Strongly noncosingular modules

Document Type: Research Paper

Authors

1 İzmir Institute of Technology‎, ‎Department‎ ‎of Mathematics‎, ‎35430‎, İzmir, Turkey.

2 Bitlis Eren University‎, ‎Department of Mathematics‎, ‎13000‎, Bitlis, ‎Turkey.

Abstract

An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingular R-modules; (3)absolutely coneat modules are strongly noncosingular if and only if R is a right Max-ring and injective modules are strongly noncosingular; (4) a commutative ring R is semisimple if and only if the class of injective modules coincides with the class of strongly noncosingular R-modules.

Keywords

Main Subjects


F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Second edition. Graduate Texts in Mathematics, 13, Springer-Verlag, New York, 1992.

G. Azumaya, Characterizations of semi-perfect and perfect modules, Math. Z., 140 (1974) 95--103.

G. Baccella, Generalized V -rings and von Neumann regular rings, Rend. Sem. Mat. Univ. Padova 72 (1984) 117--133.

E. Büyükaşik, and Y. Durgun, Coneat submodules and coneat-at modules, J. Korean Math. Soc., 51 (2014), no. 6, 1305--1319.

G. F. Birkenmeier, J. K. Park and Y. S. Park, International Symposium on Ring Theory. Proceedings of the 3rd Korea-China-Japan Symposium and the 2nd Korea-Japan Joint Seminar held in Kyongju, Edited by Gary F. Birkenmeier, Jae Keol Park and Young Soo Park, Trends in Mathematics, Birkhäuser Boston, Inc., Boston, 2001.

A. W. Chatters and S. M. Khuri, Endomorphism rings of modules over nonsingular CS rings, J. London Math. Soc. (2) 21 (1980), no. 3, 434--444.

J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Birkhäuser Verlag, Basel, 2006.

S. Crivei, Neat and coneat submodules of modules over commutative rings, Bull. Aust. Math. Soc., 89 (2014), no. 2, 343--352.

L. Fuchs, Neat submodules over integral domains, Period. Math. Hungar. 64 (2012), no. 2, 131--143.

K. R. Goodearl, Singular torsion and the splitting properties, Memoirs of the American Mathematical Society, 124, Amer. Math.Soc., Providence, 1972.

M. Harada, Nonsmall modules and noncosmall modules, Ring theory (Proc. Antwerp Conf. (NATO Adv. Study Inst.), Univ. Antwerp, Antwerp, 1978, 669--690, Lecture Notes in Pure and Appl. Math., 51, Dekker, New York, 1979.

T. A. Kalati and D. . Tütüncü, A note on noncosingular lifting modules, Ukrainian Math. J. 64 (2013) no. 11, 1776--1779.

F. Kasch, Moduln und Ringe, Mathematische Leitfaden, B. G. Teubner, Stuttgart, 1977.

T. Y. Lam, A first course in noncommutative rings, Second edition, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 2001.

T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics, 189,Springer-Verlag, New York, 1999.

W. W. Leonard, Small modules, Proc. Amer. Math. Soc. 17, (1966) 527--531.

C. Lomp, On the splitting of the dual Goldie torsion theory, Algebra and its applications (Athens, OH, 1999), 377--386, Contemp. Math., 259, Amer. Math. Soc., Providence, 2000.

V. D. Nguyen, V. H. Dinh, P. F. Smith and R. Wisbauer, Extending Modules, John Wiley & Sons, Inc., New York, 1994.

K. Oshiro, Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13, (1984), no. 3, 310--338.

A. Ç. Özcan, Some characterizations of V -modules and rings, Vietnam J. Math. 26, (1998) no. 3, 253--258.

A. Ç. Özcan, Modules with small cyclic submodules in their injective hulls, Comm. Algebra 30 (2002), no. 4, 1575--1589.

M. Rayar, Small and Cosmall Modules, Thesis (Ph.D.)--Indiana University, ProQuest LLC, Ann Arbor, 1971.

J. J. Rotman, An introduction to homological algebra. Pure and Applied Mathematics, 85, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1979.

J. J. Rotman, Advanced Modern Algebra, Prentice Hall Inc., Upper Saddle River, 2002.

B. Stenstrom, Rings of Quotients, Die Grundlehren der Mathematischen Wissenschaften, Band 217, An introduction to methods of ring theory, Springer-Verlag, New York- Heidelberg, 1975.

Y. Talebi and N. Vanaja, The torsion theory cogenerated by M-small modules,Comm. Algebra 30 (2002), no. 3, 1449--1460.

R. Tribak, Some results on T -noncosingular modules, Turkish J. Math. 38 (2014), no. 1, 29--39.

A. Tuganbaev, Max rings and V -rings, Handbook of algebra, 3, 565--584, North-Holland, Amsterdam, 2003.

D. K. Tütüncü and R. Tribak, On T -noncosingular modules, Bull. Aust. Math. Soc. 80 (2009), no. 3, 462--471.

D. K. Tütüncü and N. O. Ertas, and Tribak, R. and Smith, P. F., Some rings for which the cosingular submodule of every module is a direct summand, Turkish J. Math. 38 (2014), no. 4, 649--657.

R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155 (1971) 233--256.

R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991.

H. Zöschinger, Komplemente als direkte Summanden, III, (German) [Complements as direct summands. III] Arch. Math. (Basel) 46 (1986), no. 2, 125--135.

H. Zöschinger, Schwach-injektive moduln, Period. Math. Hungar. 52 (2006), no. 2, 105--128.

H. Zöschinger, Koatomare Moduln, Math. Z. 170 (1980), no. 3, 221--232.

H. Zöschinger, Kosingulre und kleine Moduln, (German) Comm. Algebra 33 (2005), no.10, 3389--3404.