex X consisting of modules in \mathcal{P}_C^f is minimal if and only if $\partial^X(X) \subseteq \mathfrak{m} X$.

In consistent to [3, Lemma 1.6] we prove the following proposition.

Proposition 3.9. Let R be a commutative noetherian local ring and C a semidualizing R-module. The following statements hold true.

(a) Every C-perfect complex X_{ullet} is quasiisomorphic to a minimal finite complex

$$T_{\bullet} = 0 \longrightarrow C \otimes_R F_n \longrightarrow C \otimes_R F_{n-1} \longrightarrow \cdots \longrightarrow C \otimes_R F_1 \longrightarrow C \otimes_R F_0 \longrightarrow 0,$$

where each F_i is finite free R -module.

(b) If two minimal finite complexes of modules of the form $C^m = \bigoplus^m C$ are quasiisomorphic, then they are isomorphic.

Proof. (a). By Definition 3.2, a C-perfect complex X_{\bullet} is quasiisomorphic to a finite complex

$$T_{\bullet} = 0 \longrightarrow C \otimes_R P_n \longrightarrow C \otimes_R P_{n-1} \longrightarrow \cdots \longrightarrow C \otimes_R P_1 \longrightarrow C \otimes_R P_0 \longrightarrow 0,$$

where each P_i is a finite free R-module. The complex $\operatorname{Hom}_R(C, T_{\bullet})$ is a perfect complex and so, by [3, Lemma 1.6(1)], there exists a minimal finite complex

 F_{\bullet} of finite free R-modules and a quasiisomorphism $\alpha: \operatorname{Hom}_R(C, T_{\bullet}) \xrightarrow{\simeq} F_{\bullet}$. As in the proof of Theorem 3.8, it follows that $C \otimes_R \alpha: C \otimes_R \operatorname{Hom}_R(C, T_{\bullet}) \to C \otimes_R F_{\bullet}$ is a quasiisomorphism. As $C \otimes_R F_{\bullet}$ is a minimal finite complex, we are done.

(b). Let T_{\bullet} and L_{\bullet} be two minimal finite complexes of modules of the form C^m . Assume that $\alpha: T_{\bullet} \to L_{\bullet}$ is a quasiisomorphism. Then, by Remark 3.7 and Lemma 3.6, $\operatorname{Hom}_R(C,\alpha): \operatorname{Hom}_R(C,T_{\bullet}) \to \operatorname{Hom}_R(C,L_{\bullet})$ is a quasiisomorphism of minimal finite complexes of finite free R-modules. Thus, by the proof of [3, Lemma 1.6(2)], $\operatorname{Hom}_R(C,\alpha)$ is an isomorphism. Now, there is a commutative diagram of complexes and morphisms

$$\begin{array}{cccc} T_{\bullet} & \xrightarrow{\simeq} & L_{\bullet} \\ & & & & \\ \uparrow \cong & & & \uparrow \cong \\ C \otimes_R \operatorname{Hom}_R(C, T_{\bullet}) & \xrightarrow{\cong} & C \otimes_R \operatorname{Hom}_R(C, L_{\bullet}), \end{array}$$

where the vertical morphisms are natural isomorphisms. This implies that α itself must be an isomorphism.

It is proved in [14, Lemma 4.9] that every finite module M over a commutative noetherian local ring R with \mathcal{P}_C^f -pd $(M) < \infty$ admits a minimal \mathcal{P}_C^f -resolution. Now we show that every finite R-module which has a proper \mathcal{P}_C -resolution, admits a minimal proper one. Note that if \mathcal{P}_C^f -pd $(M) < \infty$ then M admits a proper \mathcal{P}_C -resolution (see proof of [13, Corollary 2.10]).

Theorem 3.10. Assume that R is a commutative noetherian local ring and that C is a semidualizing R-module. Then \mathcal{P}_C^f is covering in the category of finite R-modules. For any finite R-module M, there is a complex $X = \cdots \longrightarrow C^{n_1} \longrightarrow C^{n_0} \longrightarrow 0$ with the following properties.

- (1) $X^+ = \cdots \longrightarrow C^{n_1} \longrightarrow C^{n_0} \longrightarrow M \longrightarrow 0$ is $\operatorname{Hom}_R(\mathcal{P}_C, -)$ -exact.
- (2) X is a minimal complex.

If M admits a proper \mathcal{P}_C -resolution, then X^+ is exact and so X is a minimal proper \mathcal{P}_C -resolution of M.

Proof. Let M be a finite R-module. Assume that $n_0 = \nu(\operatorname{Hom}_R(C, M))$ denotes the number of a minimal set of generators of $\operatorname{Hom}_R(C, M)$ and that $\alpha: R^{n_0} \longrightarrow \operatorname{Hom}_R(C, M)$ is the natural epimorphism. As α is a \mathcal{P}^f -cover of $\operatorname{Hom}_R(C, M)$, the natural map $\beta = C \otimes_R R^{n_0} \xrightarrow{C \otimes_R \alpha} C \otimes_R \operatorname{Hom}_R(C, M) \xrightarrow{\nu_M} M$ is a \mathcal{P}_C^f -cover of M. Set $M_1 = \operatorname{Ker}\beta$ and $n_1 = \nu(\operatorname{Hom}_R(C, M_1))$. Thus there is a \mathcal{P}_C^f -cover $\beta_1: C \otimes_R R^{n_1} \longrightarrow M_1$. Proceeding in this way one obtains a complex

$$X = \cdots \xrightarrow{\partial_2 = \epsilon_2 \beta_2} C \otimes_R R^{n_1} \xrightarrow{\partial_1 = \epsilon_1 \beta_1} C \otimes_R R^{n_0} \longrightarrow 0,$$

where $\epsilon_i: M_i \to C \otimes_R R^{n_{i-1}}$ is the inclusion map for all $i \geq 1$. As the maps in X are obtained by \mathcal{P}_C^f -covers, the complex X^+ is $\operatorname{Hom}_R(\mathcal{P}_C, -)$ -exact. It is easy to see that $\operatorname{Hom}_R(C, X)$ is minimal free resolution of $\operatorname{Hom}_R(C, M)$. Now we show that X is a minimal complex. Let $f: X \to X$ be a morphism which is homotopic to id_X . It is easy to see that the morphism $\operatorname{Hom}_R(C, f)$ is homotopic to $\operatorname{id}_{\operatorname{Hom}_R(C,X)}$. As the complex $\operatorname{Hom}_R(C,X)$ is minimal, by [2, Proposition 1.7], the morphism $\operatorname{Hom}_R(C,f)$ is an isomorphism. The commutative diagram

$$\begin{array}{ccc} X & \xrightarrow{f} & X \\ \downarrow \cong & \downarrow \cong & \downarrow \cong \\ C \otimes_R \operatorname{Hom}_R(C,X) & \xrightarrow{\cong} & C \otimes_R \operatorname{Hom}_R(C,X), \end{array}$$

with vertical natural isomorphisms, implies that f is an isomorphism. Therefore, by [2, Proposition 1.7], X is minimal. If M admits a proper \mathcal{P}_C -resolution, then by [13, Corollary 2.3], X^+ is exact.

The proof of the next lemma is similar to [13, Corollary 2.3].

Lemma 3.11. Let R be a commutative noetherian ring and let M be a finite R-module. Assume that C is a semidualizing R-module. The following are equivalent.

- (i) M admits a proper \mathcal{P}_{C}^{f} -coresolution.
- (ii) Every $\operatorname{Hom}_R(-,\mathcal{P}_C^f)$ -exact complex of the form

$$0 \longrightarrow M \longrightarrow C \otimes_R Q_0 \longrightarrow C \otimes_R Q_{-1} \longrightarrow \cdots$$

is exact, where Q_i is an object of \mathcal{P}^f for all $i \leq 0$.

(iii) The natural homomorphism $M \longrightarrow \operatorname{Hom}_R(\operatorname{Hom}_R(M,C),C)$ is an isomorphism and $\operatorname{Ext}_R^{\geqslant 1}(\operatorname{Hom}_R(M,C),C)=0$.

Proposition 3.12. Assume that R is a commutative noetherian local ring and that C is a semidualizing R-module. Then \mathcal{P}_C^f is enveloping in the category of finite R-modules. For any finite R-module M, there is a complex $Y = 0 \longrightarrow C^{m_0} \longrightarrow C^{m_1} \longrightarrow \cdots$ with the following properties.

- $(1) + Y = 0 \longrightarrow M \longrightarrow C^{m_0} \longrightarrow C^{m_1} \longrightarrow \cdots \text{ is } \operatorname{Hom}_R(-, \mathcal{P}_C) exact.$
- (2) Y is a minimal complex.

If M admits a proper \mathcal{P}_C^f -coresolution, then ^+Y is exact and so Y is a minimal proper \mathcal{P}_C -coresolution of M.

Proof. Let M be a finite R-module. Assume that $m_0 = \nu(\operatorname{Hom}_R(M,C))$ denotes the number of a minimal set of generators of $\operatorname{Hom}_R(M,C)$ and that $\alpha: R^{m_0} \longrightarrow \operatorname{Hom}_R(M,C)$ is the natural \mathcal{P}^f -cover of $\operatorname{Hom}_R(M,C)$. It follows that $\gamma = M \xrightarrow{\delta_M} \operatorname{Hom}_R(\operatorname{Hom}_R(M,C),C) \xrightarrow{\operatorname{Hom}_R(\alpha,C)} \operatorname{Hom}_R(R^{m_0},C)$ is a \mathcal{P}_C^f -envelope of M. Set $M_{-1} = \operatorname{Coker}\gamma$ and $m_1 = \nu(\operatorname{Hom}_R(M_{-1},C))$. As

mentioned, there is a \mathcal{P}_C^f -envelope $\gamma_1: M_{-1} \longrightarrow \operatorname{Hom}_R(R^{m_1}, C)$. Proceeding in this way one obtains a complex $Y = 0 \longrightarrow \operatorname{Hom}_R(R^{m_0}, C) \stackrel{\partial_0 = \gamma_1 \pi_1}{\longrightarrow} \operatorname{Hom}_R(R^{m_1}, C) \stackrel{\partial_{-1} = \gamma_2 \pi_2}{\longrightarrow} \cdots$, where π_i is the natural epimorphism for all $i \geq 1$. Since the maps in Y are obtained by \mathcal{P}_C^f -envelopes, the complex Y is $\operatorname{Hom}_R(-, \mathcal{P}_C)$ -exact. It is easy to see that $\operatorname{Hom}_R(Y, C)$ is minimal free resolution of $\operatorname{Hom}_R(M, C)$. Similar to the proof of Theorem 3.10, we find that Y is a minimal complex. If Y admits a proper Y_C^f -coresolution, then, by Lemma 3.11, Y is exact.

In the following example we find an R-module M with \mathcal{P}_C -pd $(M) = \infty$ which admits a minimal proper \mathcal{P}_C -resolution. This example shows that a commutative noetherian local ring which admits an exact zero-divisor is not a strongly regular ring.

Example 3.13. Let R be a commutative noetherian local ring and C a semidualizing R-module. Assume that x, y form a pair of exact zero-divisors on both R and C (e.g. see [1, Example 3.2]). Then \mathcal{P}_C -pd(C/xC) = pd(R/xR) = ∞ . The complex

$$T_{\bullet} = \cdots \xrightarrow{x} C \xrightarrow{y} C \xrightarrow{x} C \longrightarrow 0 \text{ (resp. } L_{\bullet} = 0 \longrightarrow C \xrightarrow{x} C \xrightarrow{y} C \xrightarrow{x} \cdots \text{)}$$

is a minimal \mathcal{P}_C -resolution (resp. \mathcal{P}_C -coresolution) of C/xC. By [1, Proposition 3.4], C/xC is a semidualizing R/xR-module. By [5, Proposition 2.13], there are isomorphisms

$$\operatorname{Hom}_R(C, C/xC) \cong \operatorname{Hom}_{R/xR}(C/xC, C/xC) \cong R/xR$$

$$\operatorname{Hom}_R(C/xC,C) \cong \operatorname{Hom}_{R/xR}(C/xC,C/xC) \cong R/xR.$$

Applying $\operatorname{Hom}_R(C,-)$ and $\operatorname{Hom}_R(-,C)$ on the above complexes, respectively, would result the isomorphisms $\operatorname{Hom}_R(C,T_{\bullet}^+) \cong F_{\bullet}^+$ and $\operatorname{Hom}_R(^+L_{\bullet},C) \cong F_{\bullet}^+$, where F_{\bullet}^+ is the exact complex $\cdots \xrightarrow{y} R \xrightarrow{x} R \xrightarrow{y} R \xrightarrow{x} R \longrightarrow R/xR \longrightarrow 0$. Therefore T_{\bullet} (resp. L_{\bullet}) is a minimal proper \mathcal{P}_C -resolution (resp. \mathcal{P}_{C^-} -coresolution) of C/xC.

For each n, one obtains a C-perfect complex of length n as

$$T_{\bullet}^{(n)} = 0 \longrightarrow C \longrightarrow C \longrightarrow \cdots \xrightarrow{x} C \xrightarrow{y} C \xrightarrow{x} C \longrightarrow 0,$$

where $T_i^{(n)} = T_i$ for all $0 \le i \le n$ and $T_i^{(n)} = 0$ otherwise. Note that the induced map $\bar{d}_i : T_i^{(n)}/\mathrm{Ker}\,d_i \to T_{i-1}^{(n)}$ is injective, where $\mathrm{Ker}\,d_i$ is equal to yC or xC. As C is indecomposable R-module, $T_{\bullet}^{(n)}$ is indecomposable which has a similar proof to [3, Proposition 1.5].

Acknowledgment

The authors are grateful to the referee for his/her careful reading of the paper and valuable comments. The second author was supported in part by a grant from IPM (No.93130110).

References

- [1] E. Amanzadeh and M. T. Dibaei, Auslander class, G_C and C-projective modules modulo exact zero-divisors, Comm. Algebra 43 (2015), no. 10, 4320–4333.
- [2] L. L. Avramov and A. Martsinkovsky, Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension, *Proc. London Math. Soc.* (3) 85 (2002), no. 2, 393–440.
- [3] R-O. Buchweitz and H. Flenner, Strong global dimension of commutative rings and schemes, J. Algebra 422 (2015) 741–751.
- [4] L. W. Christensen and H. B. Foxby, Hyperhomological algebra with applications to commutative rings, http://www.math.ttu.edu/~lchriste/download/918-final.pdf
- [5] M. T. Dibaei and M. Gheibi, Sequence of exact zero-divizors, arXiv:1112.2353v3 (2012).
- [6] E. E. Enochs and O. M. G. Jenda, Relative homological algebra, 30, Walter de Gruyter & Co., Berlin, 2000.
- [7] S. I. Gelfand and Y. I. Manin, Methods of Homological Algebra, Springer-Verlag, Berlin, 1996.
- [8] H. Holm and P. Jørgensen, Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205 (2006), no. 2, 423–445.
- [9] H. Holm and D. White, Foxby equivalence over associative rings, J. Math. Kyoto Univ. 47 (2007), no. 4, 781–808.
- [10] J. J. Rotman, An Introduction to Homological Algebra, Springer Universitext, Second Edition, New York, 2009.
- [11] S. Sather-Wagstaff, Semidualizing modules, http://www.ndsu.edu/pubweb/~ssatherw/ DOCS/sdm.pdf
- [12] S. Sather-Wagstaff, T. Sharif and D. White, Stability of Gorenstein categories, J. Lond. Math. Soc. (2) 77 (2008), no. 2, 481–502.
- [13] R. Takahashi and D. White, Homological aspects of semidualizing modules, Math. Scand. 106 (2010), no. 1, 5–22.
- [14] D. White, Gorenstein projective dimension with respect to a semidualizing module, J. Commut. Algebra 2 (2010), no. 1, 111–137.

(Ensiyeh Amanzadeh) Faculty of Mathematical Sciences and Computer, Kharazmi University, Tehran, Iran.

E-mail address: en.amanzadeh@gmail.com

(Mohammad Taghi Dibaei) FACULTY OF MATHEMATICAL SCIENCES AND COMPUTER, KHARAZMI UNIVERSITY, TEHRAN, IRAN

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran.

E-mail address: dibaeimt@ipm.ir