Title:
Complexes of C-projective modules

Author(s):
E. Amanzadeh and M. T. Dibaei
COMPLEXES OF C-PROJECTIVE MODULES

E. AMANZADEH* AND M. T. DIBAEI

(Communicated by Siamak Yassemi)

Abstract. Inspired by a recent work of Buchweitz and Flenner, we show that, for a semidualizing bimodule C, C–perfect complexes have the ability to detect when a ring is strongly regular. It is shown that there exists a class of modules which admit minimal resolutions of C–projective modules.

Keywords: Semidualizing, C–projective, P_C–resolution, C–perfect complex, strongly regular.

1. Introduction

Let R be a left and right noetherian ring (not necessarily commutative), all modules left R–modules and C a semidualizing (R, R)–bimodule (Definition 2.1). A complex X_\bullet of R–modules is said to be C–perfect if it is quasiisomorphic to a finite complex

$$T_\bullet = 0 \to C \otimes_R P_n \to C \otimes_R P_{n-1} \to \cdots \to C \otimes_R P_1 \to C \otimes_R P_0 \to 0,$$

where each P_i is a finite (i.e. finitely generated) projective R–module. The width of such a C–perfect complex X_\bullet, denoted by $\text{wd}(X_\bullet)$, is defined to be the minimal length n of a complex T_\bullet satisfying the above conditions. Recall from [3], a ring R is called strongly regular whenever there exists a non-negative integer r such that every R–perfect complex is quasiisomorphic to a direct sum of R–perfect complexes of width $\leq r$. Buchweitz and Flenner, in [3], characterize the commutative noetherian rings which are strongly regular.

Our first objective is to detect when a ring is strongly regular by means of C–perfect complexes (Theorem 3.8). We also prove that C–projective modules (i.e., modules of the form $C \otimes_R P$ with P projective) have the ability to detect when a ring is hereditary (Proposition 3.1).
Our second goal is to find a class of \(R \)-modules which admit minimal resolutions of \(C \)-projective modules (see Theorem 3.10).

2. Preliminaries

Throughout, \(R \) is a left and right noetherian ring (not necessarily commutative) and let all \(R \)-modules be left \(R \)-modules. Right \(R \)-modules are identified with left modules over the opposite ring \(R^{op} \). An \((R, R)\)-bimodule \(M \) is both left and right \(R \)-module with compatible structures.

Definition 2.1. \([9, \	ext{Definition 2.1}]\) An \((R, R)\)-bimodule \(C \) is semidualizing if it is a finite \(R \)-module, finite \(R^{op} \)-module, and the following conditions hold.

1. The homothety map \(R \xrightarrow{R} \text{Hom}_{R^{op}}(C, C) \) is an isomorphism.
2. The homothety map \(R \xrightarrow{R} \text{Hom}_{R}(C, C) \) is an isomorphism.
3. \(\text{Ext}^{\geq 1}_{R}(C, C) = 0 \).
4. \(\text{Ext}^{\geq 1}_{R^{op}}(C, C) = 0 \).

Assume that \(R \) is a commutative noetherian ring, then the above definition agrees with the definition of semidualizing \(R \)-module (see e.g. \([9, 2.1] \)). Also, every finite projective \(R \)-module of rank 1 is semidualizing (see \([11, \text{Corollary 2.2.5}] \)).

Definition 2.2. \([9, \text{Definition 3.1}]\) A semidualizing \((R, R)\)-bimodule \(C \) is said to be faithfully semidualizing if it satisfies the following conditions

(a) If \(\text{Hom}_{R}(C, M) = 0 \), then \(M = 0 \) for any \(R \)-module \(M \);
(b) If \(\text{Hom}_{R^{op}}(C, N) = 0 \), then \(N = 0 \) for any \(R^{op} \)-module \(N \).

Note that over a commutative noetherian ring, all semidualizing modules are faithfully semidualizing, by \([9, \text{Proposition 3.1}] \).

For the remainder of this section \(C \) denotes a semidualizing \((R, R)\)-bimodule. The following class of modules, is already appeared in, for example, \([8], [9], \) and \([13] \).

Definition 2.3. An \(R \)-module is called \(C \)-projective if it has the form \(C \otimes_{R} P \) for some projective \(R \)-module \(P \). The class of (resp. finite) \(C \)-projective modules is denoted by \(\mathcal{P}_{C} \) (resp. \(\mathcal{P}_{C}^{f} \)).

A complex \(A \) of \(R \)-modules is called \(\text{Hom}_{R}(\mathcal{P}_{C}, -) \)-exact if \(\text{Hom}_{R}(C \otimes_{R} P, A) \) is exact for each projective \(R \)-module \(P \). The term \(\text{Hom}_{R}(-, \mathcal{P}_{C}) \)-exact is defined dually.

For the notations in the next fact one may see \([12, \text{Definitions 1.4 and 1.5}] \).

Fact 2.1. A \(\mathcal{P}_{C} \)-resolution of an \(R \)-module \(M \) is a complex \(X \) in \(\mathcal{P}_{C} \) with \(X_{-n} = 0 = H_{n}(X) \) for all \(n > 0 \) and \(M \cong H_{0}(X) \). The following exact sequence is the augmented \(\mathcal{P}_{C} \)-resolution of \(M \) associated to \(X \):

\[
X^{+} = \cdots \xrightarrow{\partial^{X}_{n}} C \otimes_{R} P_{1} \xrightarrow{\partial^{X}_{0}} C \otimes_{R} P_{0} \rightarrow M \rightarrow 0.
\]
A \mathcal{P}_C–resolution X of M is called **proper** if in addition X^+ is $\text{Hom}_R(\mathcal{P}_C, -)$–exact.

The \mathcal{P}_C–**projective dimension** of M is the quantity

$$\mathcal{P}_C - \text{pd}(M) = \inf \{ \sup \{ n \geq 0 : X_n \neq 0 \} \mid X \text{ is an } \mathcal{P}_C - \text{resolution of } M \}.$$

The objects of \mathcal{P}_C–projective dimension 0 are exactly \mathcal{P}_C–projective R–modules.

The notion (proper) \mathcal{P}_C–coresolution is defined dually. The **augmented \mathcal{P}_C–coresolution** associated to a \mathcal{P}_C–coresolution Y is denoted by ^+Y.

In [13], the authors proved the following proposition for a commutative ring R. However, by an easy inspection, one can see that it is true even if R is non-commutative.

Proposition 2.4. Assume that C is a faithfully semidualizing (R, R)–bimodule and that M is an R–module. The following statements hold true.

(a) [13, Corollary 2.10(a)] The inequality $\mathcal{P}_C - \text{pd}(M) \leq n$ holds if and only if there is a complex

$$0 \rightarrow C \otimes_R P_n \rightarrow \cdots \rightarrow C \otimes_R P_0 \rightarrow M \rightarrow 0$$

which is $\text{Hom}_R(\mathcal{P}_C, -)$–exact.

(b) [13, Theorem 2.11(a)] $\text{pd}_R(M) = \mathcal{P}_C - \text{pd}_R(C \otimes_R M)$.

(c) [13, Theorem 2.11(c)] $\mathcal{P}_C - \text{pd}_R(M) = \text{pd}_R(\text{Hom}_R(C, M))$.

Remark 2.5. By [9, Proposition 5.3] the class \mathcal{P}_C is precovering, that is, for an R–module M, there exists a projective R–module P and a homomorphism $\phi : C \otimes_R P \rightarrow M$ such that, for every projective Q, the induced map

$$\text{Hom}_R(C \otimes_R Q, C \otimes_R P) \xrightarrow{\text{Hom}_R(C \otimes_R Q, \phi)} \text{Hom}_R(C \otimes_R Q, M)$$

is surjective. Then one can iteratively take precovers to construct a complex

$$W = \cdots \xrightarrow{\partial_2^X} C \otimes_R P_1 \xrightarrow{\partial_1^X} C \otimes_R P_0 \rightarrow 0$$

such that W^+ is $\text{Hom}_R(\mathcal{P}_C, -)$–exact, where

$$W^+ = \cdots \xrightarrow{\partial_2^X} C \otimes_R P_1 \xrightarrow{\partial_1^X} C \otimes_R P_0 \xrightarrow{\phi} M \rightarrow 0.$$

For the notions precovering, covering, preenveloping and enveloping one can see [6].

Note that if C is faithfully semidualizing (R, R)–bimodule and M is an R–module, then, by Proposition 2.4(a), $\mathcal{P}_C - \text{pd}(M)$ is equal to the length of the shortest complex as (2.5.1). Thus for any R–module M, the quantity \mathcal{P}_C–projective dimension of M, defined in [9] and [13], is equal to $\mathcal{P}_C - \text{pd}(M)$ in Fact 2.1.
3. Results

A ring R is (left) hereditary if every left ideal is projective. The Cartan-Eilenberg theorem [10, Theorem 4.19] shows that R is hereditary if and only if every submodule of a projective module is projective. We show that the quality of being hereditary can be detected by C–projective modules, which is interesting on its own.

Proposition 3.1. Assume that C runs through the class of faithfully semidualizing (R, R)–bimodules. The following statements are equivalent.

(i) R is left hereditary.

(ii) For any C, every submodule of a C–projective R–module is also C–projective.

(iii) There exists a C such that every submodule of a C–projective R–module is also C–projective.

Proof. (i)\Rightarrow(ii). Let C be a faithfully semidualizing bimodule and N a submodule of $C \otimes_R P$, where P is a projective R–module. Then one gets the exact sequence $0 \rightarrow \text{Hom}_R(C, N) \rightarrow P$. As R is left hereditary, $\text{Hom}_R(C, N)$ is a projective R–module. By Proposition 2.4(c), $P_{C\text{-pd}}(N) = \text{pd}(\text{Hom}_R(C, N)) = 0$.

(ii)\Rightarrow(iii) is immediate.

(iii)\Rightarrow(i). As every submodule of a C–projective R–module is C–projective, for any R–module M one has $P_{C\text{-pd}}(M) \leq 1$. Then for any R–module N one gets $\text{pd}(N) = P_{C\text{-pd}}(C \otimes_R N) \leq 1$, by Proposition 2.4(b). It follows that every submodule of a projective is projective and so, by [10, Theorem 4.19], R is left hereditary. □

Definition 3.2. A complex X_\bullet of R–modules is called C–perfect if it is quasiisomorphic to a finite complex

$$T_\bullet = 0 \rightarrow C \otimes_R P_n \rightarrow C \otimes_R P_{n-1} \rightarrow \cdots \rightarrow C \otimes_R P_1 \rightarrow C \otimes_R P_0 \rightarrow 0,$$

where P_i are finite projective R–modules. The width of such a C–perfect complex X_\bullet, denoted by $\text{wd}(X_\bullet)$, is defined to be the minimal length n of a complex T_\bullet satisfying the above conditions. A C–perfect complex X_\bullet is called indecomposable if it is not quasiisomorphic to a direct sum of two non-trivial C–perfect complexes.

Definition 3.3. [3, Definition 1.1] A ring R is called strongly r–regular if every perfect complex over R is quasiisomorphic to a direct sum of perfect complexes of width $\leq r$. If R is strongly r–regular for some r then it will be called strongly regular.

Remark 3.4. As Professor Ragnar-Olaf Buchweitz kindly pointed out in his personal communication with the authors, in [3] it should be added the blanket statement that rings are noetherian and modules are finite. Thus Definition 3.3
agrees with [3, Definition 1.1]. Indeed, over a noetherian ring every perfect complex has bounded and finite homology.

Note that a hereditary ring R is strongly 1-regular, see [3, Remark 1.2].

In order to bring the results Theorem 3.8 and Proposition 3.9, we quote some preliminaries.

Definition 3.5. [7, III.3.2(b)] and [4, Definition 2.2.8] Let $\alpha : A \to B$ be a morphism of R–complexes. The mapping cone $\text{Cone}(\alpha)$, is a complex which is given by

$$(\text{Cone}(\alpha))_n = B_n \oplus A_{n-1} \quad \text{and} \quad \partial_n^{\text{Cone}(\alpha)} = \begin{pmatrix} \partial_n^B & \alpha_{n-1} \\ 0 & -\partial_{n-1}^A \end{pmatrix}.$$

It easy to see that the following lemma is also true if R is non-commutative.

Lemma 3.6. Let $\alpha : A \to B$ be a morphism of R–complexes and M be an R–module. The following statements hold true.

(a) [4, Lemma 2.2.10] The morphism α is a quasiisomorphism if and only if $\text{Cone}(\alpha)$ is acyclic.

(b) [4, Lemma 2.3.11] $\text{Cone}(\text{Hom}_R(M, \alpha)) \cong \text{Hom}_R(M, \text{Cone}(\alpha))$.

(c) [4, Lemma 2.4.11] $\text{Cone}(M \otimes_R \alpha) \cong M \otimes_R \text{Cone}(\alpha)$.

Remark 3.7. Let C be a semidualizing (R, R)–bimodule. Assume that $X = 0 \to X_n \to X_{n-1} \to \cdots \to X_1 \to X_0 \to 0$ is an exact complex of R–modules.

(a) If each X_i is a projective R–module, then it is easy to see that the induced complex $C \otimes_R X$ is exact.

(b) If each X_i is a C–projective R–module, then the induced complex $\text{Hom}_R(C, X)$ is exact, since $\text{Ext}^{\geq 1}_R(C, X_i) = 0$.

Theorem 3.8. The following statements are equivalent.

(i) R is strongly r–regular.

(ii) For any faithfully semidualizing bimodule C, every C–perfect complex is quasiisomorphic to a direct sum of C–perfect complexes of width $\leq r$.

(iii) There exists a faithfully semidualizing bimodule C such that every C–perfect complex is quasiisomorphic to a direct sum of C–perfect complexes of width $\leq r$.

Proof. (i)\Rightarrow(ii). Let R be strongly r–regular, C a faithfully semidualizing bimodule. Assume that X_\bullet is a C–perfect complex. Then, by Definition 3.2, there exists a finite complex $T_\bullet = 0 \to C \otimes_R P_n \to C \otimes_R P_{n-1} \to \cdots \to C \otimes_R P_0 \to 0$, such that each P_i is a finite projective R–module and X_\bullet is quasiisomorphic to T_\bullet. Therefore $\text{Hom}_R(C, T_\bullet) \cong 0 \to P_n \to P_{n-1} \to \cdots \to P_0 \to 0$ is a perfect complex. By Definition 3.3, there is a quasiisomorphism $\alpha :
Hom$_R(C, T_\bullet) \xrightarrow{\cong} \bigoplus_{i=1}^r F^{(i)}_\bullet$, where each $F^{(i)}_\bullet$ is a perfect complex of width $\leq r$. We may assume that each $F^{(i)}_\bullet$ is a finite complex of finite projective R-modules. By Lemma 3.6(a), Cone(α) is acyclic. As Cone(α) is a finite complex of projective R-modules, Remark 3.7 implies that the complex $C \otimes_R$Cone(α) is acyclic. By Lemma 3.6, the complex Cone($C \otimes_R \alpha$) is acyclic too and so $C \otimes_R \alpha$ is quasiisomorphic. Therefore T_\bullet is quasiisomorphic to $\bigoplus_{i=1}^r C \otimes_R F^{(i)}_\bullet$. Note that each $C \otimes_R F^{(i)}_\bullet$ is a C-perfect complex of width $\leq r$.

(ii)\Rightarrow(iii) is immediate.

(iii)\Rightarrow(i). Let Y_\bullet be a perfect complex. Then, by Definition 3.2, there is a finite complex $F_\bullet = 0 \rightarrow P_m \rightarrow P_{m-1} \rightarrow \cdots \rightarrow P_0 \rightarrow 0$ of finite projective modules which is quasiisomorphic to Y_\bullet. As $C \otimes_R F_\bullet$ is a C-perfect complex, our assumption implies that there is a quasiisomorphism $\beta : C \otimes_R F_\bullet \xrightarrow{\cong} \bigoplus_{i=1}^r T^{(i)}_\bullet$, where each $T^{(i)}_\bullet$ is a C-perfect complex of width $\leq r$. We may assume that, for each i,

$$T^{(i)}_\bullet = 0 \rightarrow C \otimes_R P^{(i)}_{n_i} \rightarrow \cdots \rightarrow C \otimes_R P^{(i)}_0 \rightarrow 0$$

where each $P^{(i)}_j$ is a finite projective R-module. Similar to the proof of (i)\Rightarrow(ii), one observes that $\text{Hom}_R(C, \beta)$ is a quasiisomorphism. Therefore F_\bullet is quasiisomorphic to $\bigoplus_{i=1}^r \text{Hom}_R(C, T^{(i)}_\bullet)$. Note that each $\text{Hom}_R(C, T^{(i)}_\bullet)$ is a perfect complex of width $\leq r$. Thus R is strongly r-regular. \square

In [2, Section 1], Avramov and Martsinkovsky define a general notion of minimality for complexes: A complex X is minimal if every homotopy equivalence $\sigma : X \rightarrow X$ is an isomorphism. In [14, Lemma 4.8], it is proved that, over a commutative local ring R with maximal ideal m, a complex X consisting of modules in \mathcal{P}^f_C is minimal if and only if $\partial^X(X) \subseteq mX$.

In consistent to [3, Lemma 1.6] we prove the following proposition.

Proposition 3.9. Let R be a commutative noetherian local ring and C a semidualizing R-module. The following statements hold true.

(a) Every C-perfect complex X_\bullet is quasiisomorphic to a minimal finite complex

$$T_\bullet = 0 \rightarrow C \otimes_R F_n \rightarrow C \otimes_R F_{n-1} \rightarrow \cdots \rightarrow C \otimes_R F_1 \rightarrow C \otimes_R F_0 \rightarrow 0,$$

where each F_i is finite free R-module.

(b) If two minimal finite complexes of modules of the form $C^m = \oplus^m C$ are quasiisomorphic, then they are isomorphic.

Proof. (a). By Definition 3.2, a C-perfect complex X_\bullet is quasiisomorphic to a finite complex

$$T_\bullet = 0 \rightarrow C \otimes_R P_n \rightarrow C \otimes_R P_{n-1} \rightarrow \cdots \rightarrow C \otimes_R P_1 \rightarrow C \otimes_R P_0 \rightarrow 0,$$

where each P_i is a finite free R-module. The complex $\text{Hom}_R(C, T_\bullet)$ is a perfect complex and so, by [3, Lemma 1.6(1)], there exists a minimal finite complex
Let \(F_\bullet \) of finite free \(R \)-modules and a quasiisomorphism \(\alpha : \text{Hom}_R(C, T_\bullet) \xrightarrow{\cong} F_\bullet \).

As in the proof of Theorem 3.8, it follows that \(C \otimes_R \alpha : C \otimes_R \text{Hom}_R(C, T_\bullet) \rightarrow C \otimes_R F_\bullet \) is a quasiisomorphism. As \(C \otimes_R F_\bullet \) is a minimal finite complex, we are done.

(b). Let \(T_\bullet \) and \(L_\bullet \) be two minimal finite complexes of modules of the form \(C^m \).

Assume that \(\alpha : T_\bullet \rightarrow L_\bullet \) is a quasiisomorphism. Then, by Remark 3.6 and Lemma 3.7, \(\text{Hom}_R(C, \alpha) : \text{Hom}_R(C, T_\bullet) \rightarrow \text{Hom}_R(C, L_\bullet) \) is a quasiisomorphism of minimal finite complexes of finite free \(R \)-modules.

Thus, by the proof of [3, Lemma 1.6(2)], \(\text{Hom}_R(C, \alpha) \) is an isomorphism. Now, there is a commutative diagram of complexes and morphisms

\[
\begin{array}{ccc}
T_\bullet & \xrightarrow{\alpha} & L_\bullet \\
\cong & & \cong \\
C \otimes_R \text{Hom}_R(C, T_\bullet) & \xrightarrow{\cong} & C \otimes_R \text{Hom}_R(C, L_\bullet),
\end{array}
\]

where the vertical morphisms are natural isomorphisms. This implies that \(\alpha \) itself must be an isomorphism. \(\square \)

It is proved in [14, Lemma 4.9] that every finite module \(M \) over a commutative noetherian local ring \(R \) with \(\mathcal{P}_C^f\)-pd\((M) < \infty \) admits a minimal \(\mathcal{P}_C^f \)-resolution. Now we show that every finite \(R \)-module which has a proper \(\mathcal{P}_C^f \)-resolution, admits a minimal proper one. Note that if \(\mathcal{P}_C^f\)-pd\((M) < \infty \) then \(M \) admits a proper \(\mathcal{P}_C^f \)-resolution (see proof of [13, Corollary 2.10]).

Theorem 3.10. Assume that \(R \) is a commutative noetherian local ring and that \(C \) is a semidualizing \(R \)-module. Then \(\mathcal{P}_C^f \) is covering in the category of finite \(R \)-modules. For any finite \(R \)-module \(M \), there is a complex \(X = \cdots \rightarrow C^{n_1} \rightarrow C^{n_0} \rightarrow 0 \) with the following properties.

1. \(X^+ = \cdots \rightarrow C^{n_1} \rightarrow C^{n_0} \rightarrow M \rightarrow 0 \) is \(\text{Hom}_R(\mathcal{P}_C, -) \)-exact.
2. \(X \) is a minimal complex.

If \(M \) admits a proper \(\mathcal{P}_C^f \)-resolution, then \(X^+ \) is exact and so \(X \) is a minimal proper \(\mathcal{P}_C^f \)-resolution of \(M \).

Proof. Let \(M \) be a finite \(R \)-module. Assume that \(n_0 = \nu(\text{Hom}_R(C, M)) \) denotes the number of a minimal set of generators of \(\text{Hom}_R(C, M) \) and that \(\alpha : R^{n_0} \rightarrow \text{Hom}_R(C, M) \) is the natural epimorphism. As \(\alpha \) is a \(\mathcal{P}_C^f \)-cover of \(\text{Hom}_R(C, M) \), the natural map \(\beta = C \otimes_R R^{n_0} \xrightarrow{\alpha \otimes_R} C \otimes_R \text{Hom}_R(C, M) \xrightarrow{\beta_1} M \) is a \(\mathcal{P}_C^f \)-cover of \(M \). Set \(M_1 = \text{Ker} \beta \) and \(n_1 = \nu(\text{Hom}_R(C, M_1)) \). Thus there is a \(\mathcal{P}_C^f \)-cover \(\beta_1 : C \otimes_R R^{n_1} \rightarrow M_1 \). Proceeding in this way one obtains a complex

\[
X = \cdots \xrightarrow{\partial_2 = \epsilon_2 \beta_2} C \otimes_R R^{n_1} \xrightarrow{\partial_1 = \epsilon_1 \beta_1} C \otimes_R R^{n_0} \rightarrow 0,
\]
where $\epsilon_i : M_i \to C \otimes_R R^{m_{i-1}}$ is the inclusion map for all $i \geq 1$. As the maps in X are obtained by P_C^i-covers, the complex X^+ is $\text{Hom}_R(P_C, -)$-exact. It is easy to see that $\text{Hom}_R(C, X)$ is minimal free resolution of $\text{Hom}_R(C, M)$. Now we show that X is a minimal complex. Let $f : X \to X$ be a morphism which is homotopic to id_X. It is easy to see that the morphism $\text{Hom}_R(C, f)$ is homotopic to $\text{id}_{\text{Hom}_R(C, X)}$. As the complex $\text{Hom}_R(C, X)$ is minimal, by [2, Proposition 1.7], the morphism $\text{Hom}_R(C, f)$ is an isomorphism. The commutative diagram

$$
\begin{array}{ccc}
X & \xrightarrow{f} & X \\
\downarrow{\cong} & & \downarrow{\cong} \\
C \otimes_R \text{Hom}_R(C, X) & \xrightarrow{\cong} & C \otimes_R \text{Hom}_R(C, X),
\end{array}
$$

with vertical natural isomorphisms, implies that f is an isomorphism. Therefore, by [2, Proposition 1.7], X is minimal. If M admits a proper P_C-resolution, then by [13, Corollary 2.3], X^+ is exact. \(\square\)

The proof of the next lemma is similar to [13, Corollary 2.3].

Lemma 3.11. Let R be a commutative noetherian ring and let M be a finite R-module. Assume that C is a semidualizing R-module. The following are equivalent.

(i) M admits a proper P_C^i-coresolution.

(ii) Every $\text{Hom}_R(-, P_C^i)$-exact complex of the form

$$
0 \to M \to C \otimes_R Q_0 \to C \otimes_R Q_{-1} \to \cdots
$$

is exact, where Q_i is an object of P_C^i for all $i \leq 0$.

(iii) The natural homomorphism $M \to \text{Hom}_R(\text{Hom}_R(M, C), C)$ is an isomorphism and $\text{Ext}^1_R(\text{Hom}_R(M, C), C) = 0$.

Proposition 3.12. Assume that R is a commutative noetherian local ring and that C is a semidualizing R-module. Then P_C^i is enveloping in the category of finite R-modules. For any finite R-module M, there is a complex $Y = 0 \to C^{m_0} \to C^{m_1} \to \cdots$ with the following properties.

(1) $Y = 0 \to M \to C^{m_0} \to C^{m_1} \to \cdots$ is $\text{Hom}_R(-, P_C)$-exact.

(2) Y is a minimal complex.

If M admits a proper P_C^i-coresolution, then ^+Y is exact and so Y is a minimal proper P_C-coresolution of M.

Proof. Let M be a finite R-module. Assume that $m_0 = \nu(\text{Hom}_R(M, C))$ denotes the number of a minimal set of generators of $\text{Hom}_R(M, C)$ and that $\alpha : R^{m_0} \to \text{Hom}_R(M, C)$ is the natural P_C^i-cover of $\text{Hom}_R(M, C)$. It follows that $\gamma = M \xrightarrow{\delta M} \text{Hom}_R(\text{Hom}_R(M, C), C) \xrightarrow{\text{Hom}_R(\alpha, C)} \text{Hom}_R(R^{m_0}, C)$ is a P_C^i-envelope of M. Set $M_{-1} = \text{Coker}\gamma$ and $m_1 = \nu(\text{Hom}_R(M_{-1}, C))$. As
mentioned, there is a P_C^I-envelope $\gamma_1 : M_{-1} \rightarrow \text{Hom}_R(R^{m_1}, C)$. Proceeding in this way one obtains a complex $Y = 0 \rightarrow \text{Hom}_R(R^{m_0}, C) \xrightarrow{\partial_0 = \gamma_1 \pi_1} \text{Hom}_R(R^{m_1}, C) \xrightarrow{\partial_1 = \gamma_2 \pi_2} \cdots$, where π_i is the natural epimorphism for all $i \geq 1$. Since the maps in Y are obtained by P_C^I-envelopes, the complex $+Y$ is $\text{Hom}_R(-, P_C)$-exact. It is easy to see that $\text{Hom}_R(Y, C)$ is minimal free resolution of $\text{Hom}_R(M, C)$. Similar to the proof of Theorem 3.10, we find that Y is a minimal complex. If M admits a proper P_C^I-coresolution, then, by Lemma 3.11, $+Y$ is exact. \□

In the following example we find an R–module M with P_C–pd(M) = ∞ which admits a minimal proper P_C–resolution. This example shows that a commutative noetherian local ring which admits an exact zero-divisor is not a strongly regular ring.

Example 3.13. Let R be a commutative noetherian local ring and C a semidualizing R–module. Assume that x, y form a pair of exact zero-divisors on both R and C (e.g. see [1, Example 3.2]). Then P_C–pd(C/xC) = pd(R/xR) = ∞. The complex $T_\bullet = \cdots \xrightarrow{x} C \xrightarrow{y} C \xrightarrow{x} C \rightarrow 0$ (resp. $L_\bullet = 0 \rightarrow C \xrightarrow{x} C \xrightarrow{y} C \xrightarrow{x} \cdots$)

is a minimal P_C–resolution (resp. P_C–coresolution) of C/xC. By [1, Proposition 3.4], C/xC is a semidualizing R/xR–module. By [5, Proposition 2.13], there are isomorphisms

$$\text{Hom}_R(C, C/xC) \cong \text{Hom}_{R/xR}(C/xC, C/xC) \cong R/xR,$$

$$\text{Hom}_R(C/xC, C) \cong \text{Hom}_{R/xR}(C/xC, C/xC) \cong R/xR.$$

Applying $\text{Hom}_R(C, -)$ and $\text{Hom}_R(-, C)$ on the above complexes, respectively, would result the isomorphisms $\text{Hom}_R(C, T_\bullet^+) \cong F_\bullet^+$ and $\text{Hom}_R(+L_\bullet, C) \cong F_\bullet^+$, where F_\bullet^+ is the exact complex $\cdots \xrightarrow{y} R \xrightarrow{x} R \xrightarrow{y} R \xrightarrow{x} R \rightarrow R/xR \rightarrow 0$. Therefore T_\bullet (resp. L_\bullet) is a minimal proper P_C–resolution (resp. P_C–coresolution) of C/xC.

For each n, one obtains a C–perfect complex of length n as

$$T_{\bullet}^{(n)} = 0 \rightarrow C \xrightarrow{x} C \xrightarrow{x} \cdots \xrightarrow{x} C \xrightarrow{y} C \xrightarrow{x} C \rightarrow 0,$$

where $T_{\bullet}^{(n)} = T_i$ for all $0 \leq i \leq n$ and $T_{\bullet}^{(n)} = 0$ otherwise. Note that the induced map $d_i : T_i^{(n)}/\text{Ker} d_i \rightarrow T_{i-1}^{(n)}$ is injective, where $\text{Ker} d_i$ is equal to yC or xC. As C is indecomposable R–module, $T_{\bullet}^{(n)}$ is indecomposable which has a similar proof to [3, Proposition 1.5].
Acknowledgment

The authors are grateful to the referee for his/her careful reading of the paper and valuable comments. The second author was supported in part by a grant from IPM (No.93130110).

REFERENCES

(Ensiyeh Amanzadeh) FACULTY OF MATHEMATICAL SCIENCES AND COMPUTER, KHARAZMI UNIVERSITY, TEHRAN, IRAN.
E-mail address: en.amanzadeh@gmail.com

(Mohammad Taghi Dibaei) FACULTY OF MATHEMATICAL SCIENCES AND COMPUTER, KHARAZMI UNIVERSITY, TEHRAN, IRAN
AND
SCHOOL OF MATHEMATICS, INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES (IPM), P.O. BOX 19395-5746, TEHRAN, IRAN.
E-mail address: dibaeimt@ipm.ir