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Abstract. Inspired by a recent work of Buchweitz and Flenner, we show
that, for a semidualizing bimodule C, C–perfect complexes have the abil-

ity to detect when a ring is strongly regular. It is shown that there exists
a class of modules which admit minimal resolutions of C–projective mod-
ules.
Keywords: Semidualizing, C–projective, PC–resolution, C–perfect com-
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1. Introduction

Let R be a left and right noetherian ring (not necessarily commutative),
all modules left R–modules and C a semidualizing (R,R)–bimodule (Defini-
tion 2.1). A complex X• of R–modules is said to be C–perfect if it is quasiiso-
morphic to a finite complex

T• = 0 −→ C ⊗R Pn −→ C ⊗R Pn−1 −→ · · · −→ C ⊗R P1 −→ C ⊗R P0 −→ 0,

where each Pi is a finite (i.e. finitely generated) projective R–module. The
width of such a C–perfect complex X•, denoted by wd(X•), is defined to be
the minimal length n of a complex T• satisfying the above conditions. Recall
from [3], a ring R is called strongly regular whenever there exists a non-negative
integer r such that every R–perfect complex is quasiisomorphic to a direct
sum of R–perfect complexes of width ⩽ r. Buchweitz and Flenner, in [3],
characterize the commutative noetherian rings which are strongly regular.

Our first objective is to detect when a ring is strongly regular by means of
C–perfect complexes (Theorem 3.8). We also prove that C–projective modules
(i.e., modules of the form C⊗R P with P projective) have the ability to detect
when a ring is hereditary (Proposition 3.1).
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Our second goal is to find a class of R–modules which admit minimal reso-
lutions of C–projective modules (see Theorem 3.10).

2. Preliminaries

Throughout, R is a left and right noetherian ring (not necessarily commuta-
tive) and let all R–modules be left R–modules. Right R–modules are identified
with left modules over the opposite ring Rop. An (R,R)–bimodule M is both
left and right R–module with compatible structures.

Definition 2.1. [9, Definition 2.1] An (R,R)–bimodule C is semidualizing if
it is a finite R–module, finite Rop–module, and the following conditions hold.

(1) The homothety map R
Rγ−→ HomRop(C,C) is an isomorphism.

(2) The homothety map R
γR

−→ HomR(C,C) is an isomorphism.

(3) Ext⩾1
R (C,C) = 0.

(4) Ext⩾1
Rop(C,C) = 0.

Assume that R is a commutative noetherian ring, then the above definition
agrees with the definition of semidualizing R–module (see e.g. [9, 2.1]). Also,
every finite projective R–module of rank 1 is semidualizing (see [11, Corollary
2.2.5]).

Definition 2.2. [9, Definition 3.1] A semidualizing (R,R)–bimodule C is said
to be faithfully semidualizing if it satisfies the following conditions

(a) If HomR(C,M) = 0, then M = 0 for any R–module M ;
(b) If HomRop(C,N) = 0, then N = 0 for any Rop–module N .

Note that over a commutative noetherian ring, all semidualizing modules
are faithfully semidualizing, by [9, Proposition 3.1].

For the remainder of this section C denotes a semidualizing (R,R)–bimodule.
The following class of modules, is already appeared in, for example, [8], [9],
and [13].

Definition 2.3. An R–module is called C–projective if it has the form C⊗RP
for some projective R–module P . The class of (resp. finite) C–projective

modules is denoted by PC (resp. Pf
C).

A complex A of R–modules is called HomR(PC ,−)–exact if HomR(C ⊗R

P,A) is exact for each projective R–module P . The term HomR(−,PC)–exact
is defined dually.

For the notations in the next fact one may see [12, Definitions 1.4 and 1.5].
Fact 2.1. A PC–resolution of an R–module M is a complex X in PC with
X−n = 0 = Hn(X) for all n > 0 andM ∼= H0(X). The following exact sequence
is the augmented PC–resolution of M associated to X:

X+ = · · · ∂X
2−→ C ⊗R P1

∂X
1−→ C ⊗R P0 −→ M −→ 0.
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A PC–resolution X of M is called proper if in addition X+ is HomR(PC ,−)–
exact.

The PC–projective dimension of M is the quantity

PC − pd(M) = inf{sup{n ⩾ 0 | Xn ̸= 0} | X is anPC − resolution ofM}.

The objects of PC–projective dimension 0 are exactly C–projectiveR–modules.
The notion (proper) PC–coresolution is defined dually. The augmented PC–

coresolution associated to a PC–coresolution Y is denoted by +Y .
In [13], the authors proved the following proposition for a commutative ring

R. However, by an easy inspection, one can see that it is true even if R is
non-commutative.

Proposition 2.4. Assume that C is a faithfully semidualizing (R,R)–bimodule
and that M is an R–module. The following statements hold true.

(a) [13, Corollary 2.10(a)] The inequality PC–pd(M) ⩽ n holds if and
only if there is a complex

0 −→ C ⊗R Pn −→ · · · −→ C ⊗R P0 −→ M −→ 0

which is HomR(PC ,−)–exact.
(b) [13, Theorem 2.11(a)] pdR(M) = PC–pdR(C ⊗R M).
(c) [13, Theorem 2.11(c)] PC–pdR(M) = pdR(HomR(C,M)).

Remark 2.5. By [9, Proposition 5.3] the class PC is precovering, that is, for
an R–module M , there exists a projective R–module P and a homomorphism
ϕ : C ⊗R P → M such that, for every projective Q, the induced map

HomR(C ⊗R Q,C ⊗R P )
HomR(C⊗RQ,ϕ)
−−−−−−−→ HomR(C ⊗R Q,M)

is surjective. Then one can iteratively take precovers to construct a complex

(2.5.1) W = · · · ∂X
2−→ C ⊗R P1

∂X
1−→ C ⊗R P0 −→ 0

such that W+ is HomR(PC ,−)–exact, where

W+ = · · · ∂X
2−→ C ⊗R P1

∂X
1−→ C ⊗R P0

ϕ−→ M −→ 0.

For the notions precovering, covering, preenveloping and enveloping one can
see [6].

Note that if C is faithfully semidualizing (R,R)–bimodule and M is an R–
module, then, by Proposition 2.4(a), PC–pd(M) is equal to the length of the
shortest complex as (2.5.1). Thus for any R–module M , the quantity PC–
projective dimension of M , defined in [9] and [13], is equal to PC–pd(M) in
Fact 2.1.
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3. Results

A ring R is (left) hereditary if every left ideal is projective. The Cartan-
Eilenberg theorem [10, Theorem 4.19] shows that R is hereditary if and only
if every submodule of a projective module is projective. We show that the
quality of being hereditary can be detected by C–projective modules, which is
interesting on its own.

Proposition 3.1. Assume that C runs through the class of faithfully semidu-
alizing (R,R)–bimodules. The following statements are equivalent.

(i) R is left hereditary.
(ii) For any C, every submodule of a C–projective R–module is also C–

projective.
(iii) There exists a C such that every submodule of a C–projective R–module

is also C–projective.

Proof. (i)⇒(ii). Let C be a faithfully semidualizing bimodule and N a submod-
ule of C ⊗R P , where P is a projective R–module. Then one gets the exact se-
quence 0 −→ HomR(C,N) −→ P . AsR is left hereditary, HomR(C,N) is a pro-
jective R–module. By Proposition 2.4(c), PC–pd(N) = pd(HomR(C,N)) = 0.

(ii)⇒(iii) is immediate.
(iii)⇒(i). As every submodule of a C–projective R–module is C–projective,

for any R–module M one has PC–pd(M) ⩽ 1. Then for any R–module N one
gets pd(N) = PC–pd(C ⊗R N) ⩽ 1, by Proposition 2.4(b). It follows that
every submodule of a projective is projective and so, by [10, Theorem 4.19], R
is left hereditary. □

Definition 3.2. A complex X• of R–modules is called C–perfect if it is quasi-
isomorphic to a finite complex

T• = 0 −→ C ⊗R Pn −→ C ⊗R Pn−1 −→ · · · −→ C ⊗R P1 −→ C ⊗R P0 −→ 0,

where Pi are finite projective R–modules. The width of such a C–perfect com-
plex X•, denoted by wd(X•), is defined to be the minimal length n of a complex
T• satisfying the above conditions. A C–perfect complex X• is called indecom-
posable if it is not quasiisomorphic to a direct sum of two non-trivial C–perfect
complexes.

Definition 3.3. [3, Definition 1.1] A ring R is called strongly r–regular if every
perfect complex over R is quasiisomorphic to a direct sum of perfect complexes
of width ⩽ r. If R is strongly r–regular for some r then it will be called strongly
regular.

Remark 3.4. As Professor Ragnar-Olaf Buchweitz kindly pointed out in his
personal communication with the authors, in [3] it should be added the blanket
statement that rings are noetherian and modules are finite. Thus Definition 3.3
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agrees with [3, Definition 1.1]. Indeed, over a noetherian ring every perfect
complex has bounded and finite homology.

Note that a hereditary ring R is strongly 1-regular, see [3, Remark 1.2].
In order to bring the results Theorem 3.8 and Proposition 3.9, we quote

some preliminaries.

Definition 3.5. [7, III.3.2(b)] and [4, Definition 2.2.8] Let α : A → B be
a morphism of R–complexes. The mapping cone of α, Cone(α), is a complex
which is given by

(Cone(α))n = Bn ⊕An−1 and ∂Cone(α)
n =

(
∂B
n αn−1

0 −∂A
n−1

)
.

It easy to see that the following lemma is also true if R is non-commutative.

Lemma 3.6. Let α : A → B be a morphism of R–complexes and M be an
R–module. The following statements hold true.

(a) [4, Lemma 2.2.10] The morphism α is a quasiisomorphism if and only
if Cone(α) is acyclic.

(b) [4, Lemma 2.3.11] Cone(HomR(M,α)) ∼= HomR(M,Cone(α)).
(c) [4, Lemma 2.4.11] Cone(M ⊗R α) ∼= M ⊗R Cone(α).

Remark 3.7. Let C be a semidualizing (R,R)–bimodule. Assume that
X = 0 → Xn → Xn−1 → · · · → X1 → X0 → 0 is an exact complex of
R–modules.

(a) If each Xi is a projective R–module, then it is easy to see that the
induced complex C ⊗R X is exact.

(b) If each Xi is a C–projective R–module, then the induced complex

HomR(C,X) is exact, since Ext⩾1
R (C,Xi) = 0.

Theorem 3.8. The following statements are equivalent.

(i) R is strongly r–regular.
(ii) For any faithfully semidualizing bimodule C, every C–perfect complex

is quasiisomorphic to a direct sum of C–perfect complexes of width ⩽ r.
(iii) There exists a faithfully semidualizing bimodule C such that every C–

perfect complex is quasiisomorphic to a direct sum of C–perfect com-
plexes of width ⩽ r.

Proof. (i)⇒(ii). Let R be strongly r–regular, C a faithfully semidualizing bi-
module. Assume that X• is a C–perfect complex. Then, by Definition 3.2,
there exists a finite complex

T• = 0 −→ C ⊗R Pn −→ C ⊗R Pn−1 −→ · · · −→ C ⊗R P0 −→ 0,

such that each Pi is a finite projective R–module and X• is quasiisomorphic
to T•. Therefore HomR(C, T•) ∼= 0 −→ Pn −→ Pn−1 −→ · · · −→ P0 −→
0 is a perfect complex. By Definition 3.3, there is a quasiisomorphism α :
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HomR(C, T•)
≃−→

⊕s
i=1 F

(i)
• , where each F

(i)
• is a perfect complex of width

⩽ r. We may assume that each F
(i)
• is a finite complex of finite projective R–

modules. By Lemma 3.6(a), Cone(α) is acyclic. As Cone(α) is a finite complex
of projective R–modules, Remark 3.7 implies that the complex C⊗RCone(α) is
acyclic. By Lemma 3.6, the complex Cone(C⊗Rα) is acyclic too and so C⊗Rα

is quasiisomorphism. Therefore T• is quasiisomorphic to
⊕s

i=1 C⊗RF
(i)
• . Note

that each C ⊗R F
(i)
• is a C–perfect complex of width ⩽ r.

(ii)⇒(iii) is immediate.
(iii)⇒(i). Let Y• be a perfect complex. Then, by Definition 3.2, there is

a finite complex F• = 0 −→ Pm −→ Pm−1 −→ · · · −→ P0 −→ 0 of finite
projective modules which is quasiisomorphic to Y•. As C ⊗R F• is a C–perfect
complex, our assumption implies that there is a quasiisomorphism β : C ⊗R

F•
≃−→

⊕s
i=1 T

(i)
• , where each T

(i)
• is a C–perfect complex of width ⩽ r. We

may assume that, for each i,

T
(i)
• = 0 −→ C ⊗R P (i)

ni
−→ · · · −→ C ⊗R P

(i)
0 −→ 0

where each P
(i)
j is a finite projective R–module. Similar to the proof of (i)⇒(ii),

one observes that HomR(C, β) is a quasiisomorphism. Therefore F• is quasi-

isomorphic to
⊕s

i=1 HomR(C, T
(i)
• ). Note that each HomR(C, T

(i)
• ) is a perfect

complex of width ⩽ r. Thus R is strongly r–regular. □
In [2, Section 1], Avramov and Martsinkovsky define a general notion of

minimality for complexes: A complex X is minimal if every homotopy equiv-
alence σ : X −→ X is an isomorphism. In [14, Lemma 4.8], it is proved that,
over a commutative local ring R with maximal ideal m, a complex X consisting

of modules in Pf
C is minimal if and only if ∂X(X) ⊆ mX.

In consistent to [3, Lemma 1.6] we prove the following proposition.

Proposition 3.9. Let R be a commutative noetherian local ring and C a semid-
ualizing R–module. The following statements hold true.

(a) Every C–perfect complex X• is quasiisomorphic to a minimal finite com-
plex

T• = 0 −→ C ⊗R Fn −→ C ⊗R Fn−1 −→ · · · −→ C ⊗R F1 −→ C ⊗R F0 −→ 0,

where each Fi is finite free R–module.
(b) If two minimal finite complexes of modules of the form Cm = ⊕mC are

quasiisomorphic, then they are isomorphic.

Proof. (a). By Definition 3.2, a C–perfect complex X• is quasiisomorphic to a
finite complex

T• = 0 −→ C ⊗R Pn −→ C ⊗R Pn−1 −→ · · · −→ C ⊗R P1 −→ C ⊗R P0 −→ 0,

where each Pi is a finite free R–module. The complex HomR(C, T•) is a perfect
complex and so, by [3, Lemma 1.6(1)], there exists a minimal finite complex
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F• of finite free R–modules and a quasiisomorphism α : HomR(C, T•)
≃−→ F•.

As in the proof of Theorem 3.8, it follows that C ⊗R α : C ⊗R HomR(C, T•) →
C ⊗R F• is a quasiisomorphism. As C ⊗R F• is a minimal finite complex, we
are done.

(b). Let T• and L• be two minimal finite complexes of modules of the form
Cm. Assume that α : T• → L• is a quasiisomorphism. Then, by Remark 3.7
and Lemma 3.6, HomR(C,α) : HomR(C, T•) → HomR(C,L•) is a quasiiso-
morphism of minimal finite complexes of finite free R–modules. Thus, by the
proof of [3, Lemma 1.6(2)], HomR(C,α) is an isomorphism. Now, there is a
commutative diagram of complexes and morphisms

T•
≃

−−−−−−−−−−−−−→
α

L•x ∼=
x ∼=

C ⊗R HomR(C, T•)
∼=

−−−−−−−−−−→
C⊗RHomR(C,α)

C ⊗R HomR(C,L•),

where the vertical morphisms are natural isomorphisms. This implies that α
itself must be an isomorphism. □

It is proved in [14, Lemma 4.9] that every finite module M over a com-

mutative noetherian local ring R with Pf
C–pd(M) < ∞ admits a minimal

Pf
C–resolution. Now we show that every finite R–module which has a proper

PC–resolution, admits a minimal proper one. Note that if Pf
C–pd(M) < ∞

then M admits a proper PC–resolution (see proof of [13, Corollary 2.10]).

Theorem 3.10. Assume that R is a commutative noetherian local ring and

that C is a semidualizing R–module. Then Pf
C is covering in the category of

finite R–modules. For any finite R–module M , there is a complex X = · · · −→
Cn1 −→ Cn0 −→ 0 with the following properties.

(1) X+ = · · · −→ Cn1 −→ Cn0 −→ M −→ 0 is HomR(PC ,−)–exact.
(2) X is a minimal complex.
If M admits a proper PC–resolution, then X+ is exact and so X is a minimal

proper PC–resolution of M .

Proof. Let M be a finite R–module. Assume that n0 = ν(HomR(C,M)) de-
notes the number of a minimal set of generators of HomR(C,M) and that
α : Rn0 −→ HomR(C,M) is the natural epimorphism. As α is a Pf–cover of

HomR(C,M), the natural map β = C⊗RR
n0

C⊗Rα
−−−→ C⊗RHomR(C,M)

νM−→ M

is a Pf
C–cover of M . Set M1 = Kerβ and n1 = ν(HomR(C,M1)). Thus there

is a Pf
C–cover β1 : C ⊗R Rn1 −→ M1. Proceeding in this way one obtains a

complex

X = · · ·
∂2=ϵ2β2

−−−→ C ⊗R Rn1
∂1=ϵ1β1

−−−→ C ⊗R Rn0 −→ 0,
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where ϵi : Mi → C ⊗R Rni−1 is the inclusion map for all i ⩾ 1. As the maps in

X are obtained by Pf
C–covers, the complex X+ is HomR(PC ,−)–exact. It is

easy to see that HomR(C,X) is minimal free resolution of HomR(C,M). Now
we show that X is a minimal complex. Let f : X → X be a morphism which is
homotopic to idX . It is easy to see that the morphism HomR(C, f) is homotopic
to idHomR(C,X). As the complex HomR(C,X) is minimal, by [2, Proposition
1.7], the morphism HomR(C, f) is an isomorphism. The commutative diagram

X
f

−−−−−−−−−−−−−→ Xy ∼=
y ∼=

C ⊗R HomR(C,X)
∼=

−−−−−−−−−−→
C⊗RHomR(C,f)

C ⊗R HomR(C,X),

with vertical natural isomorphisms, implies that f is an isomorphism. There-
fore, by [2, Proposition 1.7], X is minimal. IfM admits a proper PC–resolution,
then by [13, Corollary 2.3], X+ is exact. □

The proof of the next lemma is similar to [13, Corollary 2.3].

Lemma 3.11. Let R be a commutative noetherian ring and let M be a finite
R–module. Assume that C is a semidualizing R–module. The following are
equivalent.

(i) M admits a proper Pf
C–coresolution.

(ii) Every HomR(−,Pf
C)–exact complex of the form

0 −→ M −→ C ⊗R Q0 −→ C ⊗R Q−1 −→ · · ·
is exact, where Qi is an object of Pf for all i ⩽ 0.

(iii) The natural homomorphism M −→ HomR(HomR(M,C), C) is an iso-

morphism and Ext⩾1
R (HomR(M,C), C) = 0.

Proposition 3.12. Assume that R is a commutative noetherian local ring and

that C is a semidualizing R–module. Then Pf
C is enveloping in the category of

finite R–modules. For any finite R–module M , there is a complex Y = 0 −→
Cm0 −→ Cm1 −→ · · · with the following properties.

(1) +Y = 0 −→ M −→ Cm0 −→ Cm1 −→ · · · is HomR(−,PC)–exact.
(2) Y is a minimal complex.

If M admits a proper Pf
C–coresolution, then +Y is exact and so Y is a

minimal proper PC–coresolution of M .

Proof. Let M be a finite R–module. Assume that m0 = ν(HomR(M,C)) de-
notes the number of a minimal set of generators of HomR(M,C) and that
α : Rm0 −→ HomR(M,C) is the natural Pf–cover of HomR(M,C). It fol-

lows that γ = M
δM−→ HomR(HomR(M,C), C)

HomR(α,C)
−−−→ HomR(R

m0 , C) is a

Pf
C–envelope of M . Set M−1 = Cokerγ and m1 = ν(HomR(M−1, C)). As
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mentioned, there is a Pf
C–envelope γ1 : M−1 −→ HomR(R

m1 , C). Proceed-

ing in this way one obtains a complex Y = 0 −→ HomR(R
m0 , C)

∂0=γ1π1

−−−→

HomR(R
m1 , C)

∂−1=γ2π2

−−−→ · · · , where πi is the natural epimorphism for all i ⩾
1. Since the maps in Y are obtained by Pf

C–envelopes, the complex +Y is
HomR(−,PC)–exact. It is easy to see that HomR(Y,C) is minimal free resolu-
tion of HomR(M,C). Similar to the proof of Theorem 3.10, we find that Y is

a minimal complex. If M admits a proper Pf
C–coresolution, then, by Lemma

3.11, +Y is exact. □

In the following example we find an R–module M with PC–pd(M) = ∞
which admits a minimal proper PC–resolution. This example shows that a
commutative noetherian local ring which admits an exact zero-divisor is not a
strongly regular ring.

Example 3.13. Let R be a commutative noetherian local ring and C a semid-
ualizing R–module. Assume that x, y form a pair of exact zero-divisors on both
R and C (e.g. see [1, Example 3.2]). Then PC–pd(C/xC) = pd(R/xR) = ∞.
The complex

T• = · · · x−→ C
y−→ C

x−→ C −→ 0 ( resp. L• = 0 −→ C
x−→ C

y−→ C
x−→ · · · )

is a minimal PC–resolution (resp. PC–coresolution) of C/xC. By [1, Propo-
sition 3.4], C/xC is a semidualizing R/xR–module. By [5, Proposition 2.13],
there are isomorphisms

HomR(C,C/xC) ∼= HomR/xR(C/xC,C/xC) ∼= R/xR,

HomR(C/xC,C) ∼= HomR/xR(C/xC,C/xC) ∼= R/xR.

Applying HomR(C,−) and HomR(−, C) on the above complexes, respectively,
would result the isomorphisms HomR(C, T

+
• ) ∼= F+

• and HomR(
+L•, C) ∼= F+

• ,

where F+
• is the exact complex · · · y−→ R

x−→ R
y−→ R

x−→ R −→ R/xR −→
0. Therefore T• (resp. L•) is a minimal proper PC–resolution (resp. PC–
coresolution) of C/xC.

For each n, one obtains a C–perfect complex of length n as

T
(n)
• = 0 −→ C−→C−→· · · x−→ C

y−→ C
x−→ C −→ 0,

where T
(n)
i = Ti for all 0 ≤ i ≤ n and T

(n)
i = 0 otherwise. Note that the

induced map d̄i : T
(n)
i /Ker di → T

(n)
i−1 is injective, where Ker di is equal to yC

or xC. As C is indecomposable R–module, T
(n)
• is indecomposable which has

a similar proof to [3, Proposition 1.5].
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