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1. Introduction

The idea of statistical convergence (stat-convergence) was first proposed
by A.Zigmund in his famous monograph [35] where he talked about ”almost
convergence”. The first definition of it was given by H. Fast [10] and H.
Steinhaus [29]. Later, this concept has been generalized in many directions.
More details on this matter and on applications of this concept can be found
in [3–6, 9, 11–13, 21, 22, 24, 26, 28, 30]. It should be noted that the methods of
non-convergent sequences have long been known and they include e.g. Cesaro
method, Abel method and etc. These methods are used in different areas of
mathematics. For the applicability of these methods is very important that
the considered space has a linear structure. Therefore, the study of statistical
convergence in metric spaces is of special scientific interest. Different aspects of
this problem is discussed in [19,20]. Statistical convergence is currently actively
used in many areas of mathematics such as summation theory [6,12,13], number
theory [3,9,27], trigonometric series [35], probability theory [11], measure the-
ory [24], optimization [25], approximation theory [14,15], fuzzy theory [1,7,31]
and etc.
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It should be noted that the concept of statistical fundamentality (stat-
fundamentality) was first introduced by J.A. Fridy [13]. He proved its equiv-
alence to stat-convergence with respect to numerical sequences. This problem
was raised in [23] concerning uniform space (X;U ) with a uniformity U . It
is proved that if the sequence {xn}n∈N ⊂ X stat-convergent in (X;U ), then
it is stat-fundamental. In the same paper the validity of converse statement is
raised.

In this paper, the concept of Fst-fundamentality with respect to the concept
of F -convergence (convergence on the filter) is introduced and in the sequential
complete uniform spaces it is proved that the concept of Fst-fundamentality
is equivalent to the F -convergence. It should be noted that F -convergence
generalizes many kinds of convergence, including the well-known statistical
convergence. Note that some problems relating to the convergence with respect
to ideals or filters have been considered in [17,18,32–34].

2. Needful information

We will use the standard notation. N will be the set of all positive integers;
χA ( · ) will be the characteristic function of A; |A| = cardA will be the number
of elements of A; A∆B = (A\B)∪ (B\A) will denote a symmetric difference of
sets A and B; 2M will be the set of all subsets M ; M c = N\M . ∧ will be the
quantifier which means “and”; ⇒ will be the quantifier which means “follows”.

Let us also recall the definition of an ideal and a filter.
A family of sets I ⊂ 2N is called an ideal if:
α)A;B ∈ I ⇒ A ∪B ∈ I ;
β) (A ∈ I ∧ B ⊂ A) ⇒ B ∈ I.
A family F ⊂ 2N is called a filter on N, if:
i) ∅ /∈ F ;
ii) from A;B ∈ F ⇒ A ∩B ∈ F ;
iii) from A ∈ F ∧ (A ⊂ B) ⇒ B ∈ F .

Filter F , satisfying the condition:
iv) If A1 ⊃ A2 ⊃ ... ∧ An ∈ F , ∀n ∈ N ⇒ ∃{nm}m∈N ⊂ N; n1 < n2 <

... : ∪∞
m=1 ((nm, nm+1] ∩Am) ∈ F , is called a monotone closed filter.

Filter F satisfying the following condition is called a right filter.
v) F c (N\F ) ∈ F , for any finite subset F ⊂ N.
An ideal I is called non-trivial if I ̸= ∅∧ I ̸= N. I ⊂ 2N is a non-trivial ideal

if and only if F = F (I) = {N\A : A ∈ I} is a filter. A non-trivial ideal I ⊂ 2N

is called admissible if and only if I ⊃ {{n} : n ∈ N}. More details about filters
and convergence on the filters can be found in monograph by N. Bourbaki [2]
and also in [17,18].

Let us recall the definition of uniformity on the set X. ∆ ≡ {(x;x) : x ∈ X}
is called a diagonal or an identity relation. If U ⊂ X × X is a relation, then
the inverse of this relation U−1 is defined as the set of all pairs (x; y) such that
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(y;x) ∈ U , i.e. U−1 ≡ {(x; y) ∈ X ×X : (y;x) ∈ U}. Let U ;V ⊂ X × X be
some relation. The composition U ◦V of the relations U and V is defined as the
set of all pairs (x; z), that for some y ∈ X we have (x; y) ∈ V and (y; z) ∈ U ,
i.e. U ◦V ≡ {(x; z) : ∃y ∈ X, (x; y) ∈ V ∧ (y; z) ∈ U}.¿ Let A ⊂ X be some set
and U ⊂ X ×X be a relation. Accept U [A] ≡ {y ∈ X : ∃x ∈ A ⇒ (x; y) ∈ U}.
For A = {x} assume U [A] = U [x]. Uniformity on the set X is a non-empty
family U ⊂ 2X×X , satisfying the following conditions.

(a) ∆ ⊂ U, ∀U ∈ U ;
(b) U ∈ U ⇒ U−1 ∈ U ;
(c) U ∈ U ⇒ ∃V ∈ U : V ◦ V ⊂ U ;
(d) U ;V ∈ U ⇒ U ∩ V ∈ U ;
(e) U ∈ U ∧ (U ⊂ V ⊂ X ×X) ⇒ V ∈ U .
Pair (X;U ) is called a uniform space. Subfamily B ⊂ U of the uniformity

U is called its base if and only if any element of the family U contains an
element of the family B.

Let (X;U ) be a uniform space. Topology τ , associated with a uniformity
U , is a family of all such sets T ⊂ X, for arbitrary x ∈ T , ∃U ∈ U : U [x] ⊂ T .

The space (X;U ) with a uniform topology is called Hausdorff if and only
if ∩U∈U U = ∆. Let (X;U ) be a uniform space and {xn}n∈N ⊂ X be some
sequence. {xn}n∈N is called fundamental if ∀U ∈ U , ∃n0 ∈ N : (xn;xm) ∈
U , ∀n,m ≥ n0.

For more details we refer the reader to [8, 16].
Let us recall the definition of convergence on filter.

Definition 2.1. Let (X;U ) be a uniform space and F ⊂ 2N be some filter.
The sequence {xn}n∈N ⊂ X is called F -convergent to x ( shortly F - lim

n→∞
xn =

x), if ∀U ∈ U : {n ∈ N : (xn;x) ∈ U} ∈ F . In other words, it means that
∀U ∈ U : {n ∈ N : xn ∈ U [x]} ∈ F .

Definition 2.2. Let (X;U ) be a uniform space and F ⊂ 2N be some filter.
The sequence {xn}n∈N ⊂ X is called Fst- fundamental in X, if ∀U ∈ U ,
∃n0 ∈ N : {n ∈ N : xn ∈ U [xn0

]} ∈ F .

Let (X;U ) be a Hausdorff uniform space. Consequently, {x} = ∩U∈U U [x].
Let {xn}n∈N ⊂ X be some sequence. Let us show that if ∃F - lim

n→∞
xn, then it

is unique, where F ⊂ 2N is some filter. Assume to the contrary, i.e. F - lim
n→∞

xn

has two values y1 ̸= y2. Then it is clear that ∃Uk ∈ U : y1 /∈ U2 [y2] ∧ y2 /∈
U1 [y1]. Put U = U1 ∩ U2 ⇒U ∈ U , moreover y1 /∈ U [y2] ∧ y2 /∈ U [y1].
Take V ∈ U : V ◦ V ⊂ U ∧

(
V = V −1

)
. The possibility of such a choice

V directly follows from the definition of uniformity. It is obvious that y1 /∈
V [y2] ∧ y2 /∈ V [y1]. Assume Ak ≡ {n ∈ N : xn ∈ V [yk]} , k = 1, 2. We have
Ak ∈ F , k = 1, 2 ⇒ A1∩A2 ∈ F . On the other hand A1∩A2 = ∅ /∈ F . Since,
if A1∩A2 ̸= ∅ ⇒ ∃n0 ∈ N : xn0 ∈ A1∩A2 ⇒ (xn0 ; y1) ∈ V ∧(xn0 ; y2) ∈ V . From
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the symmetry of V it follows (y2;xn0) ∈ V , as a result, (y1; y2) ∈ V ◦ V ⊂ U .
The obtained contradiction proves that F - lim

n→∞
xn is unique. So the following

lemma is proved.

Lemma 2.3. Let (X;U ) be a Hausdorff uniform space and F ⊂ 2N be some
filter. If ∃F - lim

n→∞
xn, where {xn}n∈N ⊂ X is some sequence, then this limit is

unique.

Let (X;U ) be a uniform space, F ⊂ 2N be some filter and ∃F - lim
n→∞

xn = x,

where {xn}n∈N ⊂ X be some sequence. Let us show that {xn}n∈N Fst-

fundamental. Take ∀U ∈ U and let V ∈ U : V ◦ V ⊂ U ∧
(
V = V −1

)
.

Let n0 ∈ {n ∈ N : xn ∈ V [x]}. It is clear that {n ∈ N : xn ∈ V [x]} ∈ F . If
xn ∈ V [x] ⇒ (xn;xn0

) ∈ V ◦ V ⊂ U . Consequently, {n ∈ N : xn ∈ V [x]} ⊂
{n ∈ N : xn ∈ U [xn0 ]} ⇒ {n ∈ N : xn ∈ U [xn0 ]} ∈ F . So the following theo-
rem is proved.

Theorem 2.4. Let (X;U ) be a Hausdorff uniform space, F ⊂ 2N be some
filter and ∃F - lim

n→∞
xn, where {xn}n∈N ⊂ X be some sequence. Then {xn}n∈N

is Fst-fundamental.

3. Main results

Under certain assumptions, the converse of Theorem 2.4 is also true. Let
(X;U ) be a sequentially complete uniform space, i.e. in this space any Cauchy
sequence converges to some point of X. We assume that (X;U ) has a count-
able base and it is Hausdorff. Then ∃Un ∈ U , ∀n ∈ N : ∩n∈NUn = ∆∧
(Un ⊂ U,∀n ∈ N). Without loss of generality, we will assume that U (n+1) ◦
U (n+1) ⊂ U (n) ∧

(
U (n) =

(
U (n)

)−1
)
. Let F ⊂ 2N be some filter and the se-

quence {xn}n∈N ⊂ X be Fst-fundamental in X. Then, by definition we have

∃nj ∈ N : Kj ∈ F , where Kj ≡
{
n ∈ N : xn ∈ U (j)

[
xnj

]}
, j = 1, 2. It is

clear that K(1) ≡ K1 ∩K2 ∈ F . Let M1 ≡ U (1) [xn1 ] ∩ U (2) [xn2 ]. Obviously,
xn ∈ M1 , ∀n ∈ K(1). Similarly we obtain that ∃n3 ∈ N : K3 ∈ F , where

K3 ≡
{
n ∈ N : xn ∈ U (3) [xn3

]
}
. Assume K(2) = K(1) ∩ K3. It is clear that

K(2) ∈ F . Put M2 ≡ M1 ∩ U (3) [xn3 ]. Consequently, M2 ̸= ∅, so, xn ∈ M2,
∀n ∈ K(2). Continuing in the same way, we obtain the sequence of open non-
empty sets

{Mn}n∈N ⊂ X : M1 ⊃ M2 ⊃ ...,Mn ⊂ U (n+1)
[
xkn+1

]
, ∀n ∈ N,

such as K(j) ∈ F : K(j) ≡ {k ∈ N : xk ∈ Mj}, j ∈ N. Take ∀x̃n ∈ Mn, ∀n ∈ N.
Let us show that {x̃n}n∈N is a fundamental sequence. Let U ∈ U be an

arbitrary uniformity. Then, it is obvious that ∃n0 ∈ N : U (n0) ⊂ U , ∀n ≥ n0.
Let n ≥ n0 be an arbitrary number. We have x̃n+p ∈ Mn+p ⊂ Mn , ∀p ∈ N.
Since, Mn : Mn+p ⊂ U (n+1)

[
xkn+1

]
, it is clear that

(
x̃n;xkn+1

)
∈ U (n+1) ∧
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x̃n+p;xkn+1

)
∈ U (n+1) ⇒ (x̃n; x̃n+p) ∈ U (n+1) ◦ U (n+1) ⊂ U (n), ∀p ∈ N .

Consequently, (x̃n; x̃n+p) ∈ U , ∀n ≥ n0 , ∀p ∈ N. From the arbitrariness
of U it follows that the sequence {x̃n}n∈N is fundamental in (X;U ) and let
lim

n→∞
x̃n = x. Next we show that F - lim

n→∞
xn = x. Take ∀U ∈ U . Then ∃n0 ∈

N : U (n) ⊂ U , ∀n ≥ n0. Since, Mn ⊂ U (n+1)
[
xkn+1

]
, then it is clear that

K(n) ⊂
{
k ∈ N : xk ∈ U (n+1)

[
xkn+1

]}
⇒

{
k ∈ N : xk ∈ U (n+1)

[
xkn+1

]}
∈ F ,

∀n ∈ N. Let n1 ∈ N : (x̃k;x) ∈ U (n0+1), ∀k ≥ n1. Without loss of generality,
we will assume that n1 ≥ n0+1. Consequently, x̃n1 ∈ Mn1 ⊂ U (n1+1)

[
xkn1+1

]
,

i.e.
(
x̃n1 ;xkn1+1

)
∈ U (n1+1) . Put

(
xk;xkn1+1

)
∈ U (n1+1). Then (xk; x̃n1) ∈

U (n1+1) ◦ U (n1+1) ⊂ U (n1). Since,
(
x̃n1 ;xkn1+1

)
∈ U (n1+1) ⊂ U (n1), then it is

clear that
(
xk;xkn1+1

)
∈ U (n1) ◦ U (n1) ⊂ U (n1−1) ⊂ U (n0) ⊂ U . This implies

the following inclusion

{n ∈ N : xn ∈ Mn0} ⊂ {n ∈ N : (xn;x) ∈ U} .

So, K(n0) ≡ {n ∈ N : xn ∈ Mn0} ∈ F , from the previous inclusion follows that
{n ∈ N : (xn;x) ∈ U} ∈ F . From the arbitrariness of U ∈ U it follows F -
lim

n→∞
xn = x. Thus, it is proven.

Theorem 3.1. Let (X;U ) be a Hausdorff, sequentially complete uniform space
with a countable base and F ⊂ 2N be some filter. Then, if the sequence
{xn}n∈N ⊂ X is Fst-fundamental, then ∃x ∈ X : F - lim

n→∞
xn = x.

Remark 3.2. From the conditions of the Theorem 3.1 it follows that the space
(X;U ) is metrizable [8, 16]. The proof is provided without using the concept
of metric.

Let us assume that F ⊂ 2N be a monotone closed filter and the sequence
{xn}n∈N ⊂ X is Fst-fundamental. Let the uniform space (X;U ) satisfy the

condition of the Theorem 3.1. Consider the sequence
{
K(n)

}
n∈N , constructed

in the proof of this theorem. We have

K(1) ⊃ K(2) ⊃ ... ∧K(n) ∈ F , ∀n ∈ N.

Then by condition (iv) of filter we have

∃ {nm : n1 < n2 < ... } : ∪∞
m=1

(
(nm, nm+1] ∩K(m)

)
∈ F .

Assume

N0 ≡
{
k ∈ N : k ∈ (nm, nm+1] ∩Kc

(m), m ∈ N
}
∪ [1, n1] ,

where M c ≡ N\M . Define

yk =

{
x , k ∈ N0 ,
xk, if otherwise ,
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where x = F - lim
n→∞

xn. Now we show that lim
k→∞

yk = x. Let U ∈ U be an

arbitrary uniformity. If k ∈ N0, then it is clear that yk ∈ U [x]. If k /∈ N0,
then ∃m ∈ N : nm < k ≤ nm+1 ∧ k /∈ Kc

(m) ⇒ k ∈ K(m) ⇒ xk ∈ Mm, where

M1 ⊃ M2 ⊃ ...− is a sequence from Theorem 3.1. Let n0 ∈ N : U (n0−1) ⊂ U .
Let us take k sufficiently large that m ≥ n0. We have (xk;x) ∈ U (n0), so(
xk;xkn0+1

)
∈ U (n0+1) ∧

(
xkn0+1 ;x

)
∈ U (n0+1). Thus, (yk;x) ∈ U (n0) ⊂ U ,

since, in this case xk = yk. From the arbitrariness of U it follows lim
k→∞

yk = x.

Let us show that K̃ ≡ {k ∈ N : xk = yk} ∈ F . In fact, it is not difficult to see
that

∪∞
m=1

(
(nm, nm+1] ∩K(m)

)
⊂ K̃.

So, ∪∞
m=1

(
(nm, nm+1] ∩K(m)

)
∈ F , from the condition (iii) of filter we obtain

K̃ ∈ F . Thus, if F - lim
n→∞

xn = x, then ∃K̃ ∈ F : lim
n→∞

yn = x ∧
(
xn = yn , ∀n ∈ K̃

)
.

Let us assume that lim
n→∞

yn = x ∧
(
K̃ ≡ {n ∈ N : xn = yn} ∈ F

)
. Let F

be a right filter. Let U ∈ U be any uniformity . Then ∃n0 ∈ N : (yn;x) ∈
U, ∀n ≥ n0. We have(

{n ∈ N : n ≥ n0} ∩ K̃
)
⊂ {n ∈ N : (xn;x) ∈ U} .

It is clear that
(
{n ∈ N : n ≥ n0} ∩ K̃

)
∈ F . Then from the condition (iii)

of filter follows that {n ∈ N : (xn;x) ∈ U} ∈ F . So, we get the validity of the
following theorem.

Theorem 3.3. Let (X;U ) be a uniform space satisfying the conditions of The-
orem 3.1 and F ⊂ 2N be some filter. Then: 1) if F is a monotone closed filter
and F - lim

n→∞
xn = x, then ∃ {yn}n∈N ⊂ X : lim

n→∞
yn = x ∧ {n ∈ N : xn = yn} ∈

F ; 2) if F is a right filter and lim
n→∞

yn = x ∧ ({n ∈ N : xn = yn} ∈ F ), then

F - lim
n→∞

xn = x.

The Theorems 3.1 and 3.3 implies the following.

Corollary 3.4. Let (X;U ) be sequentially complete uniform space that satis-
fies the conditions of Theorem 3.1, F ⊂ 2N be a monotone closed and a right
filter. Then the following statements are equivalent:

1) ∃F - lim
n→∞

xn = x; 2) {xn}n∈N is Fst-fundamental; 3) ∃ lim
n→∞

yn = x∧
({n ∈ N : xn = yn} ∈ F ).

The Theorem 3.3 immediately implies the following

Corollary 3.5. Let (X;U ) be a uniform space, satisfying the conditions of
Theorem 3.1 and F ⊂ 2N be a right filter. If ∃F - lim

n→∞
xn = x, then

∃ {nk : n1 < n2 < ...} ∈ F : lim
k→∞

xnk
= x.
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4. Filters

I. Non-right filter. Let e0 ⊂ N ∧ e0 ̸= N. Assume

Fe0 ≡ {e ⊂ N : e0 ⊂ e} .
It is not difficult to verify that Fe0 is a non-right filter.

II. An ordinary convergence. F ≡ {M ⊂ N : M c ≡ N\M is a finite set}.
F -convergence, generated by this filter, coincides with the ordinary conver-
gence.

III. Statistical convergence. Assume Fδ ≡ {M ⊂ N : δ (M) = 1}. Fδ

is a filter. It is not difficult to see that Fδ is a right filter. Let us show that
Fδ is a monotone closed filter. Let K1 ⊃ K2 ⊃ ... ∧ (δ (Kn) = 1 , ∀n ∈ N).
Obviously, δ (Kc

n) = 0 , ∀n ∈ N. Therefore ∃ {nk}k∈N ⊂ N; n1 < n2 < ... :

1

n
|In ∩Kc

m| < 1

m
, ∀n ≥ nm.

Assume N0 = Ñ0 ∪ In, where Ñ0 ≡ {k ∈ N : nm < k ≤ nm+1 ∧ (k ∈ Kc
m)}. It

is clear that δ (N0) = δ
(
Ñ0

)
. Take ∀n ∈ N. Then ∃m ∈ N : nm < n ≤ nm+1.

Without loss of generality, we will assume that n > n1. Let us show that

(4.1)
(
In ∩ Ñ0

)
⊂ (In ∩Kc

m) .

Let k ∈
(
In ∩ Ñ0

)
⇒ ∃m0 ≤ m : nm0 < k ≤ nm0+1 ∧

(
k ∈ Kc

m0

)
⇒ k ∈ Kc

m.

Thus, the inclusion (4.1) is true. Consequently

(4.2)
1

n

∣∣∣In ∩ Ñ0

∣∣∣ ≤ 1

n
|In ∩Kc

m| < 1

m
.

From (4.2) it directly follows that δ
(
Ñ0

)
= 0, as a result, δ (N0) = 0 ⇒

δ (Nc
0) = 1 ⇒ Nc

0 ∈ Fδ. In the sequel, it should be pointed out Nc
0 ≡

{k ∈ N : nm < k ≤ nm+1 ∧ (k ∈ Km)}. Thus, Fδ is a monotone closed fil-
ter. That the Fδ satisfies the condition (v) is obvious. Then, with respect to
Fδ-convergence the statement of Corollary 3.4 is true.

Statement 4.1. Filter Fδ, generated by statistical density, is a monotone
closed and a right filter.

IV. Logarithmic convergence. Let M ⊂ N. Assume

ln (M) =
1

sn

n∑
k=1

χM (k)

k
,

where sn =
∑n

k=1
1
k . If ∃ lim

n→∞
ln (M) = l (M), then l (M) is called a loga-

rithmic density of the set M . Let Fl ≡ {M ⊂ N : l (M) = 1}. The following
lemma is true.

Lemma 4.2. If l (Mk) = 1, k = 1, 2 ⇒ l (M1 ∩M2) = 1.



On statistical type convergence 982

Proof. We have

M1 ∩M2 = (M1 ∪M2) \ [(M2\M1) ∪ (M1\M2)] .

Consequently

(4.3) M1 ∩M2 ∩ In = [(M1 ∪M2) ∩ In] \ [((M2\M1) ∪ (M1\M2)) ∩ In] .

From
((M2\M1) ∩ In) ⊂ (M c

1 ∩ In) ,

we get

(4.4)
1

sn

n∑
k=1

1

k
χM2\M1

(k) ≤ 1

sn

n∑
k=1

1

k
χMc

1
(k) .

It is absolutely clear that, if l (M) = 1, then l (M c) = 0. Then from (4.4) we
obtain l (M2\M1) = 0. Similarly, we have l (M1\M2) = 0. So

((M2\M1) ∪ (M1\M2)) ∩ In = ((M2\M1) ∩ In) ∪ ((M1\M2) ∩ In) ,

it is clear that

(4.5) l ((M2\M1) ∪ (M1\M2)) = 0.

It is easy to see that l (M1 ∪M2) = 1. From (4.3) we get

1

sn

n∑
k=1

1

k
χM1∩M2 (k) =

1

sn

n∑
k=1

1

k
χM1∪M2 (k)−

1

sn

n∑
k=1

1

k
χ(M2\M1)∪(M1\M2) (k) .

Taking into account (4.5) we get l (M1 ∩M2) = 1. Hence the Lemma is proved.
□

This lemma implies that Fl is a filter. If M ⊂ N is a finite set, then it is
clear that M c ∈ Fl, i.e. Fl satisfies the condition (v), then it is absolutely
clear that l (M) = 0. Let us show that Fl is a monotone closed filter. Let
K1 ⊃ K2 ⊃ ... ∧ (l (Kn) = 1, ∀n ∈ N) ⇒ l (Kc

n) = 0 , ∀n ∈ N. Therefore

∃ {nk}k∈N ⊂ N, n1 < n2 < ... :
1

sn

n∑
k=1

χKc
m
(k)

k
<

1

m
, ∀n ≥ nm.

Similar to the previous example, let N0 = Ñ0 ∪ In, where

Ñ0 ≡ {k ∈ N : nm ≤ k ≤ nm+1 ∧ (k ∈ Kc
m)} .

It is clear that l (N0) = l
(
Ñ0

)
. Let n ∈ N ⇒ ∃m ∈ N : nm < n ≤ nm+1. As

before, we assume that n > n1. It is clear that, (4.1) is true, i.e.(
In ∩ Ñ0

)
⊂ (In ∩Kc

m) .

Hence
1

sn

n∑
k=1

χÑ0
(k)

k
≤ 1

sn

n∑
k=1

χKc
m
(k)

k
<

1

m
, ∀n ≥ nm.
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Consequently, l
(
Ñ0

)
= 0 ⇒ l (N0) = 0 ⇒ l (Nc

0) = 1 ⇒ Nc
0 ∈ Fl. It is clear

that

Nc
0 ≡ {k ∈ N : nm < k ≤ nm+1 ∧ (k ∈ Km)} .

It directly follows that Fl is a right filter. Therefore, if ∃δ (M) ⇒ ∃l (M) ∧
l (M) = δ (M). The converse is not generally true.

Statement 4.3. Filter Fl, generated by logarithmic density, is a monotone
closed and a right filter.

V. Uniform convergence. Let M ⊂ N ∧ (t ∈ Z+; s ∈ N). Assume

M (t+ 1; t+ s) = |n ∈ M : t+ 1 ≤ n ≤ t+ s| .
Let

βs (M) = lim inf
t→∞

M (t+ 1; t+ s) ,

βs (M) = lim sup
t→∞

M (t+ 1; t+ s) .

If lim
s→∞

βs(M)
s = lim

s→∞
βs(M)

s = β (M), then the quantity β (M) is called the

uniform density of the set M . Put Fβ ≡ {M ⊂ N : β (M) = 1}. Now we show
that Fβ is a filter. It is clear that

M (t+ 1; t+ s) +M c (t+ 1; t+ s) = | [t+ 1, t+ s] | = s.

Hence it directly follows that β (M) = 1 ⇔ β (M c) = 0. Iβ ≡ {M ⊂ N :
β (M) = 0} is a non-trivial ideal [23]. Therefore, Fβ is a filter. It is clear that
Fβ satisfies the condition (v). Next we show that Fβ is a monotone closed
filter. Let K1 ⊃ K2 ⊃ ... ∧ (β (Kn) = 1, ∀n ∈ N) ⇒ β (Kc

n) = 0, ∀n ∈ N ⇒
∃{nk}k∈N ⊂ N, n1 < n2 < ... :

βs (Kc
m)

s
<

1

m
, ∀s ≥ nm.

As earlier, we set N0 = Ñ0 ∪ In1 , where Ñ0 ≡ {k ∈ N : nm ≤ k ≤ nm+1 ∧
(k ∈ Kc

m)}. It is clear that β (N0) = β
(
Ñ0

)
. Let n > n1 be an arbitrary

integer. Then ∃m ∈ N : nm < n ≤ nm+1. It is obvious that the inclusion(
In ∩ Ñ0

)
⊂ (In ∩Kc

m) ,

in this case is also true. From the arbitrariness of n ∈ N we have(
Ñ0 ∩ [t+ 1; t+ s]

)
⊂ (Kc

m ∩ [t+ 1; t+ s]) .

Consequently

Ñ0 (t+ 1; t+ s) ≤ Kc
m (t+ 1; t+ s) ,

and, as a result

βs
(
Ñ0

)
≤ βs (Kc

m) .
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Thus

βs
(
Ñ0

)
s

≤ βs (Kc
m)

s
<

1

m
, ∀s ≥ nm.

From this relation it directly follows

β
(
Ñ0

)
= 0 ⇒ β (N0) = 0 ⇒ β (Nc

0) = 1 ⇒ N c
0 ∈ Fβ ,

where
Nc

0 ≡ {k ∈ N : nm < k ≤ nm+1 ∧ (k ∈ Km)} ,
i.e. Fβ is a monotone closed filter.

Statement 4.4. Filter Fβ, generated by the uniform convergence, is a mono-
tone closed and a right filter.

VI. Non-monotone closed filter. Let Ak ≡
{
n 2k : n ∈ N

}
, ∀k ∈ N.

Assume
F ≡

{
M ⊂ 2N : ∃k ∈ N ⇒ Ak ⊂ M

}
.

It is clear that ∅ /∈ F . Put A;B ∈ F ⇒ ∃k1; k2 ∈ N : (Ak1 ⊂ A) ∧ (Ak2 ⊂ B).
Let k0 = max {k1; k2}. It is obvious that (A ∩B) ⊃ Ak0 , i.e. the condition
(ii) of the filter satisfies. Let (A ∈ F ) ∧ (A ⊂ B). Consequently, ∃k0 ∈ N :
Ak0 ⊂ A ⇒ Ak0 ⊂ B ⇒ B ∈ F . So, F is a filter. Let us show that F is
a non-monotone closed filter. It is clear that A1 ⊃ A2 ⊃ .... Let ∃nk;n1 <
n2 < ... : ∪∞

m=1 ((nm, nm+1] ∩Am) ∈ F . Consequently, ∃p ∈ N : Ap ⊂
∪∞
m=1 ((nm, nm+1] ∩Am). Put k0 ∈ N : 2k0 + 1 > np+1. It is easy to see that

(2k0 + 1) 2p /∈ Ak, ∀k > p ⇒ (2k0 + 1) 2p /∈ ∪∞
m=1 ((nm, nm+1] ∩Am). The

obtained contradiction shows that F is a non-monotone closed filter.
Following [23], number of such examples can be extended.

Remark 4.5. Similar results can be obtained with respect to concepts of I-
convergence.
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