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ON NONLINEAR PRESERVERS OF WEAK MATRIX
MAJORIZATION

M. RADJABALIPOUR* AND P. TORABIAN

Communicated by Heydar Radjavi

Abstract. For X, Y ∈ Mnm(:= Mnm(R)), we say X is weakly
matrix majorized or matrix majorized from the left by Y and write
X ≺` Y , if X = RY for some row stochastic matrix R. Also we
write X ∼` Y if X ≺` Y ≺` X. A mapping T : Mnm → Mnm is
said to be a strong preserver of ≺`, if {X ∈ Mnm : X ≺` A} = {X ∈
Mnm : TX ≺` TA} for all A ∈ Mnm. Two such strong preservers
T and τ are called equivalent if TX ∼` τX for all X ∈ Mnm. It is
shown that if m ≥ 2 and if T : Mnm → Mnm is a surjective (not
necessarily linear) strong preserver of ≺`, then T −T0 is equivalent
to a linear strong preserver of ≺`.

1. Introduction

Throughout this paper the following notations are fixed. The real
vector space of all 1×m (row) vectors are denoted by Rm and the real
linear space of all n × m matrices by Mnm, for any integers n, m ≥ 1.
For every A ∈ Mnm, R(A) ⊂ Rm will denote the set of all distinct rows
of A. For every x ∈ Rm, we let x(n) denote the n×m matrix such that
R(x(n)) = {x}. If X, Y ∈ Mnm, we say X is matrix majorized from the
left or weakly matrix majorized by Y , and write X ≺` Y , if the rows
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X1, . . . , Xn of X and Y1, . . . , Yn of Y satisfy Xi = Σn
j=1rijYj for some

nonnegative scalars rij such that Σn
j=1rij = 1 (i, j = 1, 2, . . . , n). The

matrix R = [rij ] is called a row stochastic matrix and the relation X ≺`

Y can be illustrated as X = RY . We write X ∼` Y if X ≺` Y ≺` X.
Also, we define C(A) := {X ∈ Mnm : X ≺` A} and [A] := {X ∈ Mnm :
X ∼` A}.

There is a right-sided type of matrix majorization ≺r on Mnm de-
fined by X ≺r Y whenever X = Y R for some row stochastic matrix R
depending on X and Y . In this paper, we deal only with the left-sided
type and hence, for the remainder of the paper, we use the conventions
≺ and ∼ for ≺` and ∼`, respectively. Throughout the paper, the letter
T stands for a mapping satisfying the conditions set in the following
Definition 1.1.

Definition 1.1. A (not necessarily linear) mapping T : Mnm → Mnm

is said to be a strong preserver of ≺, if {X ∈ Mnm : X ≺ A} = {X ∈
Mnm : TX ≺ TA} for all A ∈ Mnm.

Definition 1.2. Two strong preservers T and τ of ≺ on Mnm are said
to be equivalent, if TX ∼ τX for all X ∈ Mnm.

The main result of the paper is to show that if m ≥ 2 and if T :
Mnm → Mnm is a surjective strong preserver of ≺, then the mapping
X 7→ TX − T0 is equivalent to a linear one. This extends results due
to L.B. Beasley, S.-G. Lee and Y.-H. Lee [4] and A.M. Hasani and M.
Radjabalipour [8]. Note that if T is a linear strong preserver, then it
is injective and, hence, bijective [4,8,9]. Also, note that, if T : R → R
is any function, then T is a strong preserver of ≺ on M1 = R but
T − T0 is not equivalent to a linear one. For more information on
matrix majorization and the previous work on this subject we also refer
to [1-3], [5-7] and [10-12]. In particular, the authors of [8] show that T
is a linear strong preserver of ≺` if and only if there exist a permutation
matrix P and an invertible matrix L in Mn such that TX = PXL for all
X ∈ Mn. We will obtain this result as a byproduct of our investigations
in the present paper.

The following lemma enables us to assume, without loss of generality,
that T0 = 0.

Lemma 1.3. Let T : Mnm → Mnm be a strong preserver of ≺. Then
the following assertions are true.
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(a) Assume T is surjective. Then C(TA) = TC(A) for all A ∈ Mnm.
(b) Assume C(TA) = TC(A) for all A ∈ Mnm. Then R(X) is a

singleton if and only if R(TX) is a singleton.
(c) Assume C(TA) = TC(A) for all A ∈ Mnm. The mapping T ′ :

Mnm → Mnm defined by T ′X = TX − T0 for all X ∈ Mnm is a strong
preserver of ≺ satisfying C(T ′A) = T ′C(A) for all A ∈ Mnm and T ′0 =
0.

Proof. (a) Let A ∈ Mnm. By definition, TC(A) ⊂ C(TA). Now, let
Y ∈ C(TA). Then there exists X ∈ Mnm such that Y = TX. Since
TX ≺ TA, X ≺ A and hence, Y ∈ TC(A).

(b) The set R(A) is a singleton if and only if C(A) = {A} if and only
if C(TA) = TC(A) = {TA} if and only if R(TA) is a singleton.

(c) By part (b), R(T0) = {a} for some (1 ×m row) vector a ∈ Rm.
Now, let A,X ∈ Mnm and let B = TA and Y = TX. Let Bi, Yi be the
ith rows of B and Y , respectively (i = 1, 2, . . . , n). Then X ∈ C(A) if
and only if Y = TX ∈ C(B) if and only if Yi = µi1B1 + . . . + µinBn

or, equivalently, Yi − a = µi1(B1 − a) + . . . + µin(Bn − a) for some
nonnegative scalars µij satisfying Σn

j=1µij = 1 (i, j = 1, 2, . . . , n). The
latter shows that T ′X = TX − T0 ≺ TA − T0 = T ′A and hence, T ′ is
a strong preserver of matrix majorization which satisfies T ′0 = 0. Now,
if Y ≺ T ′A for some A ∈ Mnm, then Y ≺ TA − T0 or, equivalently,
Y + T0 ≺ TA. Then Y + T0 = TX for some X ∈ Mnm and hence, Y =
TX − T0 = T ′X. Obviously, C(T ′A) = T ′C(A) for all A ∈ Mnm. �

The converse of part (a) of Lemma 1.3 will be proven in Theorem
2.2. Throughout the remainder of the paper we impose the following
assumption on T unless otherwise stated.

Assumption 1.4. T0 = 0.

We conclude this section by a technical lemma needed in the sequel.
If W is a subset of a real vector space V, co W will denote the convex
hull of W , and, if W is convex, ext W will denote the set of extreme
points of W .

Lemma 1.5. Let A ∈ Mnm. Then the following assertions are true.
(a) Up to the natural identification of the vector spaces Mnm and

(Rm)n, C(A) = (co R(A))n. In particular, C(A) is a convex subset of
Mnm.
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(b) ext C(A) = (ext co R(A))n.
Proof. Part (a) is easy, and part (b) follows from the fact that (ext W1)×
. . .× (ext Wk) = ext (W1× . . .×Wk), whenever W1, . . . , Wk are convex
subsets of the real vector spaces V1, . . . , Vk, respectively. �

2. Nonlinear preservers

In this section we study the structure of the surjective strong pre-
servers of matrix majorization ≺ which are not necessarily linear. We
will show that if m ≥ 2, such mappings are equivalent to linear ones.

We begin with a lemma which strengthens Lemma 1.3.

Lemma 2.1. Assume T : Mnm → Mnm is a strong preserver of ≺
satisfying T0 = 0 and TC(A) = C(TA) for all A ∈ Mnm. Let A ∈ Mnm,
let ext co R(A) = {x1, x2, . . . , xk}, and let Tx

(n)
i = y

(n)
i , i = 1, 2, . . . , k,

where, as before, u(n) denotes an n×m matrix whose rows are all equal
to some u ∈ Rm. Then ext co R(TA) = {y1, y2, . . . , yk}.

Proof. Define S : Rm → Rm by Sx = y, where y(n) = Tx(n). Since
Tx(n) = Ty(n) if and only if x(n) = y(n), it follows that S is an injective
mapping whose range contains co R(TX) for all X ∈ Mnm. Assume
x ∈ Rm is an extreme point of co R(A) and, if possible, y = Sx is not
an extreme point of co R(TA). Then, there exists u 6= v ∈ co R(TA)
such that y = (u+v)/2. Let B ∈ Mnm be any matrix such that R(B) =
{u, v}. Since B ≺ TA, there exists D ≺ A such that B = TD. Let
r = S−1u and s = S−1v. Then {x, r, s} ⊂ R(D). Let E,F, G ∈ C(D)
be such that R(E) = {x, r}, R(F ) = {x, s} and R(G) = {r, s}. Then
co R(TE) ⊃ [y, u], co R(TF ) ⊃ [y, v], and co R(TG) ⊃ [u, v], where [a, b]
denotes the closed line segment joining the vectors a, b ∈ Rm. Replacing
TE, TF , and TG by minor matrices having, respectively, {y, u}, {y, v},
and {u, v} as their exact collection of rows, one can easily see that E,F
and G have still the same collections {x, r}, {x, s} and {r, s} as their
exact collections of rows, respectively. Thus, we can assume without loss
of generality that R(TE) = {x, y}, R(TF ) = {y, v} and R(TG) = {u, v}.
This implies that S[x, r] = [y, u], S[x, s] = [y, v] and S[r, s] = [u, v].
If x, r, s form a nontrivial triangle, choose a point w in the interior
of the triangle and observe that w(n) ≺ D and hence Tw(n) ≺ TD
or, equivalently, Sw ∈ [u, v], which implies that S is not injective; a
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contradiction. If x, r, s are collinear, then [x, r] ∩ [x, s]\{x} 6= ∅ which
implies that S is multivalued; again a contradiction. Summing up, we
have shown that S(ext co R(A)) ⊂ ext co R(TA).

To prove the converse, assume y is an extreme point of co R(TA).
Since y(n) ≺ TA, there exists x ∈ co R(A) such that Tx(n) = y(n).
We claim x is an extreme point of co R(A). If not, there exists r, s ∈
co R(A) such that x = (r + s)/2. Assume without loss of generality
that R(A) = {r, s}. Let Tr(n) = u(n) and Ts(n) = v(n). By the previous
paragraph, u, v are extreme points of co R(TA) and, hence, y, u, v are
noncollinear extreme points of co R(TA). By an argument similar to the
one given for the first part, there exist matrices E,F and G such that
co R(E) = [x, r], co R(F ) = [x, s], co R(G) = [r, s], co R(TE) = [y, u],
co R(TF ) = [y, v], and co R(TG) = [u, v]. Choosing t ∈ [x, r]\{x, r}, it
follows that t(n) ≺ E, t(n) ≺ G and hence, Tt(n) ∈ [y, u] ∩ [u, v]. Thus
St = y, u, or v. Equivalently, t = x, r, or s; a contradiction. �

Corollary 2.2. Let S : Rm → Rm be as in the proof of Lemma 2.1; i.e.,
Tx(n) = (Sx)(n) for all x ∈ Rm. Then S is injective and ext co R(TA) =
S(ext co R(A)). In particular, if m ≥ 2 and if x and y are distinct
vectors in Rm, then S((1− t)x + ty) = (1− f(t))Sx + f(t)Sy for some
strictly increasing function f from [0, 1] onto [0, 1].

Definition 2.3. The operator S : Rm → Rm defined in Corollary 2.2
will be called the border operator corresponding to T .

In the proof of the next theorem, we will make use of the following
version of a fact due to Zs. Pales [14] as interpreted by L. Molnar [13] :
If K is a noncollinear convex set in Rm and if S : K → K is a bijective
mapping such that for any x, y ∈ K and any λ ∈ [0, 1], there exists
µ ∈ [0, 1] satisfying S(λx + (1− λ)y) = µS(x) + (1− µ)S(y), then there
exist a linear operator Ψ : Rm → Rm, a constant vector a ∈ Rm, a
linear functional f on Rm, and a constant b ∈ R such that

S(x) =
Ψ(x) + a

f(x) + b
for all x ∈ K, (2.1)

and f(x) + b is always positive on K. In particular, if K = Rm, then f
has to be zero.

Theorem 2.4. Let m ≥ 2 and assume C(TA) = TC(A) for all A ∈
Mnm. The border operator S : Rm → Rm, is a bijective linear operator.
Also, T is bijective.
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Proof. We break the proof into various steps.
Step 1. Claim: For any x ∈ Rm, the ray [0, Sx →) := {tSx : t ≥ 0}

is a subset of SRm. Fix x ∈ Rm and assume, if possible, the ray [0, Sx →
) contains some point z not lying in the range of S. Choose y ∈ Rm

such that 0, x, y are noncollinear. By Lemma 2.1, the points 0, Sx, Sy
are noncollinear too. Let λ ∈ (0, 1) be such that 2−1Sy = S(λy), and
join the point w = S(λy) to the point z. Choose u ∈ [w, z] ∩ [Sx, Sy].
Then u = Sv for some v ∈ [y, x]. (See Corollary 2.2.) Replacing z by 2z,
if necessary, we can assume without loss of generality that the extension
of [λy, v] intersects the extension of [0, x] at some point r. In view of
Corollary 2.2, this means that Sr is equal to z; a contradiction.

Step 2. Claim: SRm = Rm.
Let {e1, . . . , em} be the standard basis of Rm, and choose j1, . . . , jk

such that {Sej1 , . . . , Sejk
} forms a basis for < Se1, Se2, . . . , Sem >.

Assume k < m and choose j ∈ {1, 2, . . . , m}\{j1, . . . , jk}. Then there
exist real numbers c1, . . . , ck such that Sej = c1Sej1 + . . . + ckSejk

. In
view of Step 1 and Corollary 2.2, if 0 6= x ∈ Rm and if η > 0, then
−Sx = S(−µx) and ηSx = S(γx) for some positive numbers µ and γ.
Hence, there exist real numbers d, d1, d2, . . . , dk with d 6= 0 such that

S(dej) = n−1Sej = n−1S(d1ej1) + . . . + n−1S(dkejk
).

Let A,B ∈ Mnm be such that R(A) = {0, d1ej1 , . . . , dkejk
} and R(B) =

{0, S(d1ej1), . . . , S(dkejk
)}. Fix i = 1, 2, . . . , m. Since (dieji)

(n) ≺ A,
it follows that T (d1ej1)

(n) ≺ TA and hence, in view of Corollary 2.2,
the unique distinct row S(dieji) of T (dieji)

(n) is a convex combina-
tion of the rows of TA. Since 0 ≺ A and T0 = 0, it follows that
01×m ∈ coR(TA) and hence, B ≺ TA. Thus, T (dej)(n) ≺ B ≺ TA,
and hence, (dej)n) ≺ A. Therefore, dej is a convex combination of
0, d1ej1 , . . . , dkejk

; a contradiction. Thus k = m and SRm contains m
(full) lines with linearly independent directions. (See Step 1 and Corol-
lary 2.2.) Since SRm is convex, SRm = Rm.

Step 3. Claim: S is linear.
The proof follows from (2.1). Note that K = Rm and hence f = 0

and b > 0. Also, b−1a = b−1(Ψ(0) + a) = S0 = 0. Thus a = 0 and
S = b−1Ψ.

Step 4. Claim: There exists an invertible matrix K such that the
mapping T1 : Mnm → Mnm defined by T1X = (TX)K satisfies the
properties of T set in Definition 1.1 and Assumption 1.4. Moreover, if
S1 is the border operator corresponding to T1, then S1 = I.
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Let ϕi = Sei, where {e1, . . . , em} is the standard basis for Rm. Since
S is linear and injective, it follows that {ϕ1, ϕ2, . . . , ϕm} is also a basis.
Choose K ∈ Mm such that ϕiK = ei, for i = 1, 2, . . . , m. It is easy to
see that the mapping T1X = (TX)K satisfies the properties of T set
in Definition 1.1 and Assumption 1.4. Moreover, C(T1A) = T1(C(A))
for all A ∈ Mnm. Also, T1e

(n)
i = (Te

(n)
i )K = ϕ

(n)
i K = e

(n)
i for i =

1, 2, . . . , m. Now, if S1 is the (linear) border operator corresponding to
T1, then S1ei = ei for i = 1, 2, . . . , n and hence, S1 = I.

Step 5. Claim: T is surjective.
Let T1 and S1 be as in the previous step. Let Y ∈ Mnm be arbitrary

and choose Z ∈ Mnm such that R(Z) = ext co R(Y ) = {z1, z2, . . . , zk}.
Since T1z

(n)
i = z

(n)
i ≺ Z, it follows that z

(n)
i ≺ T1Z and hence zi ∈

co R(T1Z), for i = 1, 2, . . . , k. Then Y ≺ T1Z and therefore, Y = T1U
for some U ∈ Mnm. This proves that T1 and hence, T is surjective.2

Corollary 2.5. If T : Mnm → Mnm is a surjective strong preserver of
≺ for some n ≥ 2, then S is linear.

Proof. In view of Lemma 1.3, T satisfies the conditions of the above
theorem. �

Example 2.6. Let T : M11 = Rm → M1m = Rm be any function. In
this case C(TA) = T (C(A)) = {TA} for all A ∈ M1m. Also T defines a
strong preserver of ≺ on M1m if and only if it is injective. So we assume
T is injective. (Now, T may or may not be surjective.) Thus T and the
corresponding border operator S are the same and hence, they need not
be linear. Thus, when T is not linear, it cannot be equivalent to a linear
one.

Proposition 2.7. Let T : Mnm → Mnm be a strong preserver of ≺ such
that T0 = 0. Assume K ∈ Mm is invertible. Define T1 : Mnm → Mnm

by T1X = (TX)K for all X ∈ Mnm. Then T is linear if and only if T1 is
linear. Moreover, T is equivalent to a strong preserver τ : Mnm → Mnm

if and only if T1 is equivalent to τ1 defined by τ1X = [τ(X)]K for all
X ∈ Mnm.

The simple proof of Proposition 2.7 is omitted.

Example 2.8. Let m ≥ 2 and choose A ∈ Mnm such that |ext co R(A)| ≥
2. Let f : [A] → [A] be an arbitrary bijective function satisfying
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f(A) 6= A. Define T : Mnm → Mnm by TX = f(X) for all X ∈ [A], and
TX = X, otherwise. Then T is a strong preserver of ≺, T0 = 0, and
Tx(n) = x(n) for all x ∈ Rm. However, T (2A) = 2A 6= 2TA. That is, a
strong preserver T of ≺ satisfying T0 = 0 need not be linear. The next
theorem shows that any such T is equivalent to a linear one.

Theorem 2.9. Let T : Mnm → Mnm be a strong preserver of ≺. Then
T−T0 is equivalent to a linear strong preserver of ≺. In fact, there exists
an invertible K ∈ Mm such that TX − T0 ∼ XK−1 for all X ∈ Mnm.

Proof. In view of Lemma 1.3(c), we assume without loss of generality
that T0 = 0. Letting K and T1 be as in Step 4 of the proof of Theorem
2.4, we have T1x

(n) = x(n) for all x ∈ Rm. By Lemma 2.1 and Propo-
sition 2.7, T1X = X for all X ∈ Mnm and hence, TX ∼ XK−1 for all
X ∈ Mnm. �

The following corollary is due to Hasani-Radjabalipour [8]. So is the
alternative proof given below which is based on the results of the present
paper.

Corollary 2.10. Let m ≥ 1. For a linear strong preserver T : Mnm →
Mnm there exist a permutation matrix P ∈ P(n) and an invertible matrix
L ∈ Mm such that TX = PXL for all X ∈ Mnm.

Proof. Assume without loss of generality that m ≥ 2. Since T is
assumed to be a linear mapping, it is clear that T0 = 0. Also, by letting
K and T1 to be as in Theorem 2.9, and replacing T by T1, we can
assume without loss of generality that Tx(n) = x(n) for all x ∈ Rm or,
equivalently, S = I.

Fix j = 1, 2, . . . , m. For i = 1, 2, . . . , n, let Eij be the n ×m matrix
whose (r, s) entry is δirδjs, for r = 1, 2, . . . , m and s = 1, 2, . . . , n. By
Theorem 2.8, R(TEij) = {0, ej}. Since Σn

i=1Eij = e
(n)
j , it follows that,

for each i, there exists an integer σ(i) (depending on j too) such that
TEij = Eσ(i)j and, if i 6= k, then σ(i) 6= σ(k). Thus, there exists an n×n
permutation matrix Pj such that TEij = PjEij for all i = 1, 2, . . . , n
and j = 1, 2, . . . , m.

We claim P1 = P2 = . . . = Pm. If not, then Pr 6= Ps for some
r 6= s. Let {e1, . . . , em} and {ϕ1, . . . , ϕn} be the standard bases for
Rm and Rn, respectively. Hence, there exists i such that Prϕi 6= Psϕi.
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Let A = Eir + Eis and observe that R(A) = {0, er + es}. But TA =
TEir + TEis = PrEir + PsEis and hence, R(TA) ∪ {0} = {0, er, es}.
Thus {0, er + es} = {0, er, es}; a contradiction. Hence, TEij = PEij for
all i = 1, 2, . . . , n and j = 1, 2, . . . , m, where P = P1 = . . . = Pm. Now,
if X = [xij ] ∈ Mnm, then

TX = T (Σi,jxijEij) = Σi,jxijTEij =

Σi,jxijPEij = PΣi,jxijEij = PX.

�
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