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ABSTRACT. Inspired by a recent work of Buchweitz and Flenner, we show
that, for a semidualizing bimodule C, C—perfect complexes have the abil-
ity to detect when a ring is strongly regular. It is shown that there exists
a class of modules which admit minimal resolutions of C—projective mod-
ules.
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1. Introduction

Let R be a left and right noetherian ring (not necessarily commutative),
all modules left R—modules and C a semidualizing (R, R)-bimodule (Defini-
tion 2.1). A complex X, of R—modules is said to be C—perfect if it is quasiiso-
morphic to a finite complex

Te=0—C®rP, —>CQrP,1— - —>CQrPL —CRrPy—0,

where each P; is a finite (i.e. finitely generated) projective R-module. The
width of such a C—perfect complex X,, denoted by wd(X,), is defined to be
the minimal length n of a complex T, satisfying the above conditions. Recall
from [3], a ring R is called strongly regular whenever there exists a non-negative
integer r such that every R—perfect complex is quasiisomorphic to a direct
sum of R-—perfect complexes of width < r. Buchweitz and Flenner, in [3],
characterize the commutative noetherian rings which are strongly regular.

Our first objective is to detect when a ring is strongly regular by means of
C—perfect complexes (Theorem 3.8). We also prove that C—projective modules
(i.e., modules of the form C ®r P with P projective) have the ability to detect
when a ring is hereditary (Proposition 3.1).
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Our second goal is to find a class of R—modules which admit minimal reso-
lutions of C—projective modules (see Theorem 3.10).

2. Preliminaries

Throughout, R is a left and right noetherian ring (not necessarily commuta-
tive) and let all R—modules be left R—modules. Right R-modules are identified
with left modules over the opposite ring R°P. An (R, R)-bimodule M is both
left and right R—module with compatible structures.

Definition 2.1. [9, Definition 2.1] An (R, R)-bimodule C is semidualizing if
it is a finite R—module, finite R°P—module, and the following conditions hold.

R
(1) The homothety map R —3 Hom ges (C, C) is an isomorphism.

R
(2) Theﬁomothety map R ~— Hompg(C, C) is an isomorphism.
(3) Ext7 (C,C) = 0.
(4) Ext7, (C,C) = 0.

Assume that R is a commutative noetherian ring, then the above definition

agrees with the definition of semidualizing R—module (see e.g. [9, 2.1]). Also,
every finite projective R—module of rank 1 is semidualizing (see [11, Corollary
2.2.5)).

Definition 2.2. [9, Definition 3.1] A semidualizing (R, R)-bimodule C' is said
to be faithfully semidualizing if it satisfies the following conditions

(a) If Hompg(C, M) = 0, then M = 0 for any R—module M;

(b) If Hompger (C, N) = 0, then N = 0 for any R°°’—module N.

Note that over a commutative noetherian ring, all semidualizing modules
are faithfully semidualizing, by [9, Proposition 3.1].

For the remainder of this section C' denotes a semidualizing (R, R)-bimodule.
The following class of modules, is already appeared in, for example, [3], [9],
and [13].

Definition 2.3. An R—module is called C—projective if it has the form C @z P
for some projective R—module P. The class of (resp. finite) C—projective
modules is denoted by Pc (resp. Pé)

A complex A of R—modules is called Homg(Pc, —)—exact if Homg(C Qg
P, A) is exact for each projective R—module P. The term Homp(—, Pc)-exact
is defined dually.

For the notations in the next fact one may see [12, Definitions 1.4 and 1.5].
Fact 2.1. A Pc—resolution of an R—module M is a complex X in Pc with
X_n=0=H,(X)foralln > 0and M = Hy(X). The following exact sequence
is the augmented Pc—resolution of M associated to X:

n o5 o
XT=-.. 5C@rPL —CQQrPy— M — 0.
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A Po-resolution X of M is called proper if in addition X* is Homg(Pc, —)—
exact.
The Pc—projective dimension of M is the quantity

Pe —pd(M) = inf{sup{n >0 | X,, # 0} | X is anPc — resolution of M }.

The objects of Po—projective dimension 0 are exactly C—projective R—modules.

The notion (proper) Pc—coresolution is defined dually. The augmented Po—
coresolution associated to a Po—coresolution Y is denoted by TY.

In [13], the authors proved the following proposition for a commutative ring
R. However, by an easy inspection, one can see that it is true even if R is
non-commutative.

Proposition 2.4. Assume that C is a faithfully semidualizing (R, R)—bimodule
and that M is an R—module. The following statements hold true.
(a) [13, Corollary 2.10(a)] The inequality Pc—pd(M) < n holds if and
only if there is a complex

0—CQ®rP,— —CRrPy— M —0

which is Hompg (P, —)—ezact.
(b) [13, Theorem 2.11(a)] pdr(M) = Pc-pdg(C @r M).
(¢) [13, Theorem 2.11(c)] Pc—pdr(M) = pdr(Hompg(C, M)).

Remark 2.5. By [9, Proposition 5.3] the class P¢ is precovering, that is, for
an R—module M, there exists a projective R—module P and a homomorphism
¢ : C ®r P — M such that, for every projective @, the induced map

Hompgr(C®RQ,0)
Homp(C ®r Q,C®r P) —— Homp(C®rQ,M)

is surjective. Then one can iteratively take precovers to construct a complex

o o
(2.5.1) W= CQrP > CRrP—0

such that W7 is Homg(Pc, —)—exact, where

+_ % a ¢
Whr=... 5 C®rP  —C®rFPy— M —0.

For the notions precovering, covering, preenveloping and enveloping one can
see [6].

Note that if C is faithfully semidualizing (R, R)-bimodule and M is an R-
module, then, by Proposition 2.4(a), Pc—pd(M) is equal to the length of the
shortest complex as (2.5.1). Thus for any R—-module M, the quantity Pc—
projective dimension of M, defined in [9] and [13], is equal to Pc—pd(M) in
Fact 2.1.
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3. Results

A ring R is (left) hereditary if every left ideal is projective. The Cartan-
Eilenberg theorem [10, Theorem 4.19] shows that R is hereditary if and only
if every submodule of a projective module is projective. We show that the
quality of being hereditary can be detected by C—projective modules, which is
interesting on its own.

Proposition 3.1. Assume that C runs through the class of faithfully semidu-
alizing (R, R)-bimodules. The following statements are equivalent.
(i) R is left hereditary.
(ii) For any C, every submodule of a C-projective R-module is also C-
projective.
(iii) There exists a C such that every submodule of a C'—projective R—module
is also C'—projective.

Proof. (i)=(ii). Let C be a faithfully semidualizing bimodule and N a submod-
ule of C ® g P, where P is a projective R—module. Then one gets the exact se-
quence 0 — Hompg(C, N) — P. As R is left hereditary, Homp(C, N) is a pro-
jective R—module. By Proposition 2.4(c), Pe—pd(N) = pd(Homg(C, N)) = 0.

(il)=-(iii) is immediate.

(iii)=(i). As every submodule of a C—projective R—module is C—projective,
for any R—module M one has Pc—pd(M) < 1. Then for any R—module N one
gets pd(N) = Po—pd(C ®r N) < 1, by Proposition 2.4(b). It follows that
every submodule of a projective is projective and so, by [10, Theorem 4.19], R
is left hereditary. O

Definition 3.2. A complex X, of R—modules is called C—perfect if it is quasi-
isomorphic to a finite complex

Te=0—C®rP, —>CQrP,1— - —>CrPL —CRrPy—0,

where P; are finite projective R—modules. The width of such a C—perfect com-
plex X,, denoted by wd(X,), is defined to be the minimal length n of a complex
T, satisfying the above conditions. A C—perfect complex X, is called indecom-
posable if it is not quasiisomorphic to a direct sum of two non-trivial C—perfect
complexes.

Definition 3.3. [3, Definition 1.1] A ring R is called strongly r—regular if every
perfect complex over R is quasiisomorphic to a direct sum of perfect complexes
of width < r. If R is strongly r—regular for some r then it will be called strongly
regular.

Remark 3.4. As Professor Ragnar-Olaf Buchweitz kindly pointed out in his
personal communication with the authors, in [3] it should be added the blanket
statement that rings are noetherian and modules are finite. Thus Definition 3.3
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agrees with [3, Definition 1.1]. Indeed, over a noetherian ring every perfect
complex has bounded and finite homology.

Note that a hereditary ring R is strongly 1-regular, see [3, Remark 1.2].
In order to bring the results Theorem 3.8 and Proposition 3.9, we quote
some preliminaries.

Definition 3.5. [7, II1.3.2(b)] and [4, Definition 2.2.8] Let o : A — B be
a morphism of R—complexes. The mapping cone of a, Cone(a), is a complex
which is given by

Cone(a) 87? Ap—1
(Cone(a))p, = B, ® Ap—1 and 9 = 0 HA .
“Yn-1

It easy to see that the following lemma is also true if R is non-commutative.

Lemma 3.6. Let a : A — B be a morphism of R—complexes and M be an
R-module. The following statements hold true.
(a) [/, Lemma 2.2.10] The morphism « is a quasiisomorphism if and only
if Cone(a) is acyclic.
(b) [/, Lemma 2.3.11] Cone(Hompg (M, o)) = Homp (M, Cone(a)).
(¢) [4, Lemma 2.4.11] Cone(M ®pr o) = M ®pr Cone(a).

Remark 3.7. Let C be a semidualizing (R, R)-bimodule. Assume that
X=0—- X, > Xo1 = = X; - Xg — 0is an exact complex of
R-modules.
(a) If each X; is a projective R—module, then it is easy to see that the
induced complex C' ®r X is exact.
(b) If each X; is a C—projective R—module, then the induced complex
Homp(C, X) is exact, since Extil(C’, X;)=0.

Theorem 3.8. The following statements are equivalent.
(i) R is strongly r—regular.
(ii) For any faithfully semidualizing bimodule C, every C—perfect complex
is quasiisomorphic to a direct sum of C'—perfect complexes of width < r.
(iii) There exists a faithfully semidualizing bimodule C such that every C-
perfect complex is quasiisomorphic to a direct sum of C'—perfect com-
plexes of width < r.

Proof. (i)=(ii). Let R be strongly r—regular, C a faithfully semidualizing bi-
module. Assume that X, is a C—perfect complex. Then, by Definition 3.2,
there exists a finite complex

T.:0—>C®R.Pn—>c®RPn71—)‘-‘—)C@)RPU—)O,

such that each P; is a finite projective R—module and X, is quasiisomorphic
to Te. Therefore Homp(C,T,) ¥ 0 — P, — P,y — -+ — Py —
0 is a perfect complex. By Definition 3.3, there is a quasiisomorphism « :
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Homg(C,T.) — @, FY, where each F{” is a perfect complex of width
< r. We may assume that each F.(i) is a finite complex of finite projective R—
modules. By Lemma 3.6(a), Cone(«) is acyclic. As Cone(«) is a finite complex
of projective R—modules, Remark 3.7 implies that the complex C'® Cone() is
acyclic. By Lemma 3.6, the complex Cone(C' ®g ) is acyclic too and so C®p «
is quasiisomorphism. Therefore T} is quasiisomorphic to @;_, C®r F.(Z). Note
that each C @g F{” is a C-perfect complex of width < 7.

(if)=-(iii) is immediate.

(iii)=-(i). Let Y, be a perfect complex. Then, by Definition 3.2, there is
a finite complex Fy = 0 — P,, — Pp_1 — -+ — Py — 0 of finite
projective modules which is quasiisomorphic to Y,. As C ®g F, is a C—perfect
complex, our assumption implies that there is a quasiisomorphism 5 : C ®pg
F, = @le T.(l), where each T.(Z) is a C—perfect complex of width < r. We
may assume that, for each i,

TH =0 —CopP) — - — Cer P —0

where each Pj(i) is a finite projective R—module. Similar to the proof of (i)=-(ii),
one observes that Homp(C, 8) is a quasiisomorphism. Therefore F, is quasi-
isomorphic to @;_; Hompg(C, T.(i)). Note that each Hompg(C, T.(i)) is a perfect
complex of width < . Thus R is strongly r—regular. O

In [2, Section 1], Avramov and Martsinkovsky define a general notion of
minimality for complexes: A complex X is minimal if every homotopy equiv-
alence o : X — X is an isomorphism. In [14, Lemma 4.8], it is proved that,
over a commutative local ring R with maximal ideal m, a complex X consisting
of modules in ”Pé is minimal if and only if 8% (X) C mX.

In consistent to [3, Lemma 1.6] we prove the following proposition.

Proposition 3.9. Let R be a commutative noetherian local ring and C' a semid-
ualizing R—module. The following statements hold true.

(a) Every C—perfect complex X, is quasiisomorphic to a minimal finite com-
plex

Te=0—C®rF, —CQrF,_.1— - —>CrF; — CRrFy—0,

where each F; is finite free R—module.
(b) If two minimal finite complexes of modules of the form C™ = &™C' are
quasiisomorphic, then they are isomorphic.

Proof. (a). By Definition 3.2, a C—perfect complex X, is quasiisomorphic to a
finite complex

Te=0—C®rP, —CRrPr 17— —CRprP — C®rPy—0,

where each P; is a finite free R—module. The complex Hompg(C, T,) is a perfect
complex and so, by [3, Lemma 1.6(1)], there exists a minimal finite complex
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F, of finite free R—modules and a quasiisomorphism « : Hompg(C, T,) = F.,.
As in the proof of Theorem 3.8, it follows that C ® g o : C @ g Hompg(C, Ts) —
C ®gr F, is a quasiisomorphism. As C ®g F, is a minimal finite complex, we
are done.

(b). Let Ty and Lo be two minimal finite complexes of modules of the form
C™. Assume that a : Ty — Lo is a quasiisomorphism. Then, by Remark 3.7
and Lemma 3.6, Hompg(C, @) : Homg(C,T,) — Hompg(C, L) is a quasiiso-
morphism of minimal finite complexes of finite free R—modules. Thus, by the
proof of [3, Lemma 1.6(2)], Hompg(C, &) is an isomorphism. Now, there is a
commutative diagram of complexes and morphisms

T, L,
C®g HOHlR(C,T.) ; C®gr HOIHR(C,L.),
C®rHomp(C,a)

~

e —

[e%

where the vertical morphisms are natural isomorphisms. This implies that «
itself must be an isomorphism. O

It is proved in [I4, Lemma 4.9] that every finite module M over a com-
mutative noetherian local ring R with Péfpd(M ) < oo admits a minimal
Péfresolution. Now we show that every finite R—module which has a proper

Po—resolution, admits a minimal proper one. Note that if P'éfpd(M ) < o0
then M admits a proper Pc-resolution (see proof of [13, Corollary 2.10]).

Theorem 3.10. Assume that R is a commutative noetherian local ring and
that C is a semidualizing R—module. Then Pé is covering in the category of

finite R—modules. For any finite R—module M, there is a complex X = -+ —
C™ — C™ — 0 with the following properties.
HXt=--—Cm — (C"™ — M — 0 is Homg(Pc, —)-eract.

(2) X is a minimal complex.
If M admits a proper Pc—resolution, then X is exact and so X is a minimal
proper Pc—resolution of M.

Proof. Let M be a finite R—module. Assume that ng = v(Hompg(C, M)) de-
notes the number of a minimal set of generators of Homp(C, M) and that
a: R™ — Homp(C, M) is the natural epimorphism. As « is a Pf-cover of

Hompg(C, M), the natural map 8 = C®gR™ % C®rHomp(C, M) 2% M
is a Péfcover of M. Set M; = Kerfg and ny = v(Hompg(C, M;)). Thus there
is a Péfcover b1 : C®r R™ — M. Proceeding in this way one obtains a
complex

82:€2ﬁ2 81:51[31
X=- —— C®rR" —— C®gpR"™ —0,
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where ¢; : M; — C ®p R™-* is the inclusion map for all 7 > 1. As the maps in
X are obtained by PZ-covers, the complex X+ is Homp(P¢, —)-exact. It is
easy to see that Homp(C, X) is minimal free resolution of Homp(C, M). Now
we show that X is a minimal complex. Let f : X — X be a morphism which is
homotopic to idx. It is easy to see that the morphism Hompg(C, f) is homotopic
to idpomp(c,x)- As the complex Hompg(C, X) is minimal, by [2, Proposition
1.7], the morphism Hompg(C, f) is an isomorphism. The commutative diagram

f
X _—

lg . fN

C ®p Homp(C,X) ————— C®pHomg(C,X),
C®RHOmR(C,f)
with vertical natural isomorphisms, implies that f is an isomorphism. There-
fore, by [2, Proposition 1.7], X is minimal. If M admits a proper Pc-resolution,
then by [13, Corollary 2.3], X is exact. O

The proof of the next lemma is similar to [13, Corollary 2.3].

Lemma 3.11. Let R be a commutative noetherian ring and let M be a finite
R-module. Assume that C is a semidualizing R—module. The following are
equivalent.

(i) M admits a proper 77(}; —coresolution.
(ii) Every HomR(—,”Pé)featact complex of the form
0 —M —=CRrQy—CRrQ_1 — -

is exact, where Q; is an object of P for all i < 0.
(iii) The natural homomorphism M — Hompg(Hompg (M, C),C) is an iso-
morphism and Ex’cﬁl(HomR(M7 C),C) =0.

Proposition 3.12. Assume that R is a commutative noetherian local ring and
that C' is a semidualizing R—module. Then Pé is enveloping in the category of
finite R—modules. For any finite R—module M, there is a complex Y =0 —
cm — O™ — .- with the following properties.

1) Y =0— M — C™ — C™ — ... is Homg(—, Pc)—ezact.

(2) Y is a minimal complez.

If M admits a proper Péfcoresolution, then 1Y is exact and so Y is a
minimal proper Pc—coresolution of M.

Proof. Let M be a finite R—module. Assume that mg = v(Hompg (M, C)) de-
notes the number of a minimal set of generators of Hompg(M,C) and that

a : R™ — Hompg(M,C) is the natural P/—cover of Homg(M,C). Tt fol-
Hompg(«,C)
lows that v = M 24 Homp(Homp (M, C),C) 5 Hompg(R™,C) is a

P(J;fenvelope of M. Set M_; = Cokery and m; = v(Homgr(M_1,C)). As
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mentioned, there is a ’Pé—envelope v1 : M_y — Hompg(R™,C). Proceed-

do=y17

ing in this way one obtains a complex Y = 0 — Hompg(R™,C) -y
O_1="272

Hompg(R™,C) —— ---, where m; is the natural epimorphism for all i >

1. Since the maps in Y are obtained by Péfenvelopes, the complex TY is
Homp(—, Pc)—exact. It is easy to see that Hompg(Y, C) is minimal free resolu-
tion of Homp (M, C). Similar to the proof of Theorem 3.10, we find that Y is
a minimal complex. If M admits a proper P'éfcoresolution, then, by Lemma
3.11, tY is exact. O

In the following example we find an R-module M with Po-pd(M) = oo
which admits a minimal proper Po—resolution. This example shows that a
commutative noetherian local ring which admits an exact zero-divisor is not a
strongly regular ring.

Example 3.13. Let R be a commutative noetherian local ring and C' a semid-
ualizing R-module. Assume that z,y form a pair of exact zero-divisors on both
R and C (e.g. see [1, Example 3.2]). Then Pc—pd(C/xC) = pd(R/xR) = .
The complex

To=-50C-LC5C—0(resp.Le=0—C 505020

is a minimal Pe-resolution (resp. Pc—coresolution) of C'/zC. By [l, Propo-
sition 3.4], C/xC is a semidualizing R/xR-module. By [5, Proposition 2.13],
there are isomorphisms

Hompg(C,C/xC) = Hompg/,r(C/zC,C/xC) = R/xR,

Homp(C/xzC,C) = Homp/,z(C/xC,C/zC) = R/zR.

Applying Hompg(C, —) and Hompg(—, C) on the above complexes, respectively,
would result the isomorphisms Hompg(C, T,") = F," and Hompg(" L., C) = F,",
where Fj is the exact complex --- - R - R s R *s R — R/xR —
0. Therefore Ty (resp. L,) is a minimal proper Pc—resolution (resp. Po—
coresolution) of C/xC.

For each n, one obtains a C—perfect complex of length n as

T =0 —Cc—0— - 5 0L 050 —0,
where Ti(n) =T, forall 0 < i < n and Ti(n) = 0 otherwise. Note that the

induced map d; : Ti(") /Kerd; — Tl(f% is injective, where Ker d; is equal to yC'

or zC. As C is indecomposable R—module, T, .(n)

a similar proof to [3, Proposition 1.5].

is indecomposable which has
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