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Abstract. An R-module M is called strongly noncosingular if it has
no nonzero Rad-small (cosingular) homomorphic image in the sense of
Harada. It is proven that (1) an R-module M is strongly noncosingular

if and only if M is coatomic and noncosingular; (2) a right perfect ring
R is Artinian hereditary serial if and only if the class of injective mod-
ules coincides with the class of (strongly) noncosingular R-modules; (3)
absolutely coneat modules are strongly noncosingular if and only if R is

a right max ring and injective modules are strongly noncosingular; (4)
a commutative ring R is semisimple if and only if the class of injective
modules coincides with the class of strongly noncosingular R-modules.

Keywords: coclosed submodules, (non) cosingular modules, coatomic
modules.
MSC(2010): Primary: 16D10; Secondary: 16D50, 16D80.

1. Introduction

All rings are associative with an identity element and all modules are unitary
right R-modules. We use the notation E(M), Soc(M), Rad(M) for the injective
hull, socle, radical of an R-module M , respectively. We denote the radical of
R by J(R). We use N ≤ M to signify that N is a submodule of M .

Let M be an R-module and let N be a submodule of M . N is called a small
submodule of M , denoted as N ≪ M , if N + K = M implies K = M for
any submodule K of M . A submodule K of M is called a supplement of N
in M if K is minimal with respect to the property M = K +N , equivalently,
M = K + N and KapN ≪ K. N is called an essential submodule of M ,
denoted by N ⊴ M , if NapL ̸= 0 for each nonzero submodule L of M . For
an R-module M , the submodule Z(M) = {x ∈ M | xI = 0 for some essential
right ideal I of R } is called the singular submodule of M . An R-module M is
said to be a singular (nonsingular) if Z(M) = M (Z(M) = 0). Suppose that
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0 ≤ A ≤ B ≤ N . Then, A is an essential submodule of B if A/0⊴B/0. Dually,
we say that A is a coessential submodule of B in N (denoted by A ↪→ce B
in N) if B/A ≪ N/A. It is easy to see that A ↪→ce B in N if and only if
B + X = N implies A + X = N . An R-module M is said to be a lifting
module if, for any submodule A of M , there exists a direct summand B of M
such that B is a coessential submodule of A in M . A submodule A of N is
said to be coclosed in N (denoted by A ↪→cc N) if A has no proper coessential
submodule in N . A module M is called weakly injective if for every extension
N of M , M is coclosed in N . All supplement submodules are coclosed (see, for
example, [7, 20.2]).

In [16], Leonard defines a module M to be small if it is a small submodule
of some R-module and he shows that M is small if and only if M is small
in its injective hull. We put Z∗(M) = {m ∈ M | mR is a small module
}. As the dual notion of singular (nonsingular), an R-module M is called
cosingular if Z∗(M) = M (see [11]). An R-module M is cosingular if and only
if M ≤ Rad(L) for some R-modules L. Since Rad(M) is the union of all small
submodules of M , we see that Z∗(E) = Rad(E) for any injective module E,
and Z∗(M) = MapRad(E(M)). The radical Rad(M) of an R-module M is a
submodule of Z∗(M). For further properties of Z∗(), see [21]. For convenience
in concepts, the cosingular R-modules are called Rad-small in this work.

Following [26], a module M is called noncosingular if for every nonzero
module N and every nonzero homomorphism f : M → N , Im f is not a small
module. An R-module M is noncosingular if and only if every homomorphic
image of M is weakly injective (see [34]). Recently, there has been a significant
interest in noncosingular R-modules, see [12,27,29,30,34].

In this article, we introduce the concept of strongly noncosingular R-module.
An R-module M is called strongly noncosingular if for every nonzero module N
and every nonzero homomorphism f : M → N , Im f is not a Rad-small module.
Since small modules are Rad-small, strongly noncosingular R-modules are non-
cosingular, but the converse is not true in general (see Example 2.8). Our aim
is to work on the concept of strongly noncosingular modules and investigate the
rings and modules that can be characterized via these modules. In particular,
section 2 deals with strongly noncosingular modules and its characterizations.
We have also proved that an R-module M is strongly noncosingular if and only
if M is coatomic and every simple homomorphic image of M is injective. We
have showed that a right perfect ring R is Artinian hereditary serial if and
only if the class of injective R-modules coincides with the class of (strongly)
noncosingular R-modules. A right hereditary ring R is max ring if and only if
absolutely coneat R-modules are strongly noncosingular.

Section 3 deals with the structure of strongly noncosingular R-modules on
commutative rings. We have showed that strongly noncosingular R-modules
are exactly the semisimple injective modules on commutative noetherian rings.
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A commutative ring R is semisimple if and only if the class of injective modules
coincides with the class of strongly noncosingular R-modules.

2. Strongly Noncosingular Modules

We introduce the concept of strongly noncosingular R-module as follows.

Definition 2.1. An R-module M is called strongly noncosingular if for every
nonzero R-module N and every nonzero homomorphism f : M → N , Im f is
not a Rad-small submodule of N , i.e. M has no nonzero Rad-small homomor-
phic image.

Remark 2.2. (1) Simple injective R-modules are strongly noncosingular.
(2) Let R be a division ring (e.g. the rational numbers Q). An R-module
M is a vector space, so it is a semisimple injective R-module. Therefore, it is
strongly noncosingular.
(3) Let R be a right hereditary ring. Finitely generated injective R-modules
are strongly noncosingular. Let M be a finitely generated injective R-module.
Suppose that Z∗(M/N) = M/N for a submodule N of M . Since R is a right
hereditary ring, M/N is injective and so Rad(M/N) = Z∗(M/N) = M/N .
Since M/N is finitely generated, Rad(M/N) ≪ M/N , a contradiction. Thus,
finitely generated injective R-modules are strongly noncosingular.
(4) Strongly noncosingular R-modules are noncosingular. However, there ex-
ists a noncosingular R-module which is not strongly noncosingular (see Exam-
ple 2.8).

Proposition 2.3. The class of all strongly noncosingular R-modules is closed
under homomorphic images, direct sums, direct summands, extensions and
small covers.

Proof. (1) Let M be a strongly noncosingular R-module and N a submod-
ule of M . Suppose that M/N is not a strongly noncosingular R-module.
Then, there is a nonzero homomorphism g from M/N to the R-modules T
with Im g ≤ Rad(T ). Then Im(gπ) ≤ Rad(T ), where π is the canonical epi-
morphism M → M/N . Since M is strongly noncosingular, Im(gπ) = 0. Then
g = 0, a contradiction.

(2) Assume that (Mi)i∈I is a class of strongly noncosingular R-modules. Let
f be a homomorphism from

⊕
i∈I Mi to the R-module N with Im f ≤ Rad(N).

Then, Im(fιi) ≤ Rad(N) for the inclusion maps ιi : Mi →
⊕

i∈I Mi for every
i ∈ I. Since Mi is a strongly noncosingular R-module, Im(fιi) = 0 for every
i ∈ I. Then f = 0, and

⊕
i∈I Mi is strongly noncosingular.

(3) Let N be a direct summand of a module M and p : M → N the
projection map. Let f be a homomorphism from N to the R-modules T with
Im f ≤ Rad(T ). Then, Im(fp) ≤ Rad(T ) and, by the hypothesis, fp(M) = 0.
Hence f = 0, and N is strongly noncosingular.
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(4) Let 0 → A
α→ B

β→ C → 0 be a short exact sequence, and suppose
that A and C are strongly noncosingular R-modules. Assume that there is a
homomorphism f from B to some R-module T with Im f ≤ Rad(T ). Then,
Im(fα) ≤ Rad(T ). Since A is a strongly noncosingular R-module, Im(fα) = 0.
Then, there is a homomorphism g from C to T such that f = gβ by the factor
theorem (see [1, Theorem 3.6]). Therefore Im g ≤ Rad(T ) and since C is a
strongly noncosingular R-module, Im g = 0. Thus, f = 0 and B is strongly
noncosingular.

(5) Let B be a strongly noncosingular R-module and let f : A → B be
a small cover, i.e. f is an epimorphism and Ker f ≪ A. Suppose that A is
not a strongly noncosingular R-module. Then, there is a submodule X of A
such that A/X is Rad-small. B/f(X) is Rad-small, since it is a homomorphic
image of the Rad-small module A/X by [21, Lemma 2.6]. But B/f(X) is
strongly noncosingular by (1), hence B/f(X) = 0 and B = f(X). Then,
f−1(B) = X + Ker f = A, and X = A since Ker f ≪ A. Hence A is strongly
noncosingular. □

Corollary 2.4. Let M be a module, and U and V be submodules of M such
that V is a supplement of U . Then V is strongly noncosingular if and only if
M/U is strongly noncosingular.

Proof. By the hypothesis, M = U + V , UapV ≪ V and M/UongV/(UapV ).
Suppose that V is strongly noncosingular. Since strongly noncosingular R-
modules are closed under homomorphic images by Proposition 2.3,M/UongV/(UapV )
is strongly noncosingular. Conversely, assume thatM/UongV/(UapV ) is strongly
noncosingular. By Proposition 2.3, strongly noncosingularR-modules are closed
under small covers and using UapV ≪ V , we obtain that V is strongly non-
cosingular. □

Proposition 2.5. Let M be a strongly noncosingular R-module. The following
properties hold:

(1) Every Rad-small submodule of M is small in M .
(2) Coclosed submodules of M are strongly noncosingular.
(3) RadM ≪ M .
(4) RadM = RadNapM for every extension N of M .
(5) Rad(M) = Z∗(M).

Proof. (1) Suppose that K is a Rad-small submodule of M and K + L = M
for a submodule L of M . Since K

KapL is a homomorphic image of K, it is Rad-

small by [21, Lemma 2.6]. But M is strongly noncosingular, and so K
KapL = 0

by Proposition 2.3. Hence KapL = K and so L = M and K ≪ M .
(2) Let A be a coclosed submodule of M . Suppose that A/X is a Rad-small
R-module for a submodule X of A. Since M is strongly noncosingular, M/X
is also strongly noncosingular by Proposition 2.3. Then, by (1), A/X ≪ M/X.
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But A is a coclosed submodule of M , so X = A. This implies A is a strongly
noncosingular R-module.

(3) and (4) follow from (1).
(5) RadM ≤ Z∗(M) is clear. Conversely, let m ∈ Z∗(M), then mR is a

small module and, by (1) it follows that mR ≪ M . Thus, m ∈ RadM . □

AnR-moduleM is called coatomic if for every submoduleN ofM , Rad(M/N) =
M/N impliesM/N = 0, equivalently every proper submodule ofM is contained
in a maximal submodule of M . Finitely generated and semisimple modules are
coatomic. Coatomic modules appear in the theory of supplemented, semiper-
fect, and perfect modules (see [35]).

Theorem 2.6. Let M be an R-module.Then the following statements are equiv-
alent:

(1) M is strongly noncosingular.
(2) M is coatomic and every simple homomorphic image of M is injective.
(3) M is coatomic and noncosingular.

Proof. Note that any simple module is either small or injective ( [7, 8.2]).
(1) ⇒ (2) Let N be a proper submodule of M . Suppose N is not contained

in a maximal submodule of M . Then M/N = Rad(M/N), and this implies
M/N is Rad-small. But M is strongly noncosingular, and so M/N = 0, a
contradiction. By the given above, a simple homomorphic image of a strongly
noncosingular R-module is injective.

(2) ⇒ (3) Let N be a proper submodule of M with M/N is a small module.
If N is maximal submodule of M , then M/N is injective. Suppose that N
is not a maximal submodule of M . By the assumption, M is coatomic, hence
there exists a maximal submodule K of M which contains N . By [16, Theorem

2], small modules are closed under homomorphic images, hence M/KongM/N
K/N

is small. But M/K is injective by the assumption, hence M/K = 0, a contra-
diction . Then, M has no small homomorphic images, i.e. M is noncosingular.

(3) ⇒ (1) Let N be a proper submodule of M with M/N is a Rad-small R-
module. By the assumption, M is coatomic, and hence there exists a maximal
submodule K of M which contains N . M/K is injective since M is noncosingu-
lar. Rad-small modules are closed under homomorphic image by [21, Lemma

2.6], so M/KongM/N
K/N is Rad-small. Then, Rad(M/K) = M/K, and this

contradicts with the fact that M is coatomic. Hence, M is strongly noncosin-
gular. □

By Theorem 2.6, a strongly noncosingular R-module exists if and only if
there exists a simple injective R-module.

Proposition 2.7. Let R be a domain which is not a division ring. Then there
does not exist a strongly noncosingular R-module.
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Proof. It is enough to show that there is no simple injective R-module. Assume
that there exists a simple injective R-module, say S. Then S is divisible. Since
S is simple, there exists a nonzero maximal ideal I of R such that SongR/I.
Then (R/I)r = 0 for each r ∈ I, which contradicts with the divisibility of S.
Hence, there is no simple injective R-module. □
Example 2.8. We give an example for a noncosingular R-module that fails to

be strongly noncosingular. Consider the ring R = {
(

a b
0 c

)
|a, c ∈ Z, b ∈ Q}

and the R-module RM =

(
0 Q
0 0

)
. The left R-module structure of M is

completely determined by the left Z-module structure of Q. Then M is not
coatomic since ZQ is not coatomic. But M is noncosingular since every nonzero
homomorphic image of the Z-module Q is nonsmall.

A ring R is called a right max ring if Rad(M) ̸= M for every R-module M .
Equivalently, R is a right max ring if and only if every nonzero R-module is
coatomic. Any right perfect ring R is right max ring and the converse is true
if R/J(R) is a semisimple ring (see [1, Theorem 28.4]). Theorem 2.6 yields the
following.

Corollary 2.9. Let R be a right max ring. An R-module M is strongly non-
cosingular if and only if it is noncosingular.

Recall that an R-module M is called weakly injective if, for every extension
N of M , M is coclosed in N .

Proposition 2.10. Strongly noncosingular R-modules are weakly injective.

Proof. Let M be a strongly noncosingular R-module and M ≤ N be any exten-
sion of M . Let L be a proper submodule of M . Since M/L is not Rad-small,
M/L cannot be a small submodule of N/L. Hence L is not a coessential
submodule of M in N , this implies M is coclosed in N . So, M is weakly
injective. □

The converse of Proposition 2.10 is not true in general. In Example 2.8, the
R-module RM is injective, so it is weakly injective, but not strongly noncosin-
gular.

Proposition 2.3, Theorem 2.6 and Proposition 2.10 yield the following corol-
lary.

Corollary 2.11. Let M be a coatomic module. Then the following statements
are equivalent:

(1) M is strongly noncosingular.
(2) Every homomorphic image of M is weakly injective.
(3) Every finitely generated quotient of M is weakly injective.
(4) Every cyclic quotient of M is weakly injective.
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(5) Every simple quotient of M is injective.

A ring R is called a right V -ring if each simple R-module is injective. This
is equivalent to the condition that Rad(M) = 0 for any R-module M (see, [15,
Theorem 3.75]). Clearly, every R-module is coatomic if R is a right V -ring.

Corollary 2.12. Let R be a ring. The following statements are equivalent:

(1) RR is strongly noncosingular.
(2) R is a right V -ring.
(3) Every quotient of R is weakly injective.
(4) Every R-module is strongly noncosingular.

Proof. (1) ⇔ (2) ¡follows from¿ Theorem 2.6, (1) ⇔ (3) ¡follow¿ by Corollary
2.11, and (4) ⇒ (1) is clear. For (1) ⇒ (4), note that every module is an
epimorphic image of a free module. Since RR is a strongly noncosingular mod-
ule, every free module is strongly noncosingular by Proposition 2.3. Again by
Proposition 2.3, every R-module is strongly noncosingular. □

In [9], a submodule N of an R-module M is called coneat in M if for every
simple R-module S, any homomorphism φ : N → S can be extended to a ho-
momorphism θ : M → S. In [8], an R-module M is called absolutely coneat if
M is a coneat submodule of any module containing it. Absolutely coneat mod-
ules are also studied in [4]. Coclosed submodules are coneat by [4, Proposition
2.1]. Thus we may say that weakly injective modules are absolutely coneat.
We have the following implications among the concepts:

strongly noncosingular =⇒noncosingular =⇒ weakly injective ⇐=

��

injective

absolutely coneat

Proposition 2.13. Every injective module is strongly noncosingular if and
only if every weakly injective module is strongly noncosingular.

Proof. Let M be a weakly injective module. By the assumption, E(M) is
strongly noncosingular. Then, M is strongly noncosingular by Proposition
2.5. The converse follows from the fact that injective modules are weakly
injective. □
Proposition 2.14. Assume that every injective module is strongly noncosin-
gular. Then the following holds.

(1) The class of absolutely coneat modules is closed under homomorphic
images.

(2) A simple module S is either injective or Hom(E,S) = 0 for each injec-
tive module E.

If R is commutative, the following statement also holds.
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(3) Every simple submodule S of a flat module F is flat, i.e. Soc(F ) is
flat.

Proof. (1) Let L be an absolutely coneat module and N be a submodule of L.
Consider the coneat exact sequence 0 → L → E(L) → M → 0. We have the
pushout diagram

0 // L

��

// E

γ

��

// M // 0

E : 0 // L/N // P // M // 0

Since coneat exact sequences are closed under pushout, E is coneat exact.
On the other hand, γ is epimorphism, and so P is absolutely coneat by the
assumption and Proposition 2.3. Therefore, L/N is absolutely coneat by [8,
Theorem 3.2].

(2) This follows by Proposition 2.3 since a simple module S is either injective
or small.

(3) Consider the exact sequence 0 → S ↪→ F → M → 0. We have the exact
sequence 0 → Hom(M,Q/Z) → Hom(F,Q/Z) → Hom(S,Q/Z) → 0. Note that
if R is commutative and E is an injective cogenerator, then Hom(S,E) ∼= S for
each simple module S. Since Hom(F,Q/Z) is injective by [15, Theorem 4.9], S
is injective by (2). Then, S is a direct summand of the flat module F , and so
it is flat. □

It is well known that a ring R is right hereditary if and only if every homo-
morphic image of an injective R-module is injective (see [15, Theorem 3.22]).
Recall that every module is coatomic on max rings. Thus, by Theorem 2.6 and
Proposition 2.14, we have the following.

Corollary 2.15. Let R be a right max ring. The following are equivalent.

(1) Every simple quotient of an injective module is injective.
(2) Every injective module is strongly noncosingular.
(3) The class of absolutely coneat modules is closed under homomorphic

images.
(4) Every absolutely coneat module is strongly noncosingular.

Remark 2.16. (1) For a right small ring R i.e. Rad(E) = E for every injective
right R-module E, we have Hom(E,S) = 0 for each simple right R-module S.
Therefore, if R is a right small right max ring, every injective module is strongly
noncosingular.
(2) It is clear that injective modules are noncosingular on hereditary rings. Let
R be a right hereditary max ring. Then, every injective module is strongly
noncosingular.
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Example 2.17. This example exhibits a V -ring that is not hereditary. Let
R =

∏∞
i=1 Fi with Fi = F is a field for all i ≥ 1. R is a right V -ring that is

not semisimple. Hence, every R-module is strongly noncosingular, so injective
modules are strongly noncosingular, and R is right self injective by [15, Corol-
lary 3.11.B]. Hence R is not right hereditary, otherwise it must be semisimple
(see, [15, Theorem 7.52] ).

Although we suspect that a ring whose injective modules are strongly non-
cosingular is a max ring, we have not yet been able to prove it.

Proposition 2.18. Let R be a local ring. The following statements are equiv-
alent.

(1) R is a division ring.
(2) Every injective right R-module is strongly noncosingular.
(3) Every injective left R-module is strongly noncosingular.

Proof. (1) ⇒ (2) is clear. For (2) ⇒ (1), let E be a nonzero injective right R-
module. Then E is coatomic by the hypothesis. So E has an injective simple
factor module, say E/K. Since R is a local ring, every simple right R-module is
isomorphic to R/J(R). Hence R/J(R) is injective. This implies R is a V -ring,
and so J(R) = 0. Therefore R is a division ring. (1) ⇒ (3) follows by left-right
symmetry. □

Proposition 2.19. Let R be a ring. The following statements hold:

(1) If R is a right max ring, then absolutely coneat modules are weakly
injective.

(2) If absolutely coneat modules are strongly noncosingular, then R is a
right max ring.

Proof. (1) Let A be an absolutely coneat module and M be any extension of A.
Suppose A is not a coclosed submodule of M . Then for some proper submodule
B of A , A/B ≪ M/B. Since R is a right max ring, A is coatomic. Thus, B is
contained in a maximal submodule, say K, of A. Then, A/K ≪ M/K, which
contradicts with the fact that A is coneat in M . Hence, A is weakly injective.
(2) Let M be an R-module with Rad(M) = M . Then, Hom(M,S) = 0 for each
simple module S. Hence M is absolutely coneat and, by the assumption, M
is strongly noncosingular. By Proposition 2.5(3), Rad(M) ≪ M . So, M = 0
since Rad(M) = M . Therefore, R is a right max ring. □

Corollary 2.20. Let R be a ring. R is a right max ring and every injective
module is strongly noncosingular if and only if every absolutely coneat module
is strongly noncosingular.

A ring R is called a right H-ring if every injective right R-module is lifting
(see [19]). Let R be a right nonsingular ring. Then every nonsingular right
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R-module is projective if and only if R is Artinian hereditary serial (see [6,
Theorem 4.2]). Artinian hereditary serial rings are right (left) H-rings.

Theorem 2.21. Let R be a right perfect ring. The following statements are
equivalent:

(1) The class of injective modules coincides with the class of (strongly)
noncosingular R-modules.

(2) R is Artinian hereditary serial.

Proof. (1) ⇒ (2) Since strongly noncosingular R-modules are closed under
homomorphic images, every homomorphic image of an injective module is in-
jective by the assumption. R is a right hereditary ring by [15, Theorem 3.22]
and so it is right nonsingular by [15, Corollary 7.7]. Under the assumption,
injective R-modules are closed under small covers by Proposition 2.3. Then R
is a right H-ring by [19, Theorem I]. Therefore nonsingular right R-modules
are projective by [19, Theorem II and Theorem 4.6]. And so R is hereditary
Artinian serial by [6, Theorem 4.2].

(2) ⇒ (1) By Remark 2.16(2), injective modules are strongly noncosingular.
Let M be a strongly noncosingular R-module. Since an Artinian hereditary
serial ring R is a right H-ring by [19], M has a decomposition M = M1 ⊕M2,
where M1 is injective and M2 is small. By Proposition 2.3, M1 and M2 are
strongly noncosingular. But M2 is a small module, and so M2 = 0 . Therefore,
M1 = M is injective. □

A ring R is called right Kasch if every simple right R-module S can be
embedded in RR (see [15, 8.26]).

Lemma 2.22. Let R be a right Kasch ring. An R-module M is strongly
noncosingular if and only if M is semisimple and every simple submodule of
M is injective.

Proof. Suppose M is not semisimple, i.e. Soc(M) ̸= M . Since M is strongly
noncosingular, M is coatomic by Theorem 2.6. Then, the proper submodule
Soc(M) is contained in a maximal submodule of M , say K. Since M is strongly
noncosingular, M/K is injective by Theorem 2.6. By the hypothesis, M/K
embeds in R. But M/K is injective, and so it is a direct summand of R. Hence
M/K is projective. So, M = K

⊕
S for some submodule S of M . Since K

is maximal in M , S ∼= M/K is a simple module. Then, S ≤ Soc(M), and
hence S ≤ Soc(M)apS ≤ KapS = 0, a contradiction. Thus, we must have
M = Soc(M). Therefore, M is semisimple. Since M is semisimple, every
simple submodule N of M is isomorphic to a simple homomorphic image of M .
Then, N is injective by Theorem 2.6. The converse follows from Theorem 2.6,
since semisimple modules are coatomic. □

A ring R is said to be semilocal, if R/J(R) is a semisimple ring (see [15, §20]).
Any right or left Artinian ring, any serial ring, and any semiperfect ring is
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semilocal. A ring R is semilocal if and only if every product of simple modules
is semisimple (see [1, 15.17]).

Lemma 2.23. Let R be a semilocal ring. An R-module M is strongly non-
cosingular and every maximal submodule of M is a direct summand if and only
if M is semisimple injective.

Proof. Suppose on the contrary that Soc(M) ̸= M . Since M is stongly non-
cosingular, M is coatomic and the proper submodule Soc(M) is contained in
a maximal submodule of M , say K. By the assumption, every maximal sub-
module of M is a direct summand of M . So, M = K

⊕
S for some submodule

S of M . Since K is maximal in M , M/K is a simple module. Thus, S ∼= M/K
is simple and S ≤ Soc(M), so S ≤ Soc(M)apS ≤ KapS = 0, a contradic-
tion. Thus, we must have M = Soc(M). Therefore, M is semisimple, and
M =

⊕
λ∈Λ Sλ for some index set Λ and simple submodules Sλ of M . Then

M ≤ N :=
∏

λ∈Λ Sλ. Since R is semilocal, the right side N is also a semisimple
R-module. Every simple summand (Sλ, λ ∈ Λ) of M is injective since M is
strongly noncosingular. Thus, N =

∏
λ∈Λ Sλ is injective. Then, the direct

summand M of N is injective. So, M is semisimple injective. The converse is
clear. □

Lemma 2.22 and Lemma 2.23 yield the following.

Corollary 2.24. Let R be a semilocal right Kasch ring. An R-module M is
strongly noncosingular if and only if M is semisimple injective.

3. Strongly Noncosingular Modules Over Commutative Rings

In this section¡,¿ we investigate the strongly noncosingular R-modules over
commutative rings. For a ring R, let Z(R) = {r ∈ R | rs = sr, for each s ∈ R}
be the center of R. Recall that for any ring R and R-module M , J(R).M ≤
Rad(M), see [1, Corollary 15.18.].

Proposition 3.1. Let R be a ring and M a strongly noncosingular right R-
module. Then, Z∗(RR)apZ(R) ≤ AnnR(M).

Proof. Let r ∈ Z∗(RR)apZ(R). Since r ∈ Z(R), the map f : M → M , de-
fined by f(m) = mr for each m ∈ M , is an R-homomorphism. Note that
MZ∗(RR) ≤ Z∗(M) by [21, Lemma 3.8]. Then, r ∈ Z∗(RR) implies that
Im(f) = Mr ≤ Rad(E(M)). Therefore, f = 0, and so Mr = 0 by the hypoth-
esis. Hence r ∈ AnnR(M). □

Corollary 3.2. Let R be a ring and M a strongly noncosingular right R-
module. Then, J(R)apZ(R) ≤ AnnR(M).

Corollary 3.3. Let R be a commutative ring and M a strongly noncosingular
R-module. Then, Z∗(R).M = J(R).M = 0.
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Corollary 3.4. Let R be a commutative semilocal ring and M an R-module.
M is strongly noncosingular if and only if M is a semisimple injective module.

Proof. If R is semilocal then, Rad(M) = J(R).M = 0. So, M is an R/J(R)-
module. Therefore M is a semisimple R/J(R)-module, and so M is semisimple
as an R-module. The injectivity of M follows from Lemma 2.23. The converse
is clear. □

Proposition 3.5. Let R be a commutative ring and M a strongly noncosin-
gular R-module. Then Ann(M/Rad(M)) = Ann(M).

Proof. Let r ∈ Ann(M/Rad(M)). Then rM ≤ Rad(M) and so from the
proof of Proposition 3.1, we get rM = 0. Therefore, r ∈ Ann(M) and
Ann(M/Rad(M)) ≤ Ann(M). On the other hand, we always have Ann(M) ≤
Ann(M/Rad(M)). This completes the proof. □

Lemma 3.6. [1, Exercises 15.(5)] Let R be a commutative ring and Ω the set
of all maximal ideals of R. Then Rad(M) =

∩
P∈Ω PM for each R-module M .

Proposition 3.7. Let R be a commutative ring and M a nonzero R-module
with a unique maximal submodule. Then M is strongly noncosingular if and
only if M is simple injective.

Proof. We first claim thatM is a simple R-module. By the hypothesis Rad (M)
is a maximal submodule ofM , i.e. M/Rad (M) is simple. ThenM/Rad (M) ∼=

R/P for some maximal ideal P of R. Since M is strongly noncosingular,
Ann(M) = Ann(M/Rad(M)) = P by Proposition 3.5. Then P.M = 0, and so
Rad(M) = 0 by Lemma 3.6. Therefore, M is a simple R-module and, by the
hypothesis, M is injective. The converse is clear. □

Lemma 3.8. [31, Lemma 2.6] Let R be a commutative ring and M a simple
R-module. Then, M is flat if and only if M is injective.

Lemma 3.9. Let R be a commutative Noetherian ring and M an R-module.
Then, M is strongly noncosingular if and only if M is semisimple injective.

Proof. Suppose on the contrary that Soc(M) ̸= M . Since M is strongly non-
cosingular, the proper submodule Soc(M) is contained in a maximal submodule
K of M such that M/K is injective. So, M/K is flat by the above lemma.
Since M/K is finitely generated, it is finitely presented by [15, Proposition
4.29]. Therefore, M/K is projective by [15, Theorem 4.30]. Then K is a direct
summand of M such that M = K

⊕
S for some simple submodule S of M .

But S ≤ Soc(M)apS ≤ (KapS) = 0, a contradiction. Hence M is semisimple.
Then M =

⊕
i∈I Si , where each Si is a simple module for all i ∈ I. Since M is

strongly noncosingular, all simple summands of M is strongly noncosingular by
Proposition 2.3, and so they are injective by Theorem 2.6. Then M is injective
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since direct sums of injective modules are injective by [1, Proposition 18.13].
The converse is clear. □

¡In General¿ Lemma 3.9 is not true in the noncommutative case.

Example 3.10. Let R =

[
F F
0 F

]
be upper triangular matrices over a field

F . R is a right hereditary Artinian ring and Soc(RR) =

[
0 F
0 F

]
. Let

A =

[
F F
0 0

]
and B =

[
0 0
0 F

]
. Then RR = A ⊕ B, A is injective and B

is simple. Since R is a right hereditary Artinian ring, A is strongly noncosin-
gular by Remark 2.16. However A is not a semisimple R-module otherwise
Soc(RR) = RR, a contradiction .

Theorem 3.11. Let R be a commutative ring. Then the following statements
are equivalent:

(1) The class of injective modules coincides with the class of strongly non-
cosingular R-modules.

(2) R is semisimple.

Proof. (1) ⇒ (2) Since strongly noncosingular R-modules are closed under
direct sums by Proposition 2.3, direct sums of injective modules are injective
by the assumption. Then R is a Noetherian ring by [1, Proposition 18.13].
By (1) and by Lemma 3.9, every injective module is semisimple, and so every
module is semisimple. Then R is semisimple. (2) ⇒ (1) ¡follows¿ by Lemma
3.9. □
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Basel, 2006.
[8] S. Crivei, Neat and coneat submodules of modules over commutative rings, Bull. Aust.

Math. Soc., 89 (2014), no. 2, 343–352.
[9] L. Fuchs, Neat submodules over integral domains, Period. Math. Hungar. 64 (2012),

no. 2, 131–143.
[10] K. R. Goodearl, Singular torsion and the splitting properties, Memoirs of the American

Mathematical Society, 124, Amer. Math.Soc., Providence, 1972.
[11] M. Harada, Nonsmall modules and noncosmall modules, Ring theory (Proc. Antwerp

Conf. (NATO Adv. Study Inst.), Univ. Antwerp, Antwerp, 1978, 669–690, Lecture Notes
in Pure and Appl. Math., 51, Dekker, New York, 1979.
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[14] T. Y. Lam, A first course in noncommutative rings, Second edition, Graduate Texts in
Mathematics, 131, Springer-Verlag, New York, 2001.

[15] T. Y. Lam, Lectures on modules and rings, Graduate Texts in Mathematics,
189,Springer-Verlag, New York, 1999.

[16] W. W. Leonard, Small modules, Proc. Amer. Math. Soc. 17, (1966) 527–531.
[17] C. Lomp, On the splitting of the dual Goldie torsion theory, Algebra and its applications

(Athens, OH, 1999), 377–386, Contemp. Math., 259, Amer. Math. Soc., Providence,
2000.

[18] V. D. Nguyen, V. H. Dinh, P. F. Smith and R. Wisbauer, Extending Modules, John
Wiley & Sons, Inc., New York, 1994.

[19] K. Oshiro, Lifting modules, extending modules and their applications to QF-rings,
Hokkaido Math. J. 13, (1984), no. 3, 310–338.
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