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Abstract. The study of stability problems of functional equations was

motivated by a question of S. M. Ulam asked in 1940. The first result
giving answer to this question is due to D.H. Hyers. Subsequently, his
result was extended and generalized in several ways. In this paper we
prove some hyperstability results for the equation g(ax + by) + g(cx +

dy) = Ag(x) + Bg(y) on restricted domain. Namely, we show, under
some weak natural assumptions, functions satisfying the above equation
approximately (in some sense) must be actually solutions to it.
Keywords: hyperstability, linear equation, quadratic equation, p-Wright

affine function, fixed point theorem.
MSC(2010): Primary: 39B82; Secondary: 39B62, 47H14, 47J20, 47H10.

1. Introduction

Let X and Y be linear spaces over fields F ∈ {R,C} and K ∈ {R,C},
respectively, and a, b, c, d ∈ F, A,B ∈ K be fixed. The functional equation

(1.1) g(ax+ by) + g(cx+ dy) = Ag(x) +Bg(y), x, y ∈ X,

for function g : X → Y , generalizes simultaneously three quite known equa-
tions. Namely, with a = c and b = d, and A = 2α, B = 2β, it is the linear
equation

g(ax+ by) = αg(x) + βg(y), x, y ∈ X;

which for a = b = α = β = 1, becomes Cauchy equation

(1.2) g(x+ y) = g(x) + g(y), x, y ∈ X;

and for a = b = α = β = 1
2 , becomes Jensen equation

g

(
x+ y

2

)
=
g(x) + g(y)

2
, x, y ∈ X.
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When a = d =: p, b = c =: 1 − p and A = B = 1 the equation (1.1) takes the
form

(1.3) g(px+ (1− p)y) + g((1− p)x+ py) = g(x) + g(y), x, y ∈ X.

For F = R and p ∈ (0, 1), solutions of the equation (1.3) are called p-Wright
affine functions, which are both p-Wright convex and concave (see [11]). For
p = 1/3 equation (1.3) takes the form

g(2x+ y) + g(x+ 2y) = g(3x) + g(3y), x, y ∈ X,

which has been studied in [24] (see also [7]) in connection with some investi-
gations of the generalized (σ, τ)-Jordan derivations on Banach algebras. The
cases of more arbitrary p have been studied in [11,12,22] (see also [16,19]).

The third particular case of the equation (1.1) (with F = K) is the Euler-
Lagrange functional equation

(1.4) g(ax+ by) + g(bx− ay) = (a2 + b2)
(
g(x) + g(y)

)
, x, y ∈ X,

investigated by J. M. Rassias [31, 32] (see also [26]), for a = b = 1, equation
(1.4) becomes the quadratic equation

g(x+ y) + g(x− y) = 2g(x) + 2g(y), x, y ∈ X.

The study of stability problems of functional equations was motivated by a
question of S. M. Ulam asked in 1940. The first result giving a partial answer
to this question is due to D. H. Hyers (see [18]). Subsequently, his result was
extended and generalized in several ways.
The following theorem is the most classical result concerning the Hyers-Ulam
stability.

Theorem 1.1. Let X and Y be two normed spaces, Y be complete, c ≥ 0 and
p ̸= 1 be a real number. Let f : X → Y be an operator such that

∥f(x+ y)− f(x)− f(y)∥ ≤ c(∥x∥p + ∥y∥p), x, y ∈ X \ {0}.

Then there exists a unique solution T : X → Y of (1.2) with

∥f(x)− T (x)∥ ≤ c∥x∥p

|1− 2p−1|
, x ∈ X \ {0}.

It is due to T. Aoki [1] (for 0 < p < 1; see also [33]), Z. Gajda [13] (for p > 1)
and Th. M.Rassias [34] (for p < 0; see also [35, p. 326]). Moreover, an example
is given in [13] from which it follows that analogous result for p = 1 is not
true. For p = 0 it is the first result of stability proved by Hyers [18]. Now, it
is known that for p < 0 we have the hyperstability result, that is f satisfying
(1.1) must be additive (see [8]).

Another generalization of the result of Hyers was considered by J. M. Rassias
who has proved the following theorem
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Theorem 1.2. ( [28–30]). Let X and Y be two normed spaces, Y be complete,
c ≥ 0 and r, s be a real numbers such that q = r + s ̸= 1. Let f : X → Y be an
operator such that

∥f(x+ y)− f(x)− f(y)∥ ≤ c∥x∥r∥y∥s, x, y ∈ X \ {0}.

Then there exists a unique solution T : X → Y of (1.2) with

∥f(x)− T (x)∥ ≤ c

|2q − 2| ∥x∥
q, x ∈ X \ {0}.

Moreover, an example given in [15] shows that analogous result for q = 1 is
not true. The above mentioned stability involving a product of powers of norms
is sometimes called Ulam-Găvruta-Rassias stability (see [3, 25, 36]). In [14], a
generalization of the above theorems was obtained by P. Găvruta. In [37]
another control function φ(x, y) = c(∥x∥p∥y∥p + ∥x∥2p + ∥y∥2p) for x, y ∈ X
with c ≥ 0 and p > 0 (the mixed product sum of powers of norms) was
considered. F. Skof (see [38]) was the first who has solved the Ulam’s problem
on a restricted domain. The stability and hyperstability of the particular cases
of the functional equation (1.1) also were studied by several mathematicians
(cf., e.g., [2, 6, 10,20,21,26,27]).

In this paper we consider the functions g : E → Y, where E is a nonempty
subset of X satisfying the equation

(1.5) g(ax+ by) + g(cx+ dy) = Ag(x) +Bg(y), x, y, ax+ by, cx+ dy ∈ E,

and we show that for some natural particular forms of φ, under some assump-
tions, the conditional functional equation (1.5) is φ-hyperstable in the class of
functions g : E → Y , i.e. each g : E → Y satisfying the inequality

∥g(ax+ by) + g(cx+ dy)−Ag(x)−Bg(y)∥ ≤ φ(x, y),

for x, y, ax + by, cx + dy ∈ E, must fulfil the equation (1.5). In this study, we
consider the following control functions:

φ(x, y) = C∥x∥r∥y∥s, with C ≥ 0, r + s ̸= 0;
φ(x, y) = C∥x∥r∥y∥s +D(∥x∥r+s + ∥y∥r+s), with C,D ≥ 0, r, s < 0.

The term hyperstability has been used for the first time in [23], however it seems
that the first hyperstability result was published in [4] and concerned the ring
homomorphisms.

One of the method of the proof is based on a fixed point result that can
be derived from [5] (Theorem 1). To present it we need the following three
hypotheses:

(H1) E is a nonempty set, Y is a Banach space, f1, . . . , fk : E → E and
L1, . . . , Lk : E → R+ are given.
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(H2) T : Y E → Y E is an operator satisfying the inequality∥∥T ξ(x)− T µ(x)
∥∥ ≤

k∑
i=1

Li(x)
∥∥ξ(fi(x))− µ(fi(x))

∥∥,
ξ, µ ∈ Y E , x ∈ E.

(H3) Λ: R+
E → R+

E is defined by

Λδ(x) :=

k∑
i=1

Li(x)δ(fi(x)), δ ∈ R+
E , x ∈ E.

Now we are in a position to present the above mentioned fixed point theorem.

Theorem 1.3. Let hypotheses (H1)–(H3) be valid and functions ε : E → R+

and φ : E → Y fulfil the following two conditions∥∥T φ(x)− φ(x)
∥∥ ≤ ε(x), x ∈ E,

ε∗(x) :=

∞∑
n=0

Λnε(x) <∞, x ∈ E.

Then there exists a unique fixed point ψ of T with

∥φ(x)− ψ(x)∥ ≤ ε∗(x), x ∈ E.

Moreover
ψ(x) := lim

n→∞
T nφ(x), x ∈ E.

2. Hyperstability results

The next theorems are the main results in this paper and concern
φ-hyperstability of the equation (1.5).
First, we show that for φ(x, y) = C∥x∥r∥y∥s, where x, y ∈ E, r, s ∈ R, r+s ̸= 0
and C ≥ 0, under some additional assumptions, the conditional functional
equation (1.5) is φ-hyperstable in the class of functions g : E → Y. They corre-
spond in particular to some results in [2, 6, 8, 9, 27].

We start with the hypothesis

(H4) X,Y are the normed spaces, E is a nonempty subset of X \ {0},
a, b, c, d ∈ F \ {0}, A,B ∈ K \ {0}, C ≥ 0 and r, s ∈ R.

Theorem 2.1. Let hypothesis (H4) be valid, r + s < 0 and E be such that
there exists a positive integer n0 with

(2.1) nx, (a+ bn)x, (c+ dn)x ∈ E, x ∈ E, n ∈ N, n ≥ n0,

and g : E → Y satisfies

∥g(ax+ by) + g(cx+ dy)−Ag(x)−Bg(y)∥(2.2)

≤ C∥x∥r∥y∥s, x, y, ax+ by, cx+ dy ∈ E.

Then g satisfies the equation (1.5).
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Proof. First we notice that without loss of generality we can assume that Y is
a Banach space, because otherwise we can replace it by its completion. From
the fact r + s < 0 we get that at least one of r and s must be negative, so we
may assume that s < 0.
Observe that there exists m0 ∈ N such that

(2.3)
1

|A|
|a+ bm|r+s +

1

|A|
|c+ dm|r+s +

∣∣∣B
A

∣∣∣mr+s < 1 for m ≥ m0.

Fix m ≥ max{n0,m0} and replace y by mx in (2.2). Thus

(2.4) ∥g
(
(a+bm)x

)
+g

(
(c+dm)x

)
−Ag(x)−Bg(mx)∥ ≤ Cms∥x∥r+s, x ∈ E.

Write

T ξ(x) :=
1

A
ξ
(
(a+ bm)x

)
+

1

A
ξ
(
(c+ dm)x

)
− B

A
ξ(mx), ξ ∈ Y E , x ∈ E

ε(x) :=
C

|A|m
s∥x∥r+s, x ∈ E,

then (2.4) takes the form

∥T g(x)− g(x)∥ ≤ ε(x), x ∈ E.

Define

Λη(x) :=
1

|A|
η
(
(a+ bm)x

)
+

1

|A|
η
(
(c+ dm)x

)
+

∣∣∣B
A

∣∣∣η(mx), η ∈ R+
E , x ∈ E.

Then it is easily seen that Λ has the form described in (H3) with k = 3 and
f1(x) = (a + bm)x, f2(x) = (c + dm)x, f3(x) = mx, L1(x) = L2(x) = 1

|A| ,

L3(x) =
∣∣B
A

∣∣ for x ∈ E.

Moreover, for every ξ, µ ∈ Y E , x ∈ E

∥T ξ(x)− T µ(x)∥

=
∥∥∥ 1

A
ξ
(
(a+ bm)x

)
+

1

A
ξ
(
(c+ dm)x

)
− B

A
ξ(mx)

− 1

A
µ
(
(a+ bm)x

)
− 1

A
µ
(
(c+ dm)x

)
+
B

A
µ(mx)

∥∥∥
≤ 1

|A| ∥(ξ − µ)((a+ bm)x)∥+ 1

|A| ∥(ξ − µ)((c+ dm)x)∥+
∣∣∣B
A

∣∣∣∥(ξ − µ)(mx)∥

=

3∑
j=1

Lj(x)∥(ξ − µ)(fj(x))∥,

so (H2) is valid.



Hyperstability on restricted domain 964

From (2.3) we have

ε∗(x) :=

∞∑
n=0

Λnε(x)

= ε(x)

∞∑
n=0

( 1

|A| |a+ bm|r+s +
1

|A| |c+ dm|r+s +
∣∣∣B
A

∣∣∣mr+s
)n

=
ε(x)

1− 1
|A| |a+ bm|r+s − 1

|A| |c+ dm|r+s −
∣∣B
A

∣∣mr+s
, x ∈ E.

Hence, according to Theorem 1.3 there exists a unique solution G : E → Y of
the equation

G(x) =
1

A
G
(
(a+ bm)x

)
+

1

A
G
(
(c+ dm)x

)
− B

A
G(mx), x ∈ E

such that

(2.5) ∥g(x)−G(x)∥ ≤ ε(x)

1− 1
|A| |a+mb|r+s− 1

|A| |c+ dm|r+s−
∣∣B
A

∣∣mr+s
, x ∈ E.

Moreover,

G(x) := lim
n→∞

(T ng)(x), x ∈ E.

Now, we show that

∥T ng(ax+ by) + T ng(cx+ dy)−AT ng(x)−BT ng(y)∥(2.6)

≤ C
( 1

|A| |a+ bm|r+s +
1

|A| |c+ dm|r+s +
∣∣∣B
A

∣∣∣mr+s
)n

∥x∥r∥y∥s,

for every x, y, ax+ by, cx+dy ∈ E and n ∈ N0 := N∪{0}. If n = 0, then (2.6)
is simply (2.2). So, take k ∈ N0 and suppose that (2.6) holds for n = k. Then

∥T k+1g(ax+ by) + T k+1g(cx+ dy)−AT k+1g(x)−BT k+1g(y)∥

= ∥ 1

A
T kg((a+ bm)(ax+ by)) +

1

A
T kg((c+ dm)(ax+ by))

− B

A
T kg(m(ax+ by)) +

1

A
T kg((a+ bm)(cx+ dy))

+
1

A
T kg((c+ dm)(cx+ dy))− B

A
T kg(m(cx+ dy))

− 1

A
T kg((a+ bm)x)− 1

A
T kg((c+ dm)x) +

B

A
T kg(mx)

− 1

A
T kg((a+ bm)y)− 1

A
T kg((c+ dm)y) +

B

A
T kg(my)∥

≤ C
( 1

|A| |a+ bm|r+s +
1

|A| |c+ dm|r+s +
∣∣∣B
A

∣∣∣mr+s
)k

( 1

|A| ∥(a+ bm)x∥r∥(a+ bm)y∥s + 1

|A| ∥(c+ dm)x∥r∥(c+ dm)y∥s
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+
∣∣∣B
A

∣∣∣∥mx∥r∥my∥s)
= C

( 1

|A| |a+ bm|r+s +
1

|A| |c+ dm|r+s +
∣∣∣B
A

∣∣∣mr+s
)k+1

∥x∥r∥y∥s,

for every x, y, ax + by, cx + dy ∈ E. Thus, by induction we have shown that
(2.6) holds for every n ∈ N0 and for every x, y, ax + by, cx + dy ∈ E. Letting
in (2.6) n→ ∞ , we obtain

G(ax+ by) +G(cx+ dy) = AG(x) +BG(y), x, y, ax+ by, cx+ dy ∈ E.

In this way, for every m ≥ max{n0,m0} there exists a function Gm satisfying
the equation (1.5) and the inequality

∥g(x)−Gm(x)∥ ≤ ε(x)

1− 1
|A| |a+mb|r+s− 1

|A| |c+ dm|r+s−
∣∣B
A

∣∣mr+s
, x ∈ E.

Letting m→ ∞, It follows that g satisfies the equation (1.5). □

In similar way we can prove the following theorem in which we consider the
case when r + s > 0. Then obviously at least one of r and s must be positive
and without loss of generality we can assume that s > 0.

Theorem 2.2. Let hypothesis (H4) be valid and r+s > 0, s > 0. If there exist
two sequences {em}m∈N,{fm}m∈N of the elements of F such that {em}m∈N is
bounded, limm→∞ fm = 0 and there exists a positive integer n0 with

(2.7) emx, fmx, (aem + bfm)x, (cem + dfm)x ∈ E, x ∈ E, m ∈ N, m ≥ n0

such that one of the conditions is satisfied:

(C1) em ≡ 1 and limm→∞ γ1m < 1

where γ1m := 1
|A|

(
|a+ fmb|r+s + |c+ fmd|r+s + |B||fm|r+s

)
,

(C2) aem + bfm = 1, cem + dfm = 1 and limm→∞ γ2m < 1

where γ2m := 1
2

(
|A||em|r+s + |B||fm|r+s

)
,

(C3) aem + bfm = 1, cem + dfm ̸= 1 and limm→∞ γ3m < 1

where γ3m := |cem + dfm|r+s + |A||em|r+s + |B||fm|r+s,

(C4) aem + bfm ̸= 1, cem + dfm = 1 and limm→∞ γ4m < 1

where γ4m := |aem + bfm|r+s + |A||em|r+s + |B||fm|r+s,

and g : E → Y fulfills (2.2), then the function g satisfies the equation (1.5).

Proof. Replacing in (2.2) x by emx and y by fmx, where m ∈ Nn0 := {m ∈ N :
m ≥ n0}, we get

∥g((aem + bfm)x) + g((cem + dfm)x)−Ag(emx)−Bg(fmx)∥
≤ C|em|r|fm|s∥x∥r+s, x ∈ E.(2.8)
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Let the case (Ci) holds, where i ∈ {1, 2, 3, 4}. For x ∈ E we define

Tmξ(x) := ki1ξ((aem + bfm)x) + ki2ξ((cem + dfm)x)− ki3Aξ(emx)− ki4Bξ(fmx),

εm(x) := ki0C|em|r|fm|s∥x∥r+s,

Λmη(x) := |ki1|η((aem + bfm)x) + |ki2|η((cem + dfm)x) + |ki3A|η(emx) + |ki4B|η(fmx),

where k11 = k12 = k14 = 1
A , k13 = 0,

k21 = k22 = 0, k23 = k24 = − 1
2 ,

k31 = 0, k32 = k33 = k34 = −1,

k41 = k43 = k44 = −1, k42 = 0,

k10 = 1
|A| , k

2
0 = 1

2 , k
3
0 = k40 = 1.

As in Theorem 2.1 we observe that (2.8) takes form

(2.9) ∥Tmg(x)− g(x)∥ ≤ εm(x), x ∈ E

and Λm has the form described in (H3) and (H2) is valid for every ξ, µ ∈ Y E ,
x ∈ E.
Next we can find m0 ∈ N, such that m0 ≥ n0 and γim < 1 for m ∈ Nm0 .
Therefore

ε∗m(x) :=
∞∑

n=0

Λn
mεm(x) =

εm(x)

1− γim
,

for m ≥ m0, x ∈ E. Hence, according to Theorem 1.3, for each m ∈ Nm0 there
exists a unique solution Gm : E → Y of the equation

Gm(x) = ki1Gm((aem+bfm)x)+ki2Gm((cem+dfm)x)−ki3AGm(emx)−ki4BGm(fmx)

such that

(2.10) ∥g(x)−Gm(x)∥ ≤ ε∗m(x), x ∈ E.

Moreover,

Gm(ax+by)+Gm(cx+dy) = AGm(x)+BGm(y), x, y, ax+by, cx+dy ∈ E.

In this way we obtain a sequence (Gm)m∈Nm0
satisfying the equation (1.5) such

that (2.10) holds. It follows, with m → ∞, that g satisfies the equation (1.5),
because

lim
m→∞

ε∗m(x) = ∥x∥r+s lim
m→∞

|fm|s k
i
0C|em|r

1− γim
= 0.

□

From the Theorem 2.2 we deduce in particular the following corollaries.
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Corollary 2.3. Let hypothesis (H4) be valid and r + s > 0, s > 0. If

|a|r+s + |c|r+s < |A|

and there exists a positive integer n0 with

− a

bm
x, a

(
1− 1

m

)
x,

(
c− ad

bm

)
x ∈ E, x ∈ E, m ∈ Nn0

and g : E → Y fulfills (2.2), then g satisfies the equation (1.5).

Proof. Putting fm = − a
bm and using Theorem 2.2 (1) we have

γ1
m :=

1

|A|

(∣∣∣a(1− 1

m

)∣∣∣r+s

+
∣∣∣c− ad

bm

∣∣∣r+s

+ |B|
∣∣∣ a
bm

∣∣∣r+s)
,

hence

lim
m→∞

γ1
m =

1

|A|
(
|a|r+s + |c|r+s) < 1,

so the function g satisfies the equation (1.5). □

Corollary 2.4. Let hypothesis (H4) be valid and r + s > 0, s > 0. If

a = c, b = d,
|A|

2|a|r+s
< 1

and there exists a positive integer n0 with

1

a
(1− 1

m
)x,

1

bm
x ∈ E, x ∈ E, m ∈ Nn0

and g : E → Y fulfills (2.2), then g satisfies the equation (1.5).

Proof. Setting em = 1
a − 1

am , fm = 1
bm and using Theorem 2.2 (2) we have

γ2
m :=

1

2

(
|A|

∣∣∣1
a

(
1− 1

m

)∣∣∣r+s

+ |B|
∣∣∣ 1

bm

∣∣∣r+s)
and

lim
m→∞

γ2m =
|A|

2|a|r+s
< 1,

so the function g satisfies the equation (1.5). □

Corollary 2.5. Let hypothesis (H4) be valid and r + s > 0, s > 0. If∣∣∣ c
a

∣∣∣r+s

+
|A|

|a|r+s
< 1

and there exists a positive integer n0 with

1

a

(
1− 1

m

)
x,

1

bm
x,

( c
a
+

1

m

(d
b
− c

a

))
x ∈ E, x ∈ E, m ∈ Nn0

and g : E → Y fulfills (2.2), then g satisfies the equation (1.5).
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Proof. Setting em = 1
a − 1

am , fm = 1
bm and using Theorem 2.2 (3) we have

γ3 :=
|A|

|a|r+s

∣∣∣1− 1

m

∣∣∣r+s

+
|B|

|b|r+s

∣∣∣ 1
m

∣∣∣r+s

+
∣∣∣ c
a
+

1

m

(d
b
− c

a

)∣∣∣r+s

hence

lim
m→∞

γ3m =
∣∣∣ c
a

∣∣∣r+s

+
|A|

|a|r+s
< 1,

so the function g satisfies the equation (1.5). □

Now, we are going to prove analogues of the Corollaries (2.3)-(2.5). Namely,
we show, under some assumptions, that the equation (1.5) is φ-hyperstable in
the class of functions g : E → Y , where the set E containing 0 and φ(x, y) =
C∥x∥r∥y∥s with C, r, s ≥ 0, r + s > 0.

Theorem 2.6. Let X,Y be the normed spaces, E ⊂ X be such that 0 ∈ E and
a, b, c, d ∈ F \ {0}, A,B ∈ K \ {0}, C ≥ 0, r, s ≥ 0, r + s > 0. If g : E → Y
fulfills (2.2) and one of the conditions is satisfied

(a) 1
|A|

(
|a|r+s + |c|r+s

)
< 1 and ax, cx ∈ E for x ∈ E,

(b) a = c, b = d, |A|
2|a|r+s < 1 and 1

ax ∈ E for x ∈ E,

(c)
∣∣ c
a

∣∣r+s
+ |A|

|a|r+s < 1 and c
ax,

1
ax ∈ E for x ∈ E,

(d) 1
|B|

(
|b|r+s + |d|r+s

)
< 1 and bx, dx ∈ E for x ∈ E,

(e) a = c, b = d, |B|
2|b|r+s < 1 and 1

bx ∈ E for x ∈ E,

(f)
∣∣d
b

∣∣r+s
+ |B|

|b|r+s < 1 and d
bx,

1
bx ∈ E for x ∈ E,

then g satisfies the equation (1.5).

Proof. First we observe that from (2.2) with x = y = 0 we obtain

g(0)(2−A−B) = 0.

Assume that the case (a) holds. Note that (2.2) with y = 0 gives

g(x) =
1

A

(
g(ax) + g(cx)−Bg(0)

)
, x ∈ E.(2.11)

We prove that for every x, y ∈ E such that ax+ by, cx+ dy ∈ E and for every
n ∈ N0

(2.12) ∥g(ax+by)+g(cx+dy)−Ag(x)−Bg(y)∥≤C
( |a|r+s+|c|r+s

|A|

)n

∥x∥r∥y∥s.



969 Bahyrycz

Clearly, the case n = 0 is just (2.2). Next, fix n ∈ N0 and assume that (2.12)
holds for every x, y, ax+ by, cx+ dy ∈ E. Then using (2.11) we have

∥g(ax+ by) + g(cx+ dy)−Ag(x)−Bg(y)∥

=
∥∥∥ 1

A

(
g(aax+ bay) + g(acx+ bcy) + g(cax+ day) + g(ccx+ dcy)

−A(ax)−Ag(cx)−Bg(ay)−Bg(cy)
)∥∥∥

≤ 1

|A|

(
C
( |a|r+s+|c|r+s

|A|

)n

∥ax∥r∥ay∥s + C
( |a|r+s+|c|r+s

|A|

)n

∥cx∥r∥cy∥s
)

=C
( |a|r+s+|c|r+s

|A|

)n+1

∥x∥r∥y∥s,

for every x, y, ax+ by, cx+ dy ∈ E.
Thus, by induction we have shown that (2.12) holds for every n ∈ N0 and every

x, y ∈ E such that ax+by, cx+dy ∈ E. Since |a|r+s+|c|r+s

|A| < 1, letting in (2.12)

n→ ∞ , we obtain that g satisfies the equation (1.5).
If the case (b) holds, then replacing in (2.2) x by 1

ax and y by 0 we get

g(x) =
1

2

(
Ag

(1
a
x
)
+Bg(0)

)
, x ∈ E.(2.13)

We show that for every x, y ∈ E such that ax+ by ∈ E and for every n ∈ N0∥∥g(ax+by)−A

2
g(x)−B

2
g(y)

∥∥≤ C

2

( |A|
2|a|r+s

)n

∥x∥r∥y∥s.(2.14)

For n = 0 (2.14) reduces to (2.2). Assuming (2.14) true for fix n ∈ N0 and
every x, y, ax+ by ∈ E, we have by (2.13)∥∥g(ax+ by)−A

2
g(x)− B

2
g(y)

∥∥
=
∥∥∥A
2

(
g
(1

a
(ax+ by)

)
− A

2
g
(1

a
x
)
− B

2
g
(1

a
y
))∥∥∥

≤|A|
2

C

2

( |A|
2|a|r+s

)n∥∥∥1
a
x
∥∥∥r∥∥∥1

a
y
∥∥∥s

=
C

2

( |A|
2|a|r+s

)n+1

∥x∥r∥y∥s,

for every x, y, ax + by ∈ E and thus we obtain (2.12) for every n ∈ N0 and
every x, y ∈ E such that ax + by ∈ E, which completes the induction. Since

|A|
2|a|r+s < 1, letting in (2.13) n→ ∞, we get that g satisfies the equation (1.5).

Now, we assume that the condition (c) holds. Replacing x by 1
ax and y by

0 in the condition (2.2), we obtain

g(x) = Ag
(1
a
x
)
− g

( c
a
x
)
+Bg(0), x ∈ E.
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Using the above, it is easy to prove by induction that for every n ∈ N0 and for
every x, y ∈ E such that ax+ by, cx+ dy ∈ E

∥g(ax+by)+g(cx+dy)−Ag(x)−Bg(y)∥≤C
(∣∣∣ c
a

∣∣∣r+s

+
|A|

|a|r+s

)n

∥x∥r∥y∥s.

Passing to the limit as n→ ∞, we obtain that g satisfies the equation (1.5).
The proofs of the cases (d),(e),(f) are analogous to proofs of the cases (a), (b),
(c), respectively. □

We end this section with theorem which shows that under some assumptions,
the conditional functional equation (1.5) is φ-hyperstable in the class of func-
tions g : E → Y, with the control function φ(x, y) = C∥x∥r∥y∥s +D(∥x∥r+s +
∥y∥r+s), where C,D ≥ 0 and r, s < 0.

Theorem 2.7. Let hypothesis (H4) be valid and D ≥ 0, r < 0, s < 0, (a ̸= −c
or b ̸= −d) and if a = tc and b = td with some |t| ̸= 1 then |a| < |c|. If there
exist a sequence {em}m∈N of the elements of F such that limm→∞ |em| = +∞,
and a positive integer n0 with

emx,
1− aem

b
x, (cem + d

1− aem
b

)x ∈ E, x ∈ E, m ∈ N, m ≥ n0

and g : E → Y fulfills the estimation

∥g(ax+ by) + g(cx+ dy)−Ag(x)−Bg(y)∥(2.15)

≤ C∥x∥r∥y∥s +D(∥x∥r+s + ∥y∥r+s), x, y, ax+ by, cx+ dy ∈ E,

then the function g satisfies the equation (1.5).

Proof. Denote fm := 1−aem
b . Replacing in (2.15) x by emx and y by fmx, where

m ∈ Nn0 , we get

∥g(x) + g((cem + dfm)x)−Ag(emx)−Bg(fmx)∥
≤ (C|em|r|fm|s +D|em|r+s +D|fm|r+s)∥x∥r+s, x ∈ E.(2.16)

We have three possibilities

(D1) a = c and b = d,

(D2) a = tc and b = td, with |t| < 1,

(D3) ad ̸= bc.

Let the case (Di) holds, where i ∈ {1, 2, 3}. For x ∈ E we define

Tmξ(x) := ki1ξ((cem + dfm)x)− ki2Aξ(emx)− ki3Bξ(fmx),

εm(x) := ki0(C|em|r|fm|s +D|em|r+s +D|fm|r+s)∥x∥r+s,

Λmη(x) := |ki1|η((cem + dfm)x) + |ki2A|η(emx) + |ki3B|η(fmx),
where
k11 = 0, k12 = k13 = −1

2 ,
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k21 = k22 = k23 = −1,

k31 = k32 = k33 = −1,

k10 = 1
2 , k

2
0 = k30 = 1.

As in Theorem 2.2 we observe that (2.16) takes form (2.9), and Λm has the
form described in (H3) and (H2) is valid for every ξ, µ ∈ Y E , x ∈ E. Next, we
can find m0 ∈ N, such that m0 ≥ n0 and γim < 1 for m ∈ Nm0 , where

γ1m := 1
2

(
|A||em|r+s + |B||fm|r+s

)
,

γ2m := | 1t |
r+s + |A||em|r+s + |B||fm|r+s,

γ3m := |cem + dfm|r+s + |A||em|r+s + |B||fm|r+s,

because limm→∞ γim < 1.
Therefore

ε∗m(x) :=

∞∑
n=0

Λn
mεm(x) =

εm(x)

1− γim
,

for m ≥ m0, x ∈ E. Hence, according to Theorem 1.3, for each m ∈ Nm0 there
exists a unique function Gm : E → Y such that TmGm(x) = Gm(x) and (2.10)
holds. It is easy to check that for each m ∈ Nm0 the function Gm satisfies (1.5).
In this way we obtain a sequence (Gm)m∈Nm0

satisfying the equation (1.5) such

that (2.10) holds. It follows, with m → ∞, that g satisfies the equation (1.5),
because

lim
m→∞

ε∗m(x) = ∥x∥r+s lim
m→∞

ki0(C|em|r|fm|s +D|em|r+s +D|fm|r+s)

1− γi
m

= 0.

□

Remark 2.8. We notice that from the above theorem, when C = 0, we obtain
that under some assumptions, the equation (1.5) is φ-hyperstable in the class
of functions g : E → Y , with φ(x, y) = D(∥x∥p+∥y∥p), where D ≥ 0 and p < 0.

Now, we give an example, which shows that in Theorem 2.7 the assumption
a ̸= −c or b ̸= −d is necessary.

Example 2.9. The functional equation

(2.17) f(px− py) + f(py − px) = f(x) + f(y),

where x, y ∈ R, p ∈ R \ {0, 1} is not θ-hyperstable in the class of function
f : R \ {0} → R, with the control function

θ(x, y) := |x|−l−1|y|−l + |x|−2l−1 + |y|−2l−1, x, y ∈ R \ {0},

where l ∈ N, because the function

f(x) =

{
x−2l−1 for x ̸= 0
0 for x = 0
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satisfies the inequality

|f(px− py) + f(py − px)− f(x)− f(y)| = |x−2l−1 + y−2l−1|
≤ |x|−2l−1 + |y|−2l−1 ≤ θ(x, y),

for all x, y ∈ R \ {0} and f is not a solution of (2.17).

3. Particular case

Using the above results we can obtain results for the particular form of the
equation (1.5), for example, we present the results for the linear equation (for
Jensen equation see [2]).

Corollary 3.1. Let X,Y be the normed spaces, E be a nonempty subset of X,
a, b ∈ F \ {0}, α, β ∈ K \ {0}, C ≥ 0, r, s ∈ R and g : E → Y fulfills

∥g(ax+ by)− αg(x)− βg(y)∥ ≤ C∥x∥r∥y∥s, x, y, ax+ by ∈ E.

Moreover assume that one of the following conditions is satisfied

(a) 0 /∈ E, r + s < 0, and there exists n0 ∈ N with

(3.1) nx, (a+ bn)x ∈ E, x ∈ E, n ∈ Nn0 ,

(b) 0 /∈ E, r + s > 0, s > 0, |α|
|a|r+s < 1 and there exists n0 ∈ N with

− a

bn
x, a

(
1− 1

n

)
x ∈ E, x ∈ E, n ∈ Nn0 ,

(c) 0 /∈ E, r + s > 0, s > 0, |a|r+s

|α| < 1 and there exists n0 ∈ N with

1

bn
x, a

(
1− 1

n

)
x ∈ E, x ∈ E, n ∈ Nn0 ,

(d) 0 ∈ E, ax ∈ E for x ∈ E, r + s > 0, r, s ≥ 0 and |a|r+s

|α| < 1,

(e) 0 ∈ E, 1
a
x ∈ E for x ∈ E r + s > 0, r, s ≥ 0 and |α|

|a|r+s < 1.

Then g satisfies the equation

g(ax+ by) = αg(x) + βg(y), x, y, ax+ by ∈ E.

The following example shows that the linear equation is not φ-hyperstable

with the control function φ(x, y) := C|x|r|y|s, if r + s > 0 and |a|r+s

|α| = 1.

Example 3.2. Let X = Y = E = R, r = s = 1
2 , α = a > 0, β = b > 0 and

g : R → R be defined by g(x) = |x|, x ∈ R. Then g satisfies

|g(ax+ by)− ag(x)− bg(y)| ≤ 2
√
ab
√
|x||y|, x, y ∈ R

but g is not linear.

Now, we give an example, which shows that in above corollary the additional
assumptions on E are necessary.
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Example 3.3. Let X = Y = R, E = [−1, 0) ∪ (0, 1], r = s = −1, α = a > 1,
β = b > 1 and g : E → R be defined by g(x) = |x|, x ∈ E. Then f satisfies

|g(ax+ by)− ag(x)− bg(y)| ≤ 2ab|x|−1|y|−1, x, y ∈ E,

but g is not is not linear on E. We notice that 0 ̸∈ E and E does not satisfy
the condition (3.1).

Remark 3.4. We notice that Corollary 3.1 generalizes Theorem 20 from [9],
where it has proved that linear equation is φ-hyperstable in the class of function
mapping a linear space into a linear space with φ(x, y) := C∥x∥r∥y∥s, but under
the assumption that C, r, s ∈ [0,+∞) and r + s > 0.

4. Open problem

We end the paper with an open problem.
For the case r+s = 0, the method used in the proofs of the above Theorems

cannot be applied, thus this is still an open problem. However, the case when
r = s = 0 (φ(x, y) = C), was obviously investigated.
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[23] Gy. Maksa and Zs. Páles, Hyperstability of a class of linear functional equations, Acta
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