ON NONLINEAR PRESERVERS OF WEAK MATRIX MAJORIZATION

M. RADJABALIPOUR* AND P. TORABIAN

Communicated by Heydar Radjavi

Abstract

For $X, Y \in M_{n m}\left(:=M_{n m}(\mathbb{R})\right)$, we say X is weakly matrix majorized or matrix majorized from the left by Y and write $X \prec_{\ell} Y$, if $X=R Y$ for some row stochastic matrix R. Also we write $X \sim_{\ell} Y$ if $X \prec_{\ell} Y \prec_{\ell} X$. A mapping $T: M_{n m} \rightarrow M_{n m}$ is said to be a strong preserver of \prec_{ℓ}, if $\left\{X \in M_{n m}: X \prec_{\ell} A\right\}=\{X \in$ $\left.M_{n m}: T X \prec_{\ell} T A\right\}$ for all $A \in M_{n m}$. Two such strong preservers T and τ are called equivalent if $T X \sim_{\ell} \tau X$ for all $X \in M_{n m}$. It is shown that if $m \geq 2$ and if $T: M_{n m} \rightarrow M_{n m}$ is a surjective (not necessarily linear) strong preserver of \prec_{ℓ}, then $T-T 0$ is equivalent to a linear strong preserver of \prec_{ℓ}.

1. Introduction

Throughout this paper the following notations are fixed. The real vector space of all $1 \times m$ (row) vectors are denoted by \mathbf{R}_{m} and the real linear space of all $n \times m$ matrices by $M_{n m}$, for any integers $n, m \geq 1$. For every $A \in M_{n m}, R(A) \subset \mathbf{R}_{m}$ will denote the set of all distinct rows of A. For every $x \in \mathbf{R}_{m}$, we let $x^{(n)}$ denote the $n \times m$ matrix such that $R\left(x^{(n)}\right)=\{x\}$. If $X, Y \in M_{n m}$, we say X is matrix majorized from the left or weakly matrix majorized by Y, and write $X \prec_{\ell} Y$, if the rows

[^0]X_{1}, \ldots, X_{n} of X and Y_{1}, \ldots, Y_{n} of Y satisfy $X_{i}=\Sigma_{j=1}^{n} r_{i j} Y_{j}$ for some nonnegative scalars $r_{i j}$ such that $\sum_{j=1}^{n} r_{i j}=1(i, j=1,2, \ldots, n)$. The matrix $R=\left[r_{i j}\right]$ is called a row stochastic matrix and the relation $X \prec_{\ell}$ Y can be illustrated as $X=R Y$. We write $X \sim_{\ell} Y$ if $X \prec_{\ell} Y \prec_{\ell} X$. Also, we define $C(A):=\left\{X \in M_{n m}: X \prec_{\ell} A\right\}$ and $[A]:=\left\{X \in M_{n m}:\right.$ $\left.X \sim_{\ell} A\right\}$.

There is a right-sided type of matrix majorization \prec_{r} on $M_{n m}$ defined by $X \prec_{r} Y$ whenever $X=Y R$ for some row stochastic matrix R depending on X and Y. In this paper, we deal only with the left-sided type and hence, for the remainder of the paper, we use the conventions \prec and \sim for \prec_{ℓ} and \sim_{ℓ}, respectively. Throughout the paper, the letter T stands for a mapping satisfying the conditions set in the following Definition 1.1.

Definition 1.1. A (not necessarily linear) mapping $T: M_{n m} \rightarrow M_{n m}$ is said to be a strong preserver of \prec, if $\left\{X \in M_{n m}: X \prec A\right\}=\{X \in$ $\left.M_{n m}: T X \prec T A\right\}$ for all $A \in M_{n m}$.

Definition 1.2. Two strong preservers T and τ of \prec on $M_{n m}$ are said to be equivalent, if $T X \sim \tau X$ for all $X \in M_{n m}$.

The main result of the paper is to show that if $m \geq 2$ and if T : $M_{n m} \rightarrow M_{n m}$ is a surjective strong preserver of \prec, then the mapping $X \mapsto T X-T 0$ is equivalent to a linear one. This extends results due to L.B. Beasley, S.-G. Lee and Y.-H. Lee [4] and A.M. Hasani and M. Radjabalipour [8]. Note that if T is a linear strong preserver, then it is injective and, hence, bijective $[4,8,9]$. Also, note that, if $T: \mathbb{R} \rightarrow \mathbb{R}$ is any function, then T is a strong preserver of \prec on $M_{1}=\mathbb{R}$ but $T-T 0$ is not equivalent to a linear one. For more information on matrix majorization and the previous work on this subject we also refer to [1-3], [5-7] and [10-12]. In particular, the authors of [8] show that T is a linear strong preserver of \prec_{ℓ} if and only if there exist a permutation matrix P and an invertible matrix L in M_{n} such that $T X=P X L$ for all $X \in M_{n}$. We will obtain this result as a byproduct of our investigations in the present paper.

The following lemma enables us to assume, without loss of generality, that $T 0=0$.

Lemma 1.3. Let $T: M_{n m} \rightarrow M_{n m}$ be a strong preserver of \prec. Then the following assertions are true.
(a) Assume T is surjective. Then $C(T A)=T C(A)$ for all $A \in M_{n m}$.
(b) Assume $C(T A)=T C(A)$ for all $A \in M_{n m}$. Then $R(X)$ is a singleton if and only if $R(T X)$ is a singleton.
(c) Assume $C(T A)=T C(A)$ for all $A \in M_{n m}$. The mapping T^{\prime} : $M_{n m} \rightarrow M_{n m}$ defined by $T^{\prime} X=T X-T 0$ for all $X \in M_{n m}$ is a strong preserver of \prec satisfying $C\left(T^{\prime} A\right)=T^{\prime} C(A)$ for all $A \in M_{n m}$ and $T^{\prime} 0=$ 0 .

Proof. (a) Let $A \in M_{n m}$. By definition, $T C(A) \subset C(T A)$. Now, let $Y \in C(T A)$. Then there exists $X \in M_{n m}$ such that $Y=T X$. Since $T X \prec T A, X \prec A$ and hence, $Y \in T C(A)$.
(b) The set $R(A)$ is a singleton if and only if $C(A)=\{A\}$ if and only if $C(T A)=T C(A)=\{T A\}$ if and only if $R(T A)$ is a singleton.
(c) By part (b), $R(T 0)=\{a\}$ for some ($1 \times m$ row) vector $a \in \mathbf{R}_{m}$. Now, let $A, X \in M_{n m}$ and let $B=T A$ and $Y=T X$. Let B_{i}, Y_{i} be the $i^{\text {th }}$ rows of B and Y, respectively $(i=1,2, \ldots, n)$. Then $X \in C(A)$ if and only if $Y=T X \in C(B)$ if and only if $Y_{i}=\mu_{i 1} B_{1}+\ldots+\mu_{i n} B_{n}$ or, equivalently, $Y_{i}-a=\mu_{i 1}\left(B_{1}-a\right)+\ldots+\mu_{i n}\left(B_{n}-a\right)$ for some nonnegative scalars $\mu_{i j}$ satisfying $\Sigma_{j=1}^{n} \mu_{i j}=1(i, j=1,2, \ldots, n)$. The latter shows that $T^{\prime} X=T X-T 0 \prec T A-T 0=T^{\prime} A$ and hence, T^{\prime} is a strong preserver of matrix majorization which satisfies $T^{\prime} 0=0$. Now, if $Y \prec T^{\prime} A$ for some $A \in M_{n m}$, then $Y \prec T A-T 0$ or, equivalently, $Y+T 0 \prec T A$. Then $Y+T 0=T X$ for some $X \in M_{n m}$ and hence, $Y=$ $T X-T 0=T^{\prime} X$. Obviously, $C\left(T^{\prime} A\right)=T^{\prime} C(A)$ for all $A \in M_{n m}$.

The converse of part (a) of Lemma 1.3 will be proven in Theorem 2.2. Throughout the remainder of the paper we impose the following assumption on T unless otherwise stated.

Assumption 1.4. $T 0=0$.
We conclude this section by a technical lemma needed in the sequel. If W is a subset of a real vector space V, co W will denote the convex hull of W, and, if W is convex, ext W will denote the set of extreme points of W.

Lemma 1.5. Let $A \in M_{n m}$. Then the following assertions are true.
(a) Up to the natural identification of the vector spaces $M_{n m}$ and $\left(\mathbf{R}_{m}\right)^{n}, C(A)=(\operatorname{co} R(A))^{n}$. In particular, $C(A)$ is a convex subset of $M_{n m}$.
(b) ext $C(A)=(\text { ext co } R(A))^{n}$.

Proof. Part (a) is easy, and part (b) follows from the fact that (ext W_{1})× $\ldots \times\left(\right.$ ext $\left.W_{k}\right)=\operatorname{ext}\left(W_{1} \times \ldots \times W_{k}\right)$, whenever W_{1}, \ldots, W_{k} are convex subsets of the real vector spaces V_{1}, \ldots, V_{k}, respectively.

2. Nonlinear preservers

In this section we study the structure of the surjective strong preservers of matrix majorization \prec which are not necessarily linear. We will show that if $m \geq 2$, such mappings are equivalent to linear ones.

We begin with a lemma which strengthens Lemma 1.3.
Lemma 2.1. Assume $T: M_{n m} \rightarrow M_{n m}$ is a strong preserver of \prec satisfying $T 0=0$ and $T C(A)=C(T A)$ for all $A \in M_{n m}$. Let $A \in M_{n m}$, let ext co $R(A)=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, and let $T x_{i}^{(n)}=y_{i}^{(n)}, i=1,2, \ldots, k$, where, as before, $u^{(n)}$ denotes an $n \times m$ matrix whose rows are all equal to some $u \in \mathbf{R}_{m}$. Then ext co $R(T A)=\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$.

Proof. Define $S: \mathbf{R}_{m} \rightarrow \mathbf{R}_{m}$ by $S x=y$, where $y^{(n)}=T x^{(n)}$. Since $T x^{(n)}=T y^{(n)}$ if and only if $x^{(n)}=y^{(n)}$, it follows that S is an injective mapping whose range contains co $R(T X)$ for all $X \in M_{n m}$. Assume $x \in \mathbf{R}_{m}$ is an extreme point of co $R(A)$ and, if possible, $y=S x$ is not an extreme point of co $R(T A)$. Then, there exists $u \neq v \in$ co $R(T A)$ such that $y=(u+v) / 2$. Let $B \in M_{n m}$ be any matrix such that $R(B)=$ $\{u, v\}$. Since $B \prec T A$, there exists $D \prec A$ such that $B=T D$. Let $r=S^{-1} u$ and $s=S^{-1} v$. Then $\{x, r, s\} \subset R(D)$. Let $E, F, G \in C(D)$ be such that $R(E)=\{x, r\}, R(F)=\{x, s\}$ and $R(G)=\{r, s\}$. Then co $R(T E) \supset[y, u]$, co $R(T F) \supset[y, v]$, and co $R(T G) \supset[u, v]$, where $[a, b]$ denotes the closed line segment joining the vectors $a, b \in \mathbf{R}_{m}$. Replacing $T E, T F$, and $T G$ by minor matrices having, respectively, $\{y, u\},\{y, v\}$, and $\{u, v\}$ as their exact collection of rows, one can easily see that E, F and G have still the same collections $\{x, r\},\{x, s\}$ and $\{r, s\}$ as their exact collections of rows, respectively. Thus, we can assume without loss of generality that $R(T E)=\{x, y\}, R(T F)=\{y, v\}$ and $R(T G)=\{u, v\}$. This implies that $S[x, r]=[y, u], S[x, s]=[y, v]$ and $S[r, s]=[u, v]$. If x, r, s form a nontrivial triangle, choose a point w in the interior of the triangle and observe that $w^{(n)} \prec D$ and hence $T w^{(n)} \prec T D$ or, equivalently, $S w \in[u, v]$, which implies that S is not injective; a
contradiction. If x, r, s are collinear, then $[x, r] \cap[x, s] \backslash\{x\} \neq \emptyset$ which implies that S is multivalued; again a contradiction. Summing up, we have shown that $S($ ext co $R(A)) \subset$ ext co $R(T A)$.

To prove the converse, assume y is an extreme point of co $R(T A)$. Since $y^{(n)} \prec T A$, there exists $x \in$ co $R(A)$ such that $T x^{(n)}=y^{(n)}$. We claim x is an extreme point of co $R(A)$. If not, there exists $r, s \in$ co $R(A)$ such that $x=(r+s) / 2$. Assume without loss of generality that $R(A)=\{r, s\}$. Let $T r^{(n)}=u^{(n)}$ and $T s^{(n)}=v^{(n)}$. By the previous paragraph, u, v are extreme points of co $R(T A)$ and, hence, y, u, v are noncollinear extreme points of co $R(T A)$. By an argument similar to the one given for the first part, there exist matrices E, F and G such that со $R(E)=[x, r]$, со $R(F)=[x, s]$, со $R(G)=[r, s]$, со $R(T E)=[y, u]$, co $R(T F)=[y, v]$, and co $R(T G)=[u, v]$. Choosing $t \in[x, r] \backslash\{x, r\}$, it follows that $t^{(n)} \prec E, t^{(n)} \prec G$ and hence, $T t^{(n)} \in[y, u] \cap[u, v]$. Thus $S t=y, u$, or v. Equivalently, $t=x, r$, or s; a contradiction.

Corollary 2.2. Let $S: \mathbf{R}_{m} \rightarrow \mathbf{R}_{m}$ be as in the proof of Lemma 2.1; i.e., $T x^{(n)}=(S x)^{(n)}$ for all $x \in \mathbf{R}_{m}$. Then S is injective and ext co $R(T A)=$ S (ext co $R(A)$). In particular, if $m \geq 2$ and if x and y are distinct vectors in \mathbf{R}_{m}, then $S((1-t) x+t y)=(1-f(t)) S x+f(t) S y$ for some strictly increasing function f from $[0,1]$ onto $[0,1]$.

Definition 2.3. The operator $S: \mathbf{R}_{m} \rightarrow \mathbf{R}_{m}$ defined in Corollary 2.2 will be called the border operator corresponding to T.

In the proof of the next theorem, we will make use of the following version of a fact due to Zs. Pales [14] as interpreted by L. Molnar [13] : If K is a noncollinear convex set in \mathbf{R}_{m} and if $S: K \rightarrow K$ is a bijective mapping such that for any $x, y \in K$ and any $\lambda \in[0,1]$, there exists $\mu \in[0,1]$ satisfying $S(\lambda x+(1-\lambda) y)=\mu S(x)+(1-\mu) S(y)$, then there exist a linear operator $\Psi: \mathbb{R}_{m} \rightarrow \mathbf{R}_{m}$, a constant vector $a \in \mathbb{R}_{m}$, a linear functional f on \mathbf{R}_{m}, and a constant $b \in \mathbf{R}$ such that

$$
\begin{equation*}
S(x)=\frac{\Psi(x)+a}{f(x)+b} \text { for all } x \in K \tag{2.1}
\end{equation*}
$$

and $f(x)+b$ is always positive on K. In particular, if $K=\mathbf{R}_{m}$, then f has to be zero.

Theorem 2.4. Let $m \geq 2$ and assume $C(T A)=T C(A)$ for all $A \in$ $M_{n m}$. The border operator $S: \mathbb{R}_{m} \rightarrow \mathbb{R}_{m}$, is a bijective linear operator. Also, T is bijective.

Proof. We break the proof into various steps.
Step 1. Claim: For any $x \in \mathbf{R}_{m}$, the ray $[0, S x \rightarrow):=\{t S x: t \geq 0\}$ is a subset of $S \mathbf{R}_{m}$. Fix $x \in \mathbf{R}_{m}$ and assume, if possible, the ray $[0, S x \rightarrow$) contains some point z not lying in the range of S. Choose $y \in \mathbb{R}_{m}$ such that $0, x, y$ are noncollinear. By Lemma 2.1, the points $0, S x, S y$ are noncollinear too. Let $\lambda \in(0,1)$ be such that $2^{-1} S y=S(\lambda y)$, and join the point $w=S(\lambda y)$ to the point z. Choose $u \in[w, z] \cap[S x, S y]$. Then $u=S v$ for some $v \in[y, x]$. (See Corollary 2.2.) Replacing z by $2 z$, if necessary, we can assume without loss of generality that the extension of $[\lambda y, v]$ intersects the extension of $[0, x]$ at some point r. In view of Corollary 2.2 , this means that $S r$ is equal to z; a contradiction.

Step 2. Claim: $S \mathbb{R}_{m}=\mathbf{R}_{m}$.
Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be the standard basis of \mathbf{R}_{m}, and choose j_{1}, \ldots, j_{k} such that $\left\{S e_{j_{1}}, \ldots, S e_{j_{k}}\right\}$ forms a basis for $<S e_{1}, S e_{2}, \ldots, S e_{m}>$. Assume $k<m$ and choose $j \in\{1,2, \ldots, m\} \backslash\left\{j_{1}, \ldots, j_{k}\right\}$. Then there exist real numbers c_{1}, \ldots, c_{k} such that $S e_{j}=c_{1} S e_{j_{1}}+\ldots+c_{k} S e_{j_{k}}$. In view of Step 1 and Corollary 2.2, if $0 \neq x \in \mathbf{R}_{m}$ and if $\eta>0$, then $-S x=S(-\mu x)$ and $\eta S x=S(\gamma x)$ for some positive numbers μ and γ. Hence, there exist real numbers $d, d_{1}, d_{2}, \ldots, d_{k}$ with $d \neq 0$ such that

$$
S\left(d e_{j}\right)=n^{-1} S e_{j}=n^{-1} S\left(d_{1} e_{j_{1}}\right)+\ldots+n^{-1} S\left(d_{k} e_{j_{k}}\right)
$$

Let $A, B \in M_{n m}$ be such that $R(A)=\left\{0, d_{1} e_{j_{1}}, \ldots, d_{k} e_{j_{k}}\right\}$ and $R(B)=$ $\left\{0, S\left(d_{1} e_{j_{1}}\right), \ldots, S\left(d_{k} e_{j_{k}}\right)\right\}$. Fix $i=1,2, \ldots, m$. Since $\left(d_{i} e_{j_{i}}\right)^{(n)} \prec A$, it follows that $T\left(d_{1} e_{j_{1}}\right)^{(n)} \prec T A$ and hence, in view of Corollary 2.2, the unique distinct row $S\left(d_{i} e_{j_{i}}\right)$ of $T\left(d_{i} e_{j_{i}}\right)^{(n)}$ is a convex combination of the rows of $T A$. Since $0 \prec A$ and $T 0=0$, it follows that $0_{1 \times m} \in \operatorname{co} R(T A)$ and hence, $B \prec T A$. Thus, $T\left(d e_{j}\right)^{(n)} \prec B \prec T A$, and hence, $\left(d e_{j}\right)^{n)} \prec A$. Therefore, $d e_{j}$ is a convex combination of $0, d_{1} e_{j_{1}}, \ldots, d_{k} e_{j_{k}}$; a contradiction. Thus $k=m$ and $S \mathbf{R}_{m}$ contains m (full) lines with linearly independent directions. (See Step 1 and Corollary 2.2.) Since $S \mathbf{R}_{m}$ is convex, $S \mathbf{R}_{m}=\mathbf{R}_{m}$.

Step 3. Claim: S is linear.
The proof follows from (2.1). Note that $K=\mathbf{R}_{m}$ and hence $f=0$ and $b>0$. Also, $b^{-1} a=b^{-1}(\Psi(0)+a)=S 0=0$. Thus $a=0$ and $S=b^{-1} \Psi$.

Step 4. Claim: There exists an invertible matrix K such that the mapping $T_{1}: M_{n m} \rightarrow M_{n m}$ defined by $T_{1} X=(T X) K$ satisfies the properties of T set in Definition 1.1 and Assumption 1.4. Moreover, if S_{1} is the border operator corresponding to T_{1}, then $S_{1}=I$.

Let $\varphi_{i}=S e_{i}$, where $\left\{e_{1}, \ldots, e_{m}\right\}$ is the standard basis for \mathbf{R}_{m}. Since S is linear and injective, it follows that $\left\{\varphi_{1}, \varphi_{2}, \ldots, \varphi_{m}\right\}$ is also a basis. Choose $K \in M_{m}$ such that $\varphi_{i} K=e_{i}$, for $i=1,2, \ldots, m$. It is easy to see that the mapping $T_{1} X=(T X) K$ satisfies the properties of T set in Definition 1.1 and Assumption 1.4. Moreover, $C\left(T_{1} A\right)=T_{1}(C(A))$ for all $A \in M_{n m}$. Also, $T_{1} e_{i}^{(n)}=\left(T e_{i}^{(n)}\right) K=\varphi_{i}^{(n)} K=e_{i}^{(n)}$ for $i=$ $1,2, \ldots, m$. Now, if S_{1} is the (linear) border operator corresponding to T_{1}, then $S_{1} e_{i}=e_{i}$ for $i=1,2, \ldots, n$ and hence, $S_{1}=I$.

Step 5. Claim: T is surjective.
Let T_{1} and S_{1} be as in the previous step. Let $Y \in M_{n m}$ be arbitrary and choose $Z \in M_{n m}$ such that $R(Z)=\operatorname{ext} \operatorname{co} R(Y)=\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$. Since $T_{1} z_{i}^{(n)}=z_{i}^{(n)} \prec Z$, it follows that $z_{i}^{(n)} \prec T_{1} Z$ and hence $z_{i} \in$ co $R\left(T_{1} Z\right)$, for $i=1,2, \ldots, k$. Then $Y \prec T_{1} Z$ and therefore, $Y=T_{1} U$ for some $U \in M_{n m}$. This proves that T_{1} and hence, T is surjective.

Corollary 2.5. If $T: M_{n m} \rightarrow M_{n m}$ is a surjective strong preserver of \prec for some $n \geq 2$, then S is linear.

Proof. In view of Lemma 1.3, T satisfies the conditions of the above theorem.

Example 2.6. Let $T: M_{11}=\mathbf{R}_{m} \rightarrow M_{1 m}=\mathbf{R}_{m}$ be any function. In this case $C(T A)=T(C(A))=\{T A\}$ for all $A \in M_{1 m}$. Also T defines a strong preserver of \prec on $M_{1 m}$ if and only if it is injective. So we assume T is injective. (Now, T may or may not be surjective.) Thus T and the corresponding border operator S are the same and hence, they need not be linear. Thus, when T is not linear, it cannot be equivalent to a linear one.

Proposition 2.7. Let $T: M_{n m} \rightarrow M_{n m}$ be a strong preserver of \prec such that $T 0=0$. Assume $K \in M_{m}$ is invertible. Define $T_{1}: M_{n m} \rightarrow M_{n m}$ by $T_{1} X=(T X) K$ for all $X \in M_{n m}$. Then T is linear if and only if T_{1} is linear. Moreover, T is equivalent to a strong preserver $\tau: M_{n m} \rightarrow M_{n m}$ if and only if T_{1} is equivalent to τ_{1} defined by $\tau_{1} X=[\tau(X)] K$ for all $X \in M_{n m}$.

The simple proof of Proposition 2.7 is omitted.
Example 2.8. Let $m \geq 2$ and choose $A \in M_{n m}$ such that \mid ext co $R(A) \mid \geq$ 2. Let $f:[A] \rightarrow[A]$ be an arbitrary bijective function satisfying
$f(A) \neq A$. Define $T: M_{n m} \rightarrow M_{n m}$ by $T X=f(X)$ for all $X \in[A]$, and $T X=X$, otherwise. Then T is a strong preserver of $\prec, T 0=0$, and $T x^{(n)}=x^{(n)}$ for all $x \in \mathbf{R}_{m}$. However, $T(2 A)=2 A \neq 2 T A$. That is, a strong preserver T of \prec satisfying $T 0=0$ need not be linear. The next theorem shows that any such T is equivalent to a linear one.

Theorem 2.9. Let $T: M_{n m} \rightarrow M_{n m}$ be a strong preserver of \prec. Then $T-T 0$ is equivalent to a linear strong preserver of \prec. In fact, there exists an invertible $K \in M_{m}$ such that $T X-T 0 \sim X K^{-1}$ for all $X \in M_{n m}$.

Proof. In view of Lemma 1.3(c), we assume without loss of generality that $T 0=0$. Letting K and T_{1} be as in Step 4 of the proof of Theorem 2.4, we have $T_{1} x^{(n)}=x^{(n)}$ for all $x \in \mathbf{R}_{m}$. By Lemma 2.1 and Proposition 2.7, $T_{1} X=X$ for all $X \in M_{n m}$ and hence, $T X \sim X K^{-1}$ for all $X \in M_{n m}$.

The following corollary is due to Hasani-Radjabalipour [8]. So is the alternative proof given below which is based on the results of the present paper.

Corollary 2.10. Let $m \geq 1$. For a linear strong preserver $T: M_{n m} \rightarrow$ $M_{n m}$ there exist a permutation matrix $P \in \mathcal{P}(n)$ and an invertible matrix $L \in M_{m}$ such that $T X=P X L$ for all $X \in M_{n m}$.

Proof. Assume without loss of generality that $m \geq 2$. Since T is assumed to be a linear mapping, it is clear that $T 0=0$. Also, by letting K and T_{1} to be as in Theorem 2.9, and replacing T by T_{1}, we can assume without loss of generality that $T x^{(n)}=x^{(n)}$ for all $x \in \mathbf{R}_{m}$ or, equivalently, $S=I$.

Fix $j=1,2, \ldots, m$. For $i=1,2, \ldots, n$, let $E_{i j}$ be the $n \times m$ matrix whose (r, s) entry is $\delta_{i r} \delta_{j s}$, for $r=1,2, \ldots, m$ and $s=1,2, \ldots, n$. By Theorem 2.8, $R\left(T E_{i j}\right)=\left\{0, e_{j}\right\}$. Since $\sum_{i=1}^{n} E_{i j}=e_{j}^{(n)}$, it follows that, for each i, there exists an integer $\sigma(i)$ (depending on j too) such that $T E_{i j}=E_{\sigma(i) j}$ and, if $i \neq k$, then $\sigma(i) \neq \sigma(k)$. Thus, there exists an $n \times n$ permutation matrix P_{j} such that $T E_{i j}=P_{j} E_{i j}$ for all $i=1,2, \ldots, n$ and $j=1,2, \ldots, m$.

We claim $P_{1}=P_{2}=\ldots=P_{m}$. If not, then $P_{r} \neq P_{s}$ for some $r \neq s$. Let $\left\{e_{1}, \ldots, e_{m}\right\}$ and $\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}$ be the standard bases for \mathbf{R}_{m} and \mathbb{R}_{n}, respectively. Hence, there exists i such that $P_{r} \varphi_{i} \neq P_{s} \varphi_{i}$.

Let $A=E_{i r}+E_{i s}$ and observe that $R(A)=\left\{0, e_{r}+e_{s}\right\}$. But $T A=$ $T E_{i r}+T E_{i s}=P_{r} E_{i r}+P_{s} E_{i s}$ and hence, $R(T A) \cup\{0\}=\left\{0, e_{r}, e_{s}\right\}$. Thus $\left\{0, e_{r}+e_{s}\right\}=\left\{0, e_{r}, e_{s}\right\}$; a contradiction. Hence, $T E_{i j}=P E_{i j}$ for all $i=1,2, \ldots, n$ and $j=1,2, \ldots, m$, where $P=P_{1}=\ldots=P_{m}$. Now, if $X=\left[x_{i j}\right] \in M_{n m}$, then

$$
\begin{gathered}
T X=T\left(\Sigma_{i, j} x_{i j} E_{i j}\right)=\Sigma_{i, j} x_{i j} T E_{i j}= \\
\Sigma_{i, j} x_{i j} P E_{i j}=P \Sigma_{i, j} x_{i j} E_{i j}=P X .
\end{gathered}
$$

References

[1] T. Ando, Majorization and inequalities in matrix theory, Linear Algebra Appl. 199 (1978), 17-67.
[2] L.B. Beasley, S.-G. Lee, Linear operators strongly preserving multivariate majorization with $T(I)=I$, Kyungpook Math. J. 39 (1999), 191-194.
[3] L.B. Beasley, and S.-G. Lee, Linear operators preserving Multivariate majorization, Linear Algebra Appl. 304 (2000), 141-159.
[4] L.B. Beasley, S.-G. Lee, and Y.-H. Lee, A characterization of strong preserves of matrix majorization, Linear Algebra Appl. 367 (2003), 341-346.
[5] J.V. Bondar, Comments and complements to: Inequalities: Theory of Majorization and its appl. by Albert W. Marshall and Ingram Olkin, Linear Algebra Appl. 199 (1994), 115-130.
[6] G.-S. Cheon, and Y.-H. Lee, The doubly stochastic matrices of a multivariate majorization, J. Kor. Math. Soc. 32 (1995), 857-867.
[7] G. Dahl, Matrix majorization, Linear Algebra Appl. 288 (1999), 53-73.
[8] A.M. Hasani, and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, Electronic Journal of Linear Algebra, $\mathbf{1 5}$ (2006), 260-268.
[9] A.M. Hasani and M. Radjabalipour, Linear preservers of matrix majorization, Int. J. Pure Appl. Math. (accepted).
[10] C.-K. Li, and E. Poon, Linear operators preserving directional majorization, Linear Algebra Appl. 325 (2001), 141-146.
[11] C.-K. Li, B.-S. Tam, and N.-K. Tsing, Linear maps preserving stochastic matrices, Linear Algebra Appl. 341 (2002), 5-22.
[12] A.W. Marshall, and I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic, New York, 1972.
[13] L. Molnar, Characterizations of automorphisms of Hilbert space effect algebras, Commun. Math. Physics 223 (2001), 437-450.
[14] Zs. Pales, Characterization of segment preserving maps, preprint.
M. Radjabalipour and P. Torabian

Department of Mathematics
University of Kerman
Kerman, Iran
e-mail: m_radjab@yahoo.com
e-mail: parisatorabian@yahoo.com

[^0]: MSC(2000): Primary 15A04,15A21,15A30
 Keywords: Row stochastic matrix, Weak matrix majorization, Nonlinear preserver, Linear preserver.
 Received: 29 October 2006 , Revised: 5 December 2006
 *Corresponding author
 (c) 2006 Iranian Mathematical Society.

