Bulletin of the Iranian Mathematical Society Vol. 32 No. 2 (2006), pp 21-30.

ON NONLINEAR PRESERVERS OF WEAK MATRIX MAJORIZATION

M. RADJABALIPOUR* AND P. TORABIAN

Communicated by Heydar Radjavi

ABSTRACT. For $X, Y \in M_{nm} (:= M_{nm}(\mathbb{R}))$, we say X is weakly matrix majorized or matrix majorized from the left by Y and write $X \prec_{\ell} Y$, if X = RY for some row stochastic matrix R. Also we write $X \sim_{\ell} Y$ if $X \prec_{\ell} Y \prec_{\ell} X$. A mapping $T : M_{nm} \to M_{nm}$ is said to be a strong preserver of \prec_{ℓ} , if $\{X \in M_{nm} : X \prec_{\ell} A\} = \{X \in$ $M_{nm} : TX \prec_{\ell} TA\}$ for all $A \in M_{nm}$. Two such strong preservers T and τ are called equivalent if $TX \sim_{\ell} \tau X$ for all $X \in M_{nm}$. It is shown that if $m \geq 2$ and if $T : M_{nm} \to M_{nm}$ is a surjective (not necessarily linear) strong preserver of \prec_{ℓ} , then T - T0 is equivalent to a linear strong preserver of \prec_{ℓ} .

1. Introduction

Throughout this paper the following notations are fixed. The real vector space of all $1 \times m$ (row) vectors are denoted by \mathbb{R}_m and the real linear space of all $n \times m$ matrices by M_{nm} , for any integers $n, m \geq 1$. For every $A \in M_{nm}$, $R(A) \subset \mathbb{R}_m$ will denote the set of all distinct rows of A. For every $x \in \mathbb{R}_m$, we let $x^{(n)}$ denote the $n \times m$ matrix such that $R(x^{(n)}) = \{x\}$. If $X, Y \in M_{nm}$, we say X is matrix majorized from the left or weakly matrix majorized by Y, and write $X \prec_{\ell} Y$, if the rows

MSC(2000): Primary 15A04,15A21,15A30

Keywords: Row stochastic matrix, Weak matrix majorization, Nonlinear preserver, Linear preserver.

Received: 29 October 2006, Revised: 5 December 2006

 $[*] Corresponding \ author$

 $[\]textcircled{C}$ 2006 Iranian Mathematical Society.

²¹

 X_1, \ldots, X_n of X and Y_1, \ldots, Y_n of Y satisfy $X_i = \sum_{j=1}^n r_{ij} Y_j$ for some nonnegative scalars r_{ij} such that $\sum_{j=1}^n r_{ij} = 1$ $(i, j = 1, 2, \ldots, n)$. The matrix $R = [r_{ij}]$ is called a row stochastic matrix and the relation $X \prec_{\ell} Y$ Can be illustrated as X = RY. We write $X \sim_{\ell} Y$ if $X \prec_{\ell} Y \prec_{\ell} X$. Also, we define $C(A) := \{X \in M_{nm} : X \prec_{\ell} A\}$ and $[A] := \{X \in M_{nm} : X \sim_{\ell} A\}$.

There is a right-sided type of matrix majorization \prec_r on M_{nm} defined by $X \prec_r Y$ whenever X = YR for some row stochastic matrix R depending on X and Y. In this paper, we deal only with the left-sided type and hence, for the remainder of the paper, we use the conventions \prec and \sim for \prec_{ℓ} and \sim_{ℓ} , respectively. Throughout the paper, the letter T stands for a mapping satisfying the conditions set in the following Definition 1.1.

Definition 1.1. A (not necessarily linear) mapping $T: M_{nm} \to M_{nm}$ is said to be a strong preserver of \prec , if $\{X \in M_{nm} : X \prec A\} = \{X \in M_{nm} : TX \prec TA\}$ for all $A \in M_{nm}$.

Definition 1.2. Two strong preservers T and τ of \prec on M_{nm} are said to be equivalent, if $TX \sim \tau X$ for all $X \in M_{nm}$.

The main result of the paper is to show that if $m \geq 2$ and if T: $M_{nm} \to M_{nm}$ is a surjective strong preserver of \prec , then the mapping $X \mapsto TX - T0$ is equivalent to a linear one. This extends results due to L.B. Beasley, S.-G. Lee and Y.-H. Lee [4] and A.M. Hasani and M. Radjabalipour [8]. Note that if T is a linear strong preserver, then it is injective and, hence, bijective [4,8,9]. Also, note that, if $T : \mathbb{R} \to \mathbb{R}$ is any function, then T is a strong preserver of \prec on $M_1 = \mathbb{R}$ but T - T0 is not equivalent to a linear one. For more information on matrix majorization and the previous work on this subject we also refer to [1-3], [5-7] and [10-12]. In particular, the authors of [8] show that Tis a linear strong preserver of \prec_{ℓ} if and only if there exist a permutation matrix P and an invertible matrix L in M_n such that TX = PXL for all $X \in M_n$. We will obtain this result as a byproduct of our investigations in the present paper.

The following lemma enables us to assume, without loss of generality, that T0 = 0.

Lemma 1.3. Let $T : M_{nm} \to M_{nm}$ be a strong preserver of \prec . Then the following assertions are true.

Nonlinear preservers of weak majorization

(a) Assume T is surjective. Then C(TA) = TC(A) for all $A \in M_{nm}$. (b) Assume C(TA) = TC(A) for all $A \in M_{nm}$. Then R(X) is a

(b) Assume C(TA) = TC(A) for all $A \in M_{nm}$. Then R(X) is a singleton if and only if R(TX) is a singleton.

(c) Assume C(TA) = TC(A) for all $A \in M_{nm}$. The mapping $T' : M_{nm} \to M_{nm}$ defined by T'X = TX - T0 for all $X \in M_{nm}$ is a strong preserver of \prec satisfying C(T'A) = T'C(A) for all $A \in M_{nm}$ and T'0 = 0.

Proof. (a) Let $A \in M_{nm}$. By definition, $TC(A) \subset C(TA)$. Now, let $Y \in C(TA)$. Then there exists $X \in M_{nm}$ such that Y = TX. Since $TX \prec TA$, $X \prec A$ and hence, $Y \in TC(A)$.

(b) The set R(A) is a singleton if and only if $C(A) = \{A\}$ if and only if $C(TA) = TC(A) = \{TA\}$ if and only if R(TA) is a singleton.

(c) By part (b), $R(T0) = \{a\}$ for some $(1 \times m \text{ row})$ vector $a \in \mathbb{R}_m$. Now, let $A, X \in M_{nm}$ and let B = TA and Y = TX. Let B_i, Y_i be the i^{th} rows of B and Y, respectively (i = 1, 2, ..., n). Then $X \in C(A)$ if and only if $Y = TX \in C(B)$ if and only if $Y_i = \mu_{i1}B_1 + ... + \mu_{in}B_n$ or, equivalently, $Y_i - a = \mu_{i1}(B_1 - a) + ... + \mu_{in}(B_n - a)$ for some nonnegative scalars μ_{ij} satisfying $\sum_{j=1}^n \mu_{ij} = 1$ (i, j = 1, 2, ..., n). The latter shows that $T'X = TX - T0 \prec TA - T0 = T'A$ and hence, T' is a strong preserver of matrix majorization which satisfies T'0 = 0. Now, if $Y \prec T'A$ for some $A \in M_{nm}$, then $Y \prec TA - T0$ or, equivalently, $Y + T0 \prec TA$. Then Y + T0 = TX for some $X \in M_{nm}$ and hence, Y = TX - T0 = T'X. Obviously, C(T'A) = T'C(A) for all $A \in M_{nm}$.

The converse of part (a) of Lemma 1.3 will be proven in Theorem 2.2. Throughout the remainder of the paper we impose the following assumption on T unless otherwise stated.

Assumption 1.4. T0 = 0.

We conclude this section by a technical lemma needed in the sequel. If W is a subset of a real vector space V, co W will denote the convex hull of W, and, if W is convex, ext W will denote the set of extreme points of W.

Lemma 1.5. Let $A \in M_{nm}$. Then the following assertions are true. (a) Up to the natural identification of the vector spaces M_{nm} and $(\mathbb{R}_m)^n$, $C(A) = (\operatorname{co} R(A))^n$. In particular, C(A) is a convex subset of M_{nm} . (b) ext $C(A) = (\text{ext co } R(A))^n$.

Proof. Part (a) is easy, and part (b) follows from the fact that $(\text{ext } W_1) \times \dots \times (\text{ext } W_k) = \text{ext } (W_1 \times \dots \times W_k)$, whenever W_1, \dots, W_k are convex subsets of the real vector spaces V_1, \dots, V_k , respectively.

2. Nonlinear preservers

In this section we study the structure of the surjective strong preservers of matrix majorization \prec which are not necessarily linear. We will show that if $m \geq 2$, such mappings are equivalent to linear ones.

We begin with a lemma which strengthens Lemma 1.3.

Lemma 2.1. Assume $T : M_{nm} \to M_{nm}$ is a strong preserver of \prec satisfying T0 = 0 and TC(A) = C(TA) for all $A \in M_{nm}$. Let $A \in M_{nm}$, let ext co $R(A) = \{x_1, x_2, \ldots, x_k\}$, and let $Tx_i^{(n)} = y_i^{(n)}$, $i = 1, 2, \ldots, k$, where, as before, $u^{(n)}$ denotes an $n \times m$ matrix whose rows are all equal to some $u \in \mathbb{R}_m$. Then ext co $R(TA) = \{y_1, y_2, \ldots, y_k\}$.

Proof. Define $S : \mathbb{R}_m \to \mathbb{R}_m$ by Sx = y, where $y^{(n)} = Tx^{(n)}$. Since $Tx^{(n)} = Ty^{(n)}$ if and only if $x^{(n)} = y^{(n)}$, it follows that S is an injective mapping whose range contains co R(TX) for all $X \in M_{nm}$. Assume $x \in \mathbf{R}_m$ is an extreme point of co R(A) and, if possible, y = Sx is not an extreme point of co R(TA). Then, there exists $u \neq v \in co R(TA)$ such that y = (u+v)/2. Let $B \in M_{nm}$ be any matrix such that R(B) = $\{u, v\}$. Since $B \prec TA$, there exists $D \prec A$ such that B = TD. Let $r = S^{-1}u$ and $s = S^{-1}v$. Then $\{x, r, s\} \subset R(D)$. Let $E, F, G \in C(D)$ be such that $R(E) = \{x, r\}, R(F) = \{x, s\}$ and $R(G) = \{r, s\}$. Then $\operatorname{co} R(TE) \supset [y, u], \operatorname{co} R(TF) \supset [y, v], \text{ and } \operatorname{co} R(TG) \supset [u, v], \text{ where } [a, b]$ denotes the closed line segment joining the vectors $a, b \in \mathbb{R}_m$. Replacing TE, TF, and TG by minor matrices having, respectively, $\{y, u\}, \{y, v\}, \{$ and $\{u, v\}$ as their exact collection of rows, one can easily see that E, Fand G have still the same collections $\{x, r\}, \{x, s\}$ and $\{r, s\}$ as their exact collections of rows, respectively. Thus, we can assume without loss of generality that $R(TE) = \{x, y\}, R(TF) = \{y, v\}$ and $R(TG) = \{u, v\}.$ This implies that S[x,r] = [y,u], S[x,s] = [y,v] and S[r,s] = [u,v]. If x, r, s form a nontrivial triangle, choose a point w in the interior of the triangle and observe that $w^{(n)} \prec D$ and hence $Tw^{(n)} \prec TD$ or, equivalently, $Sw \in [u, v]$, which implies that S is not injective; a Nonlinear preservers of weak majorization

contradiction. If x, r, s are collinear, then $[x, r] \cap [x, s] \setminus \{x\} \neq \emptyset$ which implies that S is multivalued; again a contradiction. Summing up, we have shown that $S(\text{ext co } R(A)) \subset \text{ext co } R(TA)$.

To prove the converse, assume y is an extreme point of co R(TA). Since $y^{(n)} \prec TA$, there exists $x \in \operatorname{co} R(A)$ such that $Tx^{(n)} = y^{(n)}$. We claim x is an extreme point of co R(A). If not, there exists $r, s \in$ co R(A) such that x = (r + s)/2. Assume without loss of generality that $R(A) = \{r, s\}$. Let $Tr^{(n)} = u^{(n)}$ and $Ts^{(n)} = v^{(n)}$. By the previous paragraph, u, v are extreme points of co R(TA) and, hence, y, u, v are noncollinear extreme points of co R(TA). By an argument similar to the one given for the first part, there exist matrices E, F and G such that co R(E) = [x, r], co R(F) = [x, s], co R(G) = [r, s], co R(TE) = [y, u], co R(TF) = [y, v], and co R(TG) = [u, v]. Choosing $t \in [x, r] \setminus \{x, r\}$, it follows that $t^{(n)} \prec E, t^{(n)} \prec G$ and hence, $Tt^{(n)} \in [y, u] \cap [u, v]$. Thus St = y, u, or v. Equivalently, t = x, r, or s; a contradiction.

Corollary 2.2. Let $S : \mathbb{R}_m \to \mathbb{R}_m$ be as in the proof of Lemma 2.1; i.e., $Tx^{(n)} = (Sx)^{(n)}$ for all $x \in \mathbb{R}_m$. Then S is injective and ext co R(TA) = S(ext co R(A)). In particular, if $m \ge 2$ and if x and y are distinct vectors in \mathbb{R}_m , then S((1-t)x + ty) = (1-f(t))Sx + f(t)Sy for some strictly increasing function f from [0, 1] onto [0, 1].

Definition 2.3. The operator $S : \mathbb{R}_m \to \mathbb{R}_m$ defined in Corollary 2.2 will be called the *border operator* corresponding to T.

In the proof of the next theorem, we will make use of the following version of a fact due to Zs. Pales [14] as interpreted by L. Molnar [13] : If K is a noncollinear convex set in \mathbb{R}_m and if $S: K \to K$ is a bijective mapping such that for any $x, y \in K$ and any $\lambda \in [0, 1]$, there exists $\mu \in [0, 1]$ satisfying $S(\lambda x + (1 - \lambda)y) = \mu S(x) + (1 - \mu)S(y)$, then there exist a linear operator $\Psi : \mathbb{R}_m \to \mathbb{R}_m$, a constant vector $a \in \mathbb{R}_m$, a linear functional f on \mathbb{R}_m , and a constant $b \in \mathbb{R}$ such that

$$S(x) = \frac{\Psi(x) + a}{f(x) + b} \quad \text{for all } x \in K,$$

$$(2.1)$$

and f(x) + b is always positive on K. In particular, if $K = \mathbb{R}_m$, then f has to be zero.

Theorem 2.4. Let $m \ge 2$ and assume C(TA) = TC(A) for all $A \in M_{nm}$. The border operator $S : \mathbb{R}_m \to \mathbb{R}_m$, is a bijective linear operator. Also, T is bijective.

Proof. We break the proof into various steps.

Step 1. Claim: For any $x \in \mathbb{R}_m$, the ray $[0, Sx \to) := \{tSx : t \ge 0\}$ is a subset of $S\mathbb{R}_m$. Fix $x \in \mathbb{R}_m$ and assume, if possible, the ray $[0, Sx \to)$ contains some point z not lying in the range of S. Choose $y \in \mathbb{R}_m$ such that 0, x, y are noncollinear. By Lemma 2.1, the points 0, Sx, Syare noncollinear too. Let $\lambda \in (0, 1)$ be such that $2^{-1}Sy = S(\lambda y)$, and join the point $w = S(\lambda y)$ to the point z. Choose $u \in [w, z] \cap [Sx, Sy]$. Then u = Sv for some $v \in [y, x]$. (See Corollary 2.2.) Replacing z by 2z, if necessary, we can assume without loss of generality that the extension of $[\lambda y, v]$ intersects the extension of [0, x] at some point r. In view of Corollary 2.2, this means that Sr is equal to z; a contradiction.

Step 2. Claim: $S\mathbb{R}_m = \mathbb{R}_m$.

Let $\{e_1, \ldots, e_m\}$ be the standard basis of \mathbb{R}_m , and choose j_1, \ldots, j_k such that $\{Se_{j_1}, \ldots, Se_{j_k}\}$ forms a basis for $\langle Se_1, Se_2, \ldots, Se_m \rangle$. Assume k < m and choose $j \in \{1, 2, \ldots, m\} \setminus \{j_1, \ldots, j_k\}$. Then there exist real numbers c_1, \ldots, c_k such that $Se_j = c_1Se_{j_1} + \ldots + c_kSe_{j_k}$. In view of Step 1 and Corollary 2.2, if $0 \neq x \in \mathbb{R}_m$ and if $\eta > 0$, then $-Sx = S(-\mu x)$ and $\eta Sx = S(\gamma x)$ for some positive numbers μ and γ . Hence, there exist real numbers d, d_1, d_2, \ldots, d_k with $d \neq 0$ such that

$$S(de_j) = n^{-1}Se_j = n^{-1}S(d_1e_{j_1}) + \ldots + n^{-1}S(d_ke_{j_k}).$$

Let $A, B \in M_{nm}$ be such that $R(A) = \{0, d_1e_{j_1}, \ldots, d_ke_{j_k}\}$ and $R(B) = \{0, S(d_1e_{j_1}), \ldots, S(d_ke_{j_k})\}$. Fix $i = 1, 2, \ldots, m$. Since $(d_ie_{j_i})^{(n)} \prec A$, it follows that $T(d_1e_{j_1})^{(n)} \prec TA$ and hence, in view of Corollary 2.2, the unique distinct row $S(d_ie_{j_i})$ of $T(d_ie_{j_i})^{(n)}$ is a convex combination of the rows of TA. Since $0 \prec A$ and T0 = 0, it follows that $0_{1\times m} \in \operatorname{co}R(TA)$ and hence, $B \prec TA$. Thus, $T(de_j)^{(n)} \prec B \prec TA$, and hence, $(de_j)^{n)} \prec A$. Therefore, de_j is a convex combination of $0, d_1e_{j_1}, \ldots, d_ke_{j_k}$; a contradiction. Thus k = m and $S\mathbb{R}_m$ contains m (full) lines with linearly independent directions. (See Step 1 and Corollary 2.2.) Since $S\mathbb{R}_m$ is convex, $S\mathbb{R}_m = \mathbb{R}_m$.

Step 3. Claim: S is linear.

The proof follows from (2.1). Note that $K = \mathbb{R}_m$ and hence f = 0 and b > 0. Also, $b^{-1}a = b^{-1}(\Psi(0) + a) = S0 = 0$. Thus a = 0 and $S = b^{-1}\Psi$.

Step 4. Claim: There exists an invertible matrix K such that the mapping $T_1 : M_{nm} \to M_{nm}$ defined by $T_1X = (TX)K$ satisfies the properties of T set in Definition 1.1 and Assumption 1.4. Moreover, if S_1 is the border operator corresponding to T_1 , then $S_1 = I$.

26

Nonlinear preservers of weak majorization

Let $\varphi_i = Se_i$, where $\{e_1, \ldots, e_m\}$ is the standard basis for \mathbb{R}_m . Since S is linear and injective, it follows that $\{\varphi_1, \varphi_2, \ldots, \varphi_m\}$ is also a basis. Choose $K \in M_m$ such that $\varphi_i K = e_i$, for $i = 1, 2, \ldots, m$. It is easy to see that the mapping $T_1 X = (TX)K$ satisfies the properties of T set in Definition 1.1 and Assumption 1.4. Moreover, $C(T_1A) = T_1(C(A))$ for all $A \in M_{nm}$. Also, $T_1 e_i^{(n)} = (Te_i^{(n)})K = \varphi_i^{(n)}K = e_i^{(n)}$ for $i = 1, 2, \ldots, m$. Now, if S_1 is the (linear) border operator corresponding to T_1 , then $S_1e_i = e_i$ for $i = 1, 2, \ldots, n$ and hence, $S_1 = I$.

Step 5. Claim: T is surjective.

Let T_1 and S_1 be as in the previous step. Let $Y \in M_{nm}$ be arbitrary and choose $Z \in M_{nm}$ such that $R(Z) = \text{ext co } R(Y) = \{z_1, z_2, \ldots, z_k\}$. Since $T_1 z_i^{(n)} = z_i^{(n)} \prec Z$, it follows that $z_i^{(n)} \prec T_1 Z$ and hence $z_i \in$ co $R(T_1 Z)$, for $i = 1, 2, \ldots, k$. Then $Y \prec T_1 Z$ and therefore, $Y = T_1 U$ for some $U \in M_{nm}$. This proves that T_1 and hence, T is surjective. \Box

Corollary 2.5. If $T: M_{nm} \to M_{nm}$ is a surjective strong preserver of \prec for some $n \geq 2$, then S is linear.

Proof. In view of Lemma 1.3, T satisfies the conditions of the above theorem.

Example 2.6. Let $T: M_{11} = \mathbb{R}_m \to M_{1m} = \mathbb{R}_m$ be any function. In this case $C(TA) = T(C(A)) = \{TA\}$ for all $A \in M_{1m}$. Also T defines a strong preserver of \prec on M_{1m} if and only if it is injective. So we assume T is injective. (Now, T may or may not be surjective.) Thus T and the corresponding border operator S are the same and hence, they need not be linear. Thus, when T is not linear, it cannot be equivalent to a linear one.

Proposition 2.7. Let $T: M_{nm} \to M_{nm}$ be a strong preserver of \prec such that T0 = 0. Assume $K \in M_m$ is invertible. Define $T_1: M_{nm} \to M_{nm}$ by $T_1X = (TX)K$ for all $X \in M_{nm}$. Then T is linear if and only if T_1 is linear. Moreover, T is equivalent to a strong preserver $\tau: M_{nm} \to M_{nm}$ if and only if T_1 is equivalent to τ_1 defined by $\tau_1X = [\tau(X)]K$ for all $X \in M_{nm}$.

The simple proof of Proposition 2.7 is omitted.

Example 2.8. Let $m \ge 2$ and choose $A \in M_{nm}$ such that $|\text{ext co } R(A)| \ge 2$. Let $f : [A] \to [A]$ be an arbitrary bijective function satisfying

 $f(A) \neq A$. Define $T: M_{nm} \to M_{nm}$ by TX = f(X) for all $X \in [A]$, and TX = X, otherwise. Then T is a strong preserver of \prec , T0 = 0, and $Tx^{(n)} = x^{(n)}$ for all $x \in \mathbb{R}_m$. However, $T(2A) = 2A \neq 2TA$. That is, a strong preserver T of \prec satisfying T0 = 0 need not be linear. The next theorem shows that any such T is equivalent to a linear one.

Theorem 2.9. Let $T: M_{nm} \to M_{nm}$ be a strong preserver of \prec . Then T-T0 is equivalent to a linear strong preserver of \prec . In fact, there exists an invertible $K \in M_m$ such that $TX - T0 \sim XK^{-1}$ for all $X \in M_{nm}$.

Proof. In view of Lemma 1.3(c), we assume without loss of generality that T0 = 0. Letting K and T_1 be as in Step 4 of the proof of Theorem 2.4, we have $T_1x^{(n)} = x^{(n)}$ for all $x \in \mathbb{R}_m$. By Lemma 2.1 and Proposition 2.7, $T_1X = X$ for all $X \in M_{nm}$ and hence, $TX \sim XK^{-1}$ for all $X \in M_{nm}$.

The following corollary is due to Hasani-Radjabalipour [8]. So is the alternative proof given below which is based on the results of the present paper.

Corollary 2.10. Let $m \ge 1$. For a linear strong preserver $T : M_{nm} \rightarrow M_{nm}$ there exist a permutation matrix $P \in \mathcal{P}(n)$ and an invertible matrix $L \in M_m$ such that TX = PXL for all $X \in M_{nm}$.

Proof. Assume without loss of generality that $m \ge 2$. Since T is assumed to be a linear mapping, it is clear that T0 = 0. Also, by letting K and T_1 to be as in Theorem 2.9, and replacing T by T_1 , we can assume without loss of generality that $Tx^{(n)} = x^{(n)}$ for all $x \in \mathbb{R}_m$ or, equivalently, S = I.

Fix $j = 1, 2, \ldots, m$. For $i = 1, 2, \ldots, n$, let E_{ij} be the $n \times m$ matrix whose (r, s) entry is $\delta_{ir}\delta_{js}$, for $r = 1, 2, \ldots, m$ and $s = 1, 2, \ldots, n$. By Theorem 2.8, $R(TE_{ij}) = \{0, e_j\}$. Since $\sum_{i=1}^{n} E_{ij} = e_j^{(n)}$, it follows that, for each *i*, there exists an integer $\sigma(i)$ (depending on *j* too) such that $TE_{ij} = E_{\sigma(i)j}$ and, if $i \neq k$, then $\sigma(i) \neq \sigma(k)$. Thus, there exists an $n \times n$ permutation matrix P_j such that $TE_{ij} = P_j E_{ij}$ for all $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, m$.

We claim $P_1 = P_2 = \ldots = P_m$. If not, then $P_r \neq P_s$ for some $r \neq s$. Let $\{e_1, \ldots, e_m\}$ and $\{\varphi_1, \ldots, \varphi_n\}$ be the standard bases for \mathbb{R}_m and \mathbb{R}_n , respectively. Hence, there exists *i* such that $P_r\varphi_i \neq P_s\varphi_i$.

Let $A = E_{ir} + E_{is}$ and observe that $R(A) = \{0, e_r + e_s\}$. But $TA = TE_{ir} + TE_{is} = P_rE_{ir} + P_sE_{is}$ and hence, $R(TA) \cup \{0\} = \{0, e_r, e_s\}$. Thus $\{0, e_r + e_s\} = \{0, e_r, e_s\}$; a contradiction. Hence, $TE_{ij} = PE_{ij}$ for all $i = 1, 2, \ldots, n$ and $j = 1, 2, \ldots, m$, where $P = P_1 = \ldots = P_m$. Now, if $X = [x_{ij}] \in M_{nm}$, then

$$TX = T(\Sigma_{i,j}x_{ij}E_{ij}) = \Sigma_{i,j}x_{ij}TE_{ij} = \Sigma_{i,j}x_{ij}PE_{ij} = P\Sigma_{i,j}x_{ij}E_{ij} = PX.$$

References

- T. Ando, Majorization and inequalities in matrix theory, *Linear Algebra Appl.* 199 (1978), 17-67.
- [2] L.B. Beasley, S.-G. Lee, Linear operators strongly preserving multivariate majorization with T(I) = I, Kyungpook Math. J. **39** (1999), 191-194.
- [3] L.B. Beasley, and S.-G. Lee, Linear operators preserving Multivariate majorization, *Linear Algebra Appl.* **304** (2000), 141-159.
- [4] L.B. Beasley, S.-G. Lee, and Y.-H. Lee, A characterization of strong preserves of matrix majorization, *Linear Algebra Appl.* 367 (2003), 341-346.
- [5] J.V. Bondar, Comments and complements to: Inequalities: Theory of Majorization and its appl. by Albert W. Marshall and Ingram Olkin, *Linear Algebra Appl.* 199 (1994), 115-130.
- [6] G.-S. Cheon, and Y.-H. Lee, The doubly stochastic matrices of a multivariate majorization, J. Kor. Math. Soc. 32 (1995), 857-867.
- [7] G. Dahl, Matrix majorization, *Linear Algebra Appl.* 288 (1999), 53-73.
- [8] A.M. Hasani, and M. Radjabalipour, The structure of linear operators strongly preserving majorizations of matrices, *Electronic Journal of Linear Algebra*, 15 (2006), 260-268.
- [9] A.M. Hasani and M. Radjabalipour, Linear preservers of matrix majorization, Int. J. Pure Appl. Math. (accepted).
- [10] C.-K. Li, and E. Poon, Linear operators preserving directional majorization, *Linear Algebra Appl.* **325** (2001), 141-146.
- [11] C.-K. Li, B.-S. Tam, and N.-K. Tsing, Linear maps preserving stochastic matrices, *Linear Algebra Appl.* 341 (2002), 5-22.
- [12] A.W. Marshall, and I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic, New York, 1972.
- [13] L. Molnar, Characterizations of automorphisms of Hilbert space effect algebras, Commun. Math. Physics 223 (2001), 437-450.
- [14] Zs. Pales, Characterization of segment preserving maps, preprint.

M. Radjabali
pour and P. Torabian $% \mathcal{A} = \mathcal{A} = \mathcal{A}$

Department of Mathematics University of Kerman

Kerman, Iran

e-mail: m_radjab@yahoo.com

e-mail: parisatorabian@yahoo.com

30