Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 4, pp. 987-997

Title:

Polynomial evaluation groupoids and their groups
Author(s):

> P. J. Allen, H. S. Kim and J. Neggers

Published by Iranian Mathematical Society

POLYNOMIAL EVALUATION GROUPOIDS AND THEIR GROUPS

P. J. ALLEN, H. S. KIM* AND J. NEGGERS

(Communicated by Jamshid Moori)

Abstract

In this paper we show how certain metabelian groups can be found within polynomial evaluation groupoids. Keywords: polynomial evaluation groupoid, group evaluation polynomial, group. MSC(2010): Primary: 20D99; Secondary: 20F99.

1. Introduction

Let R be a commutative ring with an identity, and let $P(x, y)$ be a two variable polynomial with coefficients in R. When $a, b \in R$, we let $a * b=P(a, b)$ denotes the binary operation obtained by evaluating the polynomial $P(x, y)$ at the point (a, b). Then $(R, *)$ is a binary system that we call a polynomial evaluation groupoid. When G is a finite group of order n, the authors in the article [1] presented a proof that there exists a two variables polynomial $P(x, y)$ of degree at most $2 n$ with coefficients in a field R such that the polynomial evaluation groupoid $(R, *)$ would have a subsystem isomorphic to the group G. However, the proof in [1] does not yield a method for finding polynomials $P(x, y)$ of lower degree than $2 n$ and having group G in $(R, *)$. It was also demonstrated in [1] that the dihedral group D_{p} of order $2 p$, where $p>2$ is prime, could be found within the polynomial evaluation $\operatorname{groupoid}(R, *)$ when R is the Galois field $G F\left(p^{2}\right)$ and $P(x, y)=x+y+x y+x y^{p}$.

2. Polynomial evaluation groupoid

In this article, R will denote a commutative ring with an identity 1 , and $\mathbb{U}(R)$ will denote the unit group in R . Moreover, we always assume that R has finite characteristic $p>0$. Let f be a polynomial with coefficients in R where

[^0]$f: R \rightarrow \mathbb{U}(R) \cup\{0\}$. Obviously, such polynomials always exist. We then define the polynomial $P(x, y) \in R[x, y]$ in two variables by
$$
P(x, y)=y+x f(y)
$$

We use the binary operation $*: R \times R \rightarrow R$ defined by

$$
a * b=P(a, b)
$$

to construct a polynomial evaluation groupoid $(R, *)$.
Lemma 2.1. (The Associativity Lemma) Let G be a subset of R where G contains at least one unit of R. Then * is associative on the set G if and only if $f(y * z)=f(y) f(z)$ for all y and z in G.

Proof. Suppose that $f(y * z)=f(y) f(z)$ for $x, y \in G$. If $x, y, z \in G$ we have

$$
\begin{aligned}
x *(y * z) & =(y * z)+x f(y * z) \\
& =z+y f(z)+x f(y) f(z) \\
& =z+(y+x f(y)) f(z) \\
& =z+(x * y) f(z) \\
& =(x * y) * z
\end{aligned}
$$

and it follows that $*$ is associative on G.
On the other hand, suppose that $*$ is associative on G. Then, if $x, y, z \in G$, we have

$$
\begin{aligned}
z+y f(z)+x f(y * z) & =(y * z)+x f(y * z) \\
& =x *(y * z) \\
& =(x * y) * z \\
& =z+(x * y) f(z) \\
& =z+(y+x f(y)) f(z) \\
& =z+y f(z)+x f(y) f(z)
\end{aligned}
$$

After canceling similar terms in the above equation, we obtain

$$
x f(y * z)=x f(y) f(z)
$$

or equivalently,

$$
\begin{equation*}
x[f(y * z)-f(y) f(z)]=0 \tag{2.1}
\end{equation*}
$$

Since G contains a unit element, we may select x in equation 2.1 to be a unit without affecting the values of $f(y * z), f(y)$ and $f(z)$. Consequently, equation 2.1 must imply that $f(y * z)-f(y) f(z)=0$ for all $y, z \in R$.

Theorem 2.2. Let R denote a commutative ring with identity having finite characteristic $p>0$. Let f be a polynomial with coefficients in R where f : $R \rightarrow \mathbb{U}(R) \cup\{0\}$, and let $G=\{x \in R \mid f(x) \neq 0\}$. If $f(y * z)=f(y) f(z)$ for all $y, z \in G$, then $G=(G, *)$ is a group that is contained in the polynomial evaluation groupoid $(R, *)$.
Proof. (Closure) Let $x, y \in G$. By definition, $f: R \rightarrow \mathbb{U}(R) \cup\{0\}$, so $f(x)$ and $f(y)$ must be units in R, and their product $f(x) f(y)$ must also be a unit in R. Consequently

$$
f(x * y)=f(x) f(y) \neq 0
$$

Therefore $x * y \in G$.
(Associativity) The Associativity Lemma immediately implies that $x *(y * z)=$ $(x * y) * z$ for all $x, y, z \in G$.
(Left Identity) The following shows that $0 \in G$ is a left identity for every $y \in G$.

$$
0 * y=y+0 f(y)=y+0=y
$$

(Left Inverse) Let $y \in G$. Therefore, $f(y) \neq 0$ in the commutative ring R of characteristic p, and it follows that $f(y)^{-1}=\frac{1}{f(y)}$ exists since $f(y)$ is a unit in R. Let

$$
y_{L}^{-1}=\frac{p-1}{f(y)} y
$$

therefore,

$$
\begin{aligned}
y_{L}^{-1} * y & =y+y_{L}^{-1} f(y) \\
& =y+\frac{p-1}{f(y)} y f(y) \\
& =y+(p-1) y \\
& =p y \\
& =0
\end{aligned}
$$

Thus, all these prove that $G=(G, *)$ is a group contained in the polynomial evaluation groupoid $(R, *)$.
In view of Theorem 2.2, we will make the following:

Definition 2.3. Let R be a commutative ring with identity having finite characteristic $p>0$, and let f be a polynomial with coefficients in R. We will call f a group evaluation polynomial over R provided

$$
\begin{equation*}
f: R \rightarrow \mathbb{U}(R) \cup\{0\} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
f(y * z)=f(y) f(z) \tag{2.3}
\end{equation*}
$$

for every $y, z \in G=\{x \in R \mid f(x) \neq 0\}$.

When the group evaluation polynomial f has no roots in R, then $G=R$ and the polynomial evaluation groupoid $(R, *)$ will be a group.

We will make no distinction between isomorphic copies of groups or rings. If $G=(G,+)$ is a finite abelian group, the Fundamental Theorem of Finite Abelian Groups implies that G is the direct sum of cyclic groups of prime power orders; i.e.,

$$
G=Z_{p_{1} n_{1}} \oplus Z_{p_{2} n_{2}} \oplus \cdots Z_{p_{k} n_{k}}
$$

where each summand $Z_{p_{i}}{ }^{n_{i}}$ denotes the ring of integers modulo $p_{i}{ }^{n_{i}}$. Consequently, the above direct sum is in fact a commutative ring with an identity having finite characteristic $p>0$. We then take $R=Z_{p_{1} n_{1}} \oplus Z_{p_{2} n_{2}} \oplus \cdots Z_{p_{k} n_{k}}$ and let f be the constant polynomial $f(y)=1$ over R. It is obvious that f is a group evaluation polynomial over R, and $x * y=y+x f(y)=x+y$ for every $x, y \in R$. We have just shown the following result:

Theorem 2.4. Every finite abelian group can be obtained as a polynomial evaluation groupoid.

Lemma 2.5. Let R be a finite field with $p^{2 n}$ elements, where p is a prime. The polynomial $f(y)=y^{p^{n}}+y+1$ is a group evaluation polynomial over R.
Proof. Since the field R has finite characteristic p, we observe that

$$
\begin{aligned}
(f(z))^{p^{n}} & =\left(z^{p^{n}}+z+1\right)^{p^{n}} \\
& =z^{p^{2 n}}+z^{p^{n}}+1 \\
& =z+z^{p^{n}}+1 \\
& =f(z) .
\end{aligned}
$$

Whenever $y, z \in R$, we have

$$
\begin{aligned}
f(y * z) & =f(z+y f(z)) \\
& =(z+y f(z))^{p^{n}}+(z+y f(z))+1 \\
& =z^{p^{n}}+y^{p^{n}}(f(z))^{p^{n}}+y f(z)+z+1 \\
& =z^{p^{n}}+y^{p^{n}} f(z)+y f(z)+z+1 \\
& =y^{p^{n}} f(z)+y f(z)+z^{p^{n}}+z+1 \\
& =y^{p^{n}} f(z)+y f(z)+f(z) \\
& =\left(y^{p^{n}}+y+1\right) f(z) \\
& =f(y) f(z) .
\end{aligned}
$$

It now follows that f is a group evaluation polynomial on the field R with $p^{2 n}$ elements.

Our first example will involve the finite field R with 16 elements, and we must first briefly discuss several basic facts from elementary abstract algebra. We know that $g(\omega)=\omega^{4}+\omega+1$ is an irreducible polynomial over the field Z_{2} of integers modulo 2 , and that we can construct the unique field R with 16 elements as

$$
R=Z_{2}[\omega] /\left(\omega^{4}+\omega+1\right)
$$

Consequently, we can write the elements of R as

$$
R=\left\{a \omega^{3}+b \omega^{2}+c \omega+d\right\}
$$

where $a, b, c, d \in Z_{2}$. Since the non-zero elements in any finite field form a cyclic group under multiplication, it is easy to observe that the units in our finite field R can also be written as powers of ω; that is,

$$
U(R)=\left\{\omega, \omega^{2}, \omega^{3}, \cdots, \omega^{15}=1\right\} .
$$

The above powers bigger than 3 can, of course, be rewritten as $\omega^{4}=\omega+1, \omega^{5}=\omega^{2}+\omega$, etc..

It is also well known that any finite field having p^{n} elements with p a prime will have one and only one subfield with p^{m} elements if and only if the integer m divides n. So, our field R with $16=2^{4}$ elements must have a unique subfield K with $4=2^{2}$ elements. Since the non-zero elements in K form a cyclic group of order 3 under multiplication, and since the only elements in $U(R)$ of order 3 are ω^{5} and ω^{10}, it is immediately obvious that

$$
K=\left\{0, \omega^{5}, \omega^{10}, \omega^{15}=1\right\}
$$

Since $(K,+)$ is an abelian 2-group, it is elementary to show that

$$
1+\omega^{5}+\omega^{10}=0
$$

Example 2.6. Let $f(y)=y^{4}+y+1$ be a polynomial in $R[y]$, where R is the field with 16 elements. Then

$$
\begin{equation*}
f \quad \text { is a group evaluation polynomial over } R, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
G=(G, *) \text { is isomorphic to the alternating group } A_{4} . \tag{2.5}
\end{equation*}
$$

In fact, after rewriting $f(y)$ as $f(y)=y^{2^{2}}+y+1$, it follows immediately from Lemma 2.5 (by using $n=1$) that f is a group evaluation polynomial over R.
It is straightforward to show that

$$
\omega, \omega^{2}, \omega+1, \text { and } \omega^{2}+1
$$

are roots of f in the field R. Since f is a polynomial of degree 4 , the above four roots are all of the roots of f in R. Therefore, $G=\{g \in R \mid f(g) \neq 0\}$ must
have precisely 12 elements. Theorem 2.2 implies that $G=(G, *)$ is a group of order 12.
Let η denote the restriction of f to the group $G=(G, *)$. It follows from Lemma 2.5 and the definition of a group evaluation polynomial that η is a homomorphism of the group $G=(G, *)$ onto \bar{G}, where \bar{G} is the image of η in the unit group $U(R)=(U(R), \cdot)$. The set $N=\{g \in R \mid \eta(g)=1\}$ is the kernel of the group homomorphism η, and is therefore a normal subgroup of G. It is straightforward to show that

$$
N=\left\{0, \omega^{5}, \omega^{10}, \omega^{15}=1\right\}
$$

Moreover, the Fundamental Theorem of Homomorphisms implies that G / N is isomorphic to \bar{G}.
In order to distinguish between powers of g in $(G, *)$ and powers of g in $(U(R), \cdot)$ we will use the notation $g^{k *}=g * g * \cdots * g$ and the usual notation $g^{k}=g g \cdots g$ for powers in $(U(R), \cdot)$. The elements $g \in N$ with $g \neq 0$ all have order 2 since

$$
g^{2 *}=g * g=g+g f(g)=g+g 1=g+g=0
$$

Next, let $g \in G$ where $g \notin N$. The $\operatorname{coset} g * N \in G / N=\bar{G}$ must have order 3 ; and consequently,

$$
(g * N)^{3 *}=(g * g * g) * N=0 * N
$$

which implies that $g * g * g \in N$. Therefore, $1=\eta(g * g * g)=\eta(g) \cdot \eta(g) \cdot \eta(g)$. So, $\eta(g)$ must be an element of order 3 in $\bar{G} \subseteq U(R)$ and we have

$$
\eta(g)=\omega^{5} \quad \text { or } \quad \eta(g)=\omega^{10}
$$

In either case,

$$
1+\eta(g)+\eta(g)^{2}=0
$$

from the remark immediately preceding this example. We now have

$$
\begin{aligned}
g^{3 *}=(g * g) * g & =g+(g * g) \eta(g) \\
& =g+(g+g \eta(g)) \eta(g) \\
& =g\left(1+\eta(g)+\eta(g)^{2}\right) \\
& =g \cdot 0 \\
& =0
\end{aligned}
$$

Therefore, every element in G that is not in N must have order 3. There are only three non-abelian groups of order 12 (see Hungerford [2], page 99), and these three groups (using standard group notation) are A_{4},

$$
D_{6}=<a, b \mid a^{6}=1, b^{2}=1, \text { and } b a=a^{-1} b>
$$

and

$$
T=<a, b \mid a^{6}=1, b^{2}=a^{3}, \text { and } b a=a^{-1} b>
$$

Since our group $G=(G, *)$ does not contain elements of order 6 , we have shown that G must be the alternating group A_{4}.

Our next three examples will involve a commutative ring R with identity 1 having characteristic $p=4$ that is constructed using the following standard techniques of elementary abstract algebra. Notice that the polynomial $g(\omega)=$ $\omega^{2}+1$ is irreducible over the ring $Z_{4}=\{0,1,2,3\}$ of integers modulo 4 . Therefore, our ring R will be

$$
\begin{equation*}
R=Z_{4}[\omega] /\left(\omega^{2}+1\right) \tag{2.6}
\end{equation*}
$$

and we can write the 16 elements in R as

$$
R=\left\{a \omega+b \mid a, b \in Z_{4}\right\}
$$

Example 2.7. Let $f(y)=1+2 \omega y^{2}$ be a polynomial in $R[y]$, where $R=$ $Z_{4}[\omega] /\left(\omega^{2}+1\right)$ is the commutative ring with identity having 16 elements described above. Then

$$
\begin{equation*}
f \text { is a group evaluation polynomial over } R \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
G=(G, *) \text { is isomorphic to the group } Q_{8} \times C_{2} \tag{2.8}
\end{equation*}
$$

where Q_{8} is the quaternion group of order 8 . Notice that $f(y)^{2}=\left(1+2 \omega y^{2}\right)^{2}=$ $1+4 \omega y^{2}+4 \omega^{2} y^{4}=1$. This immediately implies that $f(y) \neq 0$ for all $y \in R$ and that the polynomial f has no roots in R. It also implies that $f(y)$ is a unit in $U(R)$; and if $f(y) \neq 1$, then $f(y)$ is a unit of order 2 in $U(R)$. Next, suppose that $y, z \in R$ and observe that

$$
\begin{aligned}
f(y * z) & =f(z+y f(z)) \\
& =1+2 \omega(z+y f(z))^{2} \\
& =1+2 \omega z^{2}+4 \omega z y f(z)+2 \omega y^{2} f(z)^{2} \\
& =1+2 \omega z^{2}+2 \omega y^{2} \\
& =1+2 \omega z^{2}+2 \omega y^{2}+4 \omega^{2} y^{2} z^{2} \\
& =\left(1+2 \omega y^{2}\right)\left(1+2 \omega z^{2}\right) \\
& =f(y) f(z)
\end{aligned}
$$

and it follows that f is a group evaluation polynomial over R.
Since f has no roots in R we have

$$
G=\{g \in R \mid f(g) \neq 0\}=R
$$

so Theorem 2.2 implies that $G=(G, *)$ is a group of order 16 . We let $a=1$, $b=3 \omega+1$ and $c=2 \omega$. It is straightforward to show that

$$
f(a)=2 \omega+1, f(b)=1, \text { and } f(c)=1
$$

and we calculate the powers

$$
\begin{aligned}
& a^{2 *}=a * a=a+a f(a)=1+1(2 \omega+1)=2 \omega+2 \\
& a^{3 *}=a^{2 *} * a=a+a^{2 *} f(a)=1+(2 \omega+2)(2 \omega+1)=2 \omega+3 \\
& a^{4 *}=a^{3 *} * a=a+a^{3 *} f(a)=1+(2 \omega+3)(2 \omega+1)=0
\end{aligned}
$$

and likewise, $b^{2 *}=2 \omega+2=a^{2 *} \quad, \quad b^{3 *}=\omega+3 \quad$ and $\quad b^{4 *}=0$. Moreover,

$$
\begin{aligned}
b * a & =a+b f(a) \\
& =1+(3 \omega+1)(2 \omega+1) \\
& =\omega \\
& =(3 \omega+1)+(2 \omega+3) f(3 \omega+1) \\
& =a^{3 *} * b
\end{aligned}
$$

Since the quaternion group Q_{8} can be described, using standard notation, as

$$
Q_{8}=<a, b \mid a^{4}=b^{4}=1, a^{2}=b^{2}, \text { and } b a=a^{-1} b>
$$

we have shown that the elements $a=1$, and $b=3 \omega+1$ generate Q_{8} as a subgroup of $G=(G, *)$. Finally, observe that $c=2 \omega$ is an element of order 2 in G, and that c commutes with both a and b. We have now established that $G=Q_{8} \times C_{2}$.

Example 2.8. Let $f(y)=1+2 y+2 y^{2}$ be a polynomial in $R[y]$, where $R=Z_{4}[\omega] /\left(\omega^{2}+1\right)$ is the commutative ring with identity having 16 elements described in (8) above. Then

$$
\begin{equation*}
f \text { is a group evaluation polynomial over } R \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
G \text { is the group generated by } a, b, c \tag{2.10}
\end{equation*}
$$

where (using standard group notation) $a^{4}=b^{4}, a^{2}=b^{2}, c^{2}=1, b a=$ $a^{3} b c, c a=a c, c b=b c$. After showing that $f(y)^{2}=1$, it follows that $f(y)$ is a unit in $U(R)$ and it also follows that $f(y) \neq 0$ for all $y \in R$. By calculations similar to those in Example 2.7, we can show that $f(y * z)=f(y) f(z)$ for all $y, z \in R$ and it will follow that $f(y)$ is a group evaluation polynomial. Theorem 2.2 now implies that $G=(G, *)$ is a group of order 16 . Let $a=1, b=\omega$, and $c=2 \omega$. We leave it to the reader as an exercise to show that

$$
\begin{gathered}
a^{2 *}=2, a^{3 *}=3, a^{4 *}=4=0 \\
b^{2 *}=2=a^{2 *}, b^{3 *}=\omega+2, b^{4 *}=0
\end{gathered}
$$

$$
c * a=2 \omega+1=a * c, \quad c * b=3 \omega=a * c
$$

and

$$
b * a=\omega+1=a^{3 *} * b * c .
$$

Example 2.9. Let $f(y)=1+2 y^{2}$ be a polynomial in $R[y]$, where $R=$ $Z_{4}[\omega] /\left(\omega^{2}+1\right)$ is the commutative ring with identity having 16 elements described in (10). Then $G=(G, *)$ is isomorphic to the group $D_{4} \times C_{2}$, where D_{4} is the dihedral group of order 8. The elements $a=\omega+1$ and $b=1$ will generate D_{4} and $c=2$ will generate the cyclic group of order 2 . We will leave all the details as an easy exercise for the reader.

The reader may have already suspected that only metabelian groups $(G, *)$ can be obtained when the binary operation $*: R \times R \rightarrow R$ is defined by

$$
x * y=y+x f(y)
$$

and f is a group evaluation polynomial. This result will be proven in the following:

Theorem 2.10. Let R denote any commutative ring with identity having finite characteristic $p>0$. Let f be a group evaluation polynomial over R, and let $G=\{g \mid f(g) \neq 0\}$. If the set G contains at least one unit in R, then the group $G=(G, *)$ is metabelian.

Proof. We let η be the restriction of f to the group G. Since $\eta(x * y)=\eta(x) \eta(y)$, we know that η is a group homomorphism from $(G, *)$ into $(U(R), \cdot)$, and consequently,

$$
N=\operatorname{ker}(\eta)=\{g \in G \mid \eta(g)=1\}
$$

is a normal subgroup of G. Let $x, y \in N$. Clearly, $\eta(x)=\eta(y)=1$ immediately implies that

$$
\begin{aligned}
x * y & =y+x \eta(y) \\
& =x+y \eta(x) \\
& =y * x .
\end{aligned}
$$

We have shown that N is an abelian subgroup of G. Finally, let $[a, b]=$ $a^{-1} * b^{-1} * a * b$ denote the commutator of $a, b \in G$. Then

$$
\begin{aligned}
\eta([a, b]) & =\eta\left(a^{-1} * b^{-1} * a * b\right) \\
& =\eta\left(a^{-1}\right) \eta\left(b^{-1}\right) \eta(a) \eta(b) \\
& =\eta\left(a^{-1}\right) \eta(a) \eta\left(b^{-1}\right) \eta(b) \\
& =\eta\left(a^{-1} * a\right) \eta\left(b^{-1} * b\right) \\
& =\eta(0) \eta(0) \\
& =1 .
\end{aligned}
$$

Consequently, $[a, b] \in N$ and it follows that the commutator subgroup $[G, G] \subset$ N which establishes the theorem.

The reader should observe that the key element in the proof of Theorem 2.10 is the fact that f restricted to $G=(G, *)$ must be a group homomorphism since the binary operation $*$ is associative, when defined by $a * b=P(a, b)=b+a f(b)$, if and only if f is a homomorphism (see Lemma 2.1.).

3. Concluding remarks

At this point, several natural questions arise. Can all metabelian groups be found using polynomial evaluations of the form

$$
\begin{equation*}
P(x, y)=y+x f(x) \tag{3.1}
\end{equation*}
$$

where f is a group polynomial evaluation over a finite commutative ring R with identity having characteristic $p>0$? If not, then what types of metabelian groups can be found?

Suppose that the polynomial $P(x, y)$ is defined by a more general expression; namely,

$$
\begin{equation*}
P(x, y)=x f(y)+y g(x) \tag{3.2}
\end{equation*}
$$

where both $f(y)$ and $g(x)$ are polynomials with coefficients in R and having constant coefficient 1. If both f and g are group evaluation polynomials, then the argument within the proof of Theorem 2.10 when extended to the normal abelian subgroup $N=\operatorname{ker}(f) \cap \operatorname{ker}(g)$ will show that any group $(G, *)$ found within the polynomial groupoid $(R, *)$ must be metabelian. However, for $P(x, y)$ defined by (12), it is possible to obtain groups even though neither f or g is a group evaluation polynomial. In fact, we can produce the dihedral group D_{4} by using $f(y)=1+(\omega+1) y$ and $g(x)=1+(\omega+1) x^{2}$ as polynomials in R, where $R=Z_{4}[\omega] /\left(\omega^{2}+1\right)$ is our ring used in the last three examples. Should the reader be interested in checking this fact, take $a=\omega+2$ and $b=2$, and it will be straightforward to show that $D_{4}=<a, b \mid a^{4}=b^{2}=1$ and $b a=a^{-1} b>$. Moreover, neither polynomial f or g will be a homomorphism on $G=D_{4}$. We also leave it to the reader to show that $f(a * a) \neq f(a) f(a)$ and that $g(a * a) \neq g(a) g(a)$ when $a=\omega+2$. This discovery makes it plausible that a group $(G, *)$ which is not metabelian could still be found within some sufficiently large type of polynomial groupoid $(R, *)$. Can one find a polynomial $P(x, y)$ having a suitable polynomial groupoid that contains the symmetric group S_{4} ?

Acknowledgments

The authors are deeply grateful to referee's useful suggestions and help for completing the paper.

References

[1] P. J. Allen, H. S. Kim and J. Neggers, Smarandache algebras and their subgroups, Bull. Iranian Math. Soc. 38 (2012), no. 4, 1063-1077.
[2] T. W. Hungerford, Algebra, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1974.
(P. J. Allen) Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA.

E-mail address: pallen2646@ua.edu
(Hee Sik Kim) Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea.

E-mail address: heekim@hanyang.ac.kr
(J. Neggers) Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487-0350, USA.

E-mail address: jneggers@ua.edu

[^0]: Article electronically published on August 20, 2016.
 Received: 18 September 2013, Accepted: 19 June 2015.

 * Corresponding author.

