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Abstract. Let TX be the full transformation semigroups on the set X.
For an equivalence E on X, let TE∗ (X) = {α ∈ TX : ∀(x, y) ∈ E ⇔
(xα, yα) ∈ E} It is known that TE∗ (X) is a subsemigroup of TX . In this

paper, we discuss the Green’s *-relations, certain *-ideal and certain Rees
quotient semigroup for TE∗ (X).
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1. Introduction

The relations L∗ and R∗ on a semigroup S are generalization of the familiar
Green’s relations L and R. Two elements a and b in S are said to be L∗-
related if and only if they are L-related in some oversemigroup of S. The
relation R∗ can be defined dually. The join of the equivalence relations L∗ and
R∗ is denoted by D∗ and their intersection is denoted by H∗. A semigroup S
is called abundant if any L∗-class and any R∗-class contains an idempotent of
S. It is known that a regular semigroup is abundant but the converse is not
true. For example, Umar [6] showed that the semigroup of order-decreasing
finite full transformations is abundant but not regular.

The L∗-class containing the element a of the semigroup S will be denoted
by L∗

a. The corresponding notation will be used for the classes of the other
relations. A left (right) *-ideal of a semigroup S is defined to be a left(right)
ideal I of S such that L∗

a ⊆ I (R∗
a ⊆ I) for all a ∈ I. A subset I of S is a

*-ideal of S if it is both a left *-ideal and a right *-ideal. A principal *-ideal
J∗(a) generated by the element a of S is the intersection of all *-ideals of S to
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Transformation semigroups 1016

which a belongs. The relation J ∗ is defined by the rule that (a, b) ∈ J ∗ if and
only if J∗(a) = J∗(b).

In the theory of abundant semigroups, the relations L∗, R∗, H∗, and D∗

together with the relation J ∗ play a role which is to some extent analogous to
that of Green’s relations in the theory of regular semigroups.

Let TX be the full transformation semigroups on a set X and E be an
equivalence on X. Denote

TE∗(X) = {α ∈ TX : ∀(x, y) ∈ E ⇔ (xα, yα) ∈ E}.

Then TE∗(X) is a subsemigroup of TE(X), it’s Green’s relations and regularity
are investigated in [1].

2. Preliminaries

We denote composition of two mappings by juxtaposition and adopt a right
mapping convention: αβ denotes the mapping obtained by performing first α
and then β.

Denote by X/E the quotient set. The symbol π(α) denotes the decomposi-
tion of X induced by the map α, namely

π(α) = {xα−1 : x ∈ Xα}.

Then π(α) = X/ker(α), where ker(α) = {(x, y) ∈ X ×X : xα = yα}.
Denote by I the identical equivalence on X, i.e.:

I = {(x, x) : x ∈ X}.

Lemma 2.1. Let α, β ∈ TX . Then the following statements hold:
(1) (α, β) ∈ L if and only if Xα = Xβ.
(2) (α, β) ∈ R if and only if π(α) = π(β).
(3) (α, β) ∈ D if and only if |Xα| = |Xβ|.
(4) D = J .

Lemma 2.2. [2] Let S be a semigroup and a, b ∈ S. Then the following
statements are equivalent:
(1) (a, b) ∈ L∗.
(2) For all x, y ∈ S1, ax = ay if and only if bx = by.

Dually, we have:

Lemma 2.3. Let S be a semigroup and a, b ∈ S. Then the following statements
are equivalent:
(1) (a, b) ∈ R∗.
(2) For all x, y ∈ S1, xa = ya if and only if xb = yb.
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3. Green’s *-relations

In this section, we focus our attention on Green’s *-relations for the semi-
group TE∗(X), beginning with L∗.

Theorem 3.1. Let α, β ∈ TE∗(X). Then (α, β) ∈ L∗ if and only if Xα = Xβ.

Proof. If Xα = Xβ, then by Lemma 2.1, (α, β) ∈ L in TX . Hence (α, β) ∈ L∗.
Conversely, suppose that (α, β) ∈ L∗, by Lemma 2.2, for all δ, γ ∈ TE∗(X),

αδ = αγ if and only if βδ = βγ. If Xα ̸= Xβ, without loss of generality, we
may assume that Xβ \Xα ̸= ∅. Then there exists a ∈ Xβ \Xα and bβ = a
for some b ∈ X. There are two cases to consider: (Denote by 1X the identity
mapping on X)

Case 1. a ∈ A ∈ X/E and A
∩
Xα ̸= ∅.

Define δ : X → X by:

aδ = c, xδ = x(x ̸= a), where c ∈ A and c ̸= a.

It is easy to verify that δ ∈ TE∗(X) and αδ = α · 1X . However, bβδ = aδ =
c ̸= a = bβ = b(β · 1X). This contradicts with βδ = β · 1X .

Case 2. a ∈ A ∈ X/E and A
∩
Xα = ∅.

Define γ : X → X by:

for x ∈ A, xγ = a; otherwise, xγ = xα.

It is easy to verify that γ ∈ TE∗(X) and α2 = αγ. However, bβα = aα ̸=
a = aγ = bβγ. This contradicts with βα = βγ.

Consequently, we have Xα = Xβ. □

Next we consider the relation R∗.

Theorem 3.2. Let α, β ∈ TE∗(X). Then (α, β) ∈ R∗ if and only if π(α) =
π(β).

Proof. If π(α) = π(β), then by Lemma 2.1, (α, β) ∈ R in TX . Hence (α, β) ∈
R∗.

Conversely, suppose that (α, β) ∈ R∗, by Lemma 2.3, for all δ, γ ∈ TE∗(X),
δα = γα if and only if δβ = γβ. Define δ : X → X by:

xδ = a, where x ∈ yα−1, y ∈ Xα, a is a fixed element and a ∈ yα−1.

It is easy to verify that δ ∈ TE∗(X), π(δ) = π(α) and δα = 1X · α. Then
δβ = 1X ·β = β which implies that π(δ) refines π(β). That is to say, π(α) refines
π(β). Dually, π(β) refines π(α). Consequently, we have π(α) = π(β). □

As an immediate consequence of the previous theorems we get the following
theorem:
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Theorem 3.3. Let α, β ∈ TE∗(X). Then (α, β) ∈ H∗ if and only if Xα = Xβ
and π(α) = π(β).

Now we consider Green’s *-relation D∗. Let Y,Z be two subsets of X and
φ be a mapping from Y into Z. φ is said to be E-preserving if for any
x, y ∈ Y, (x, y) ∈ E implies (xφ, yφ) ∈ E. φ is said to be E∗-preserving if
for any x, y ∈ Y , (x, y) ∈ E if and only if (xφ, yφ) ∈ E.

Theorem 3.4. Let α, β ∈ TE∗(X). Then (α, β) ∈ D∗ if and only if there exists
an E∗-preserving bijection ρ : Xα → Xβ.

Proof. We define the relation K on TE∗(X) by the rule:

(α, β) ∈ K if and only if there exists an E∗-preserving bijection:
ρ : Xα → Xβ.

Suppose that (α, β) ∈ L∗, then Xα = Xβ. Clearly (α, β) ∈ K and so
L∗ ⊆ K. Next, we suppose that (α, β) ∈ R∗, then π(α) = π(β). Clearly
|Xα| = |Xβ|. Define ρ : Xα → Xβ by:

xρ = xα−1β.

It is easy to verify that ρ : Xα → Xβ is an E∗-preserving bijection. Further,
(α, β) ∈ K and so R∗ ⊆ K. Therefore D∗ ⊆ K.

Conversely, suppose that (α, β) ∈ K, then there exists an E∗-preserving
bijection ρ : Xα → Xβ. Define γ : X → X by:

xγ = aρ, where x ∈ aα−1 and a ∈ Xα.

It is easy to verify that γ ∈ TE∗(X), π(γ) = π(α) and Xγ = Xβ. So that
(α, γ) ∈ R∗ and (γ, β) ∈ L∗. Thus (α, β) ∈ D∗ and so K ⊆ D∗.

Consequently, we have D∗ = K. □
The discussion of the last relation J ∗ is more complicated than the others.

We first observe a necessary condition for two elements of TE∗(X) to be J ∗-
related.

Theorem 3.5. Let α, β ∈ TE∗(X), (α, β) ∈ J ∗ then |Xα| = |Xβ|.

Proof. Suppose that (α, β) ∈ J ∗, then J∗(α) = J∗(β). Let

I(X,β) = {γ ∈ TE∗(X) : |Xγ| ≤ |Xβ|}.

It is easy to verify that I(X,β) is a *-ideal of TE∗(X) to which β belongs.
Since α ∈ J∗(α) = J∗(β) ⊆ I(X,β), then |Xα| ≤ |Xβ|. Dually, we obtain the
same result for β. Hence |Xα| = |Xβ|. □

Next we characterize Green’s *-relation D∗ and J ∗ when X is a finite set.

Theorem 3.6. Let X be a finite set, then on the semigroup TE∗(X), D∗ = J ∗.
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Proof. Suppose that (α, β) ∈ J ∗, then J∗(α) = J∗(β). Let

I(X,β) = {γ ∈ TE∗(X) : |Xγ| < |Xβ|}∪
{γ ∈ TE∗(X) : there exists an E∗-preserving bijection ρ : Xγ → Xβ}.

It is easy to verify that I(X,β) is a *-ideal of TE∗(X) to which β belongs.
Since α ∈ J∗(α) = J∗(β) ⊆ I(X,β), then |Xα| < |Xβ|, or there exists an
E∗-preserving bijection ρ : Xα → Xβ.

Dually, we obtain the same results for β. Hence there exists an E∗-preserving
bijection ρ : Xα → Xβ. By Theorem 3.4, so that (α, β) ∈ D∗. Further,
J ∗ ⊆ D∗. It is well known that D∗ ⊆ J ∗. Consequently, we have D∗ = J ∗. □

4. Abundant semigroups

In this section we investigate some conditions under which the monoid
TE∗(X) is abundant.

Theorem 4.1. For each α ∈ TE∗(X), there exists an idempotent e ∈ TE∗(X)
such that π(e) = π(α). Consequently, each R∗-class of TE∗(X) contains an
idempotent.

Proof. Define e : X → X by:

xe = a ∈ xαα−1, where a is a fixed element.

It’s easy to verify that e ∈ TE∗(X), e2 = e and π(e) = π(α). By Theorem 3.2,
we have (e, α) ∈ R∗. □

However, the conclusion is not true for L∗-classes. In other words, there
may be no idempotent in L∗-classes.

Example 4.2. Let X = {1, 2, 3, · · · } and E = I. Let

α =

(
1 2 3 · · ·
2 3 4 · · ·

)
It is easy to verify that there is not idempotent e ∈ TE∗(X) such thatXe = Xα.

Theorem 4.3. Let α ∈ TE∗(X), L∗
α contains an idempotent if and only if

A
∩
Xα ̸= ∅ for all A ∈ X/E.

Proof. If A
∩

Xα ̸= ∅ for all A ∈ X/E, then we define e : X → X by:

xe =

{
x if x ∈ Xα
a if x ∈ A \Xα. where a ∈ A

∩
Xα

.

It is easy to verify that e ∈ TE∗(X), e2 = e and Xe = Xα. By Theorem 3.1,
we have (e, α) ∈ L∗.

Conversely, suppose that (e, α) ∈ L∗ and e2 = e, then for all A ∈ X/E,
Ae ⊆ A. Hence A

∩
Xe ̸= ∅. So by Theorem 3.1, A

∩
Xα ̸= ∅. □
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Theorem 4.4. TE∗(X) is abundant if and only if |X/E| is finite.

Proof. If |X/E| is infinite, without loss of generality, we may assume that
X/E = {A1, A2, A3, · · · }. Define α : X → X by:

for x ∈ Ai, xα = ai+1, where ai+1 ∈ Ai+1, i = 1, 2, 3, · · · .

It is clear that α ∈ TE∗(X) and A1

∩
Xα = ∅. So by Theorem 4.3, there is

no idempotent in L∗
α. Hence TE∗(X) is not abundant which contradicts with

TE∗(X) is abundant. Consequently, |X/E| is finite.
Conversely, suppose that |X/E| is finite. It is clear that A

∩
Xα ̸= ∅ for

any α ∈ TE∗(X), A ∈ X/E. So by Theorem 4.1 (Theorem 4.3), any L∗-class
(R∗-class) contain an idempotent. Thus TE∗(X) is abundant. □

The following lemma has been proved in [1].

Lemma 4.5. TE∗(X) is regular if and only if |X/E| is finite.

As an immediate consequence of the previous theorems we the following
theorem.

Theorem 4.6. TE∗(X) is abundant if and only if TE∗(X) is regular.

5. *-Ideal

Throughout this section X/E is an infinite set. Let α ∈ TE∗(X), we put

Z(α) = {A ∈ X/E : A
∩
Xα = ∅}.

For a given nonnegative integer ξ, let

K∗(X, ξ) = {α ∈ TE∗(X) : ξ ≤ |Z(α)| < +∞}.
One can easily prove the following theorem.

Theorem 5.1. (1) If ξ = 0, then K∗(X, ξ) is a *-ideal of TE∗(X).
(2) If ξ > 0, then K∗(X, ξ) is a left *-ideal of TE∗(X).

However, if ξ > 0, K∗(X, ξ) is not a right *-ideal of TE∗(X). In other words,
there may exist α ∈ K∗(X, ξ) such that R∗

α ̸⊆ K∗(X, ξ).

Example 5.2. Let X = {1, 2, 3, · · · } and E = I. Let

α =

(
1 2 3 · · ·
2 3 4 · · · .

)
It is easy to verify that α ∈ K∗(X, 1) and (1X , α) ∈ R∗. But 1X /∈ K∗(X, 1).

Lemma 5.3. Let α, β ∈ TE∗(X), then |Z(αβ)| = |Z(α)|+ |Z(β)|.

Proof. Suppose that

Z(α) = {A1, · · · , Ak} and Z(β) = {B1, · · · , Bl}.
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By β ∈ TE∗(X), so that for i = 1, · · · , k, there exists Ci ∈ X/E such that
Aiβ ⊆ Ci. Thus

Z(αβ) = {C1, · · · , Ck, B1, · · · , Bl}.

Consequently, we have |Z(αβ)| = |Z(α)|+ |Z(β)|. □
By Lemma 5.3, we can obtain following theorem.

Theorem 5.4. If ξ > 0, then all the Green’s relations are trivial in K∗(X, ξ).

Next, we study the Green’s *-relations for K∗(X, ξ)(ξ > 0). Denote by Eα

the restriction of the equivalence E on Xα.

Eα = {(x, y) ∈ E : x, y ∈ Xα}.

Theorem 5.5. Let ξ > 0 and α, β ∈ K∗(X, ξ). Then (α, β) ∈ L∗ if and only
if Xα = Xβ.

Proof. If Xα = Xβ, then by Lemma 2.1, (α, β) ∈ L in TX . Hence (α, β) ∈ L∗.
Conversely, suppose that (α, β) ∈ L∗, by Lemma 2.2, for all δ, γ ∈ K∗(X, ξ),

αδ = αγ if and only if βδ = βγ. If Xα ̸= Xβ, without loss of generality, we
may assume that Xβ \Xα ̸= ∅. Then there exists a ∈ Xβ \Xα and bβ = a
for some b ∈ X. There are two cases to consider:

Case 1. a ∈ A ∈ X/E and A
∩
Xα ̸= ∅. Without loss of generality, we

may assume that there exists c ∈ A
∩
Xα. By α ∈ TE∗(X), |X/E| = |Xα/Eα|.

Further, there exists an E∗-preserving mapping:

ρ : X \A → Xα \A.

Define δ : X → X by:

xδ =

{
x if x ∈ A
xρ else

.

Define γ : X → X by:

xγ =

 c if x = a
x if x ∈ A \ {a}
xρ else

.

It is easy to verify that δ, γ ∈ K∗(X, ξ) and αδ = αγ. However,

bβδ = aδ = a ̸= c = aγ = bβγ.

This contradicts with βδ = βγ.

Case 2. a ∈ A ∈ X/E and A
∩
Xα = ∅.

The proof is identical to that of Case 2 of Theorem 3.1.
Consequently, we have Xα = Xβ. □

Theorem 5.6. Let ξ > 0 and α, β ∈ K∗(X, ξ). Then (α, β) ∈ R∗ if and only
if π(α) = π(β).
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Proof. If π(α) = π(β), then by Lemma 2.1, (α, β) ∈ R in TX . Hence (α, β) ∈
R∗.

Conversely, suppose that (α, β) ∈ R∗, by Lemma 2.3, for all δ, γ ∈ K∗(X, ξ),
δα = γα if and only if δβ = γβ. If π(α) ̸= π(β), without loss of generality, we
may assume that there exist x1, x2 ∈ A ∈ X/E such that

x1 ̸= x2, x1αα
−1 = x2αα

−1 and x1ββ
−1 ̸= x2ββ

−1.

There are two cases to consider:
Case 1. A

∩
Xα ̸= ∅.

Since α ∈ TE∗(X), then |X/E| = |Xα/Eα|. Further, there exists an E∗-
preserving mapping:

ρ : X \A → Xα \A.

Define δ : X → X by:

xδ =

{
x1 if x ∈ A
xρ else

.

Define γ : X → X by:

xγ =

{
x2 if x ∈ A
xρ else

.

It is easy to verify that δ, γ ∈ K∗(X, ξ) and δα = γα. However,

Aδβ = x1β ̸= x2β = Aγβ.

This contradicts with δβ = γβ.
Case 2. A

∩
Xα = ∅.

Define δ : X → X by:

xδ =

{
x1 if x ∈ A
xα else

.

Define γ : X → X by:

xγ =

{
x2 if x ∈ A
xα else

.

It is easy to verify that δ, γ ∈ K∗(X, ξ) and δα = γα. However,

Aδβ = x1β ̸= x2β = Aγβ.

This contradicts with δβ = γβ.
Consequently, we have π(α) = π(β). □
As an immediate consequence of the previous theorems we have the following

result.

Theorem 5.7. Let ξ > 0 and α, β ∈ K∗(X, ξ). Then (α, β) ∈ H∗ if and only
if Xα = Xβ and π(α) = π(β).
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Theorem 5.8. Let ξ > 0 and α, β ∈ K∗(X, ξ). Then (α, β) ∈ D∗ if and only
if there exists an E∗-preserving bijection ρ : Xα → Xβ.

Proof. The proof is identical to that of Theorem 3.4. □

Theorem 5.9. Let ξ > 0, α, β ∈ K∗(X, ξ) and (α, β) ∈ J ∗. Then |Xα| =
|Xβ|.

Proof. The proof is identical to that of Theorem 3.5. □

6. Rees quotient semigroup

Throughout this section X/E is an infinite set. For a given nonnegative
integer ξ, let

P ∗(X, ξ) = K∗(X, ξ)/K∗(X, ξ + 1)

be the Rees quotient semigroup whose non-zero element α may be thought of
as the element of TE∗(X) with |Z(α)| = ξ. The product of two elements α, β
of P ∗(X, ξ), is 0 whenever their product in TE∗(X) is of |Z(αβ)| ≥ ξ + 1.

We begin our investigation on the properties of P ∗(X, ξ) by first character-
izing the Green’s relations.

Theorem 6.1. Let (α, β) ∈ P ∗(X, 0). Then
(1) (α, β) ∈ L if and only if Xα = Xβ.
(2) (α, β) ∈ R if and only if π(α) = π(β).
(3) (α, β) ∈ H if and only if Xα = Xβ and π(α) = π(β).
(4) (α, β) ∈ D if and only if there exists δ ∈ TE∗(X) such that δ|Xα : Xα →

Xβ is a bijection.
(5) (α, β) ∈ J if and only if |Xα| = |Xβ| and there exist ρ, τ ∈ TE∗(X), for

any A ∈ X/E, we have Aα = Bβρ and Aβ = Cατ for some B,C ∈ X/E.

Proof. The proof is identical to that of TE∗(X) in [1]. □

By Lemma 5.3, we can obtain the following theorem.

Theorem 6.2. If ξ > 0, then all the Green’s relations in P ∗(X, ξ) are trivial.

Next, we study the Green’s *-relations for P ∗(X, ξ).

Theorem 6.3. Let (α, β) ∈ P ∗(X, ξ). Then the following statements are hold.
(1) (α, β) ∈ L∗ if and only if Xα = Xβ.
(2) (α, β) ∈ R∗ if and only if π(α) = π(β).
(3) (α, β) ∈ H∗ if and only if Xα = Xβ and π(α) = π(β).
(4) (α, β) ∈ D∗ if and only if there exists an E∗-preserving bijection ρ :

Xα → Xβ.
(5) If (α, β) ∈ J ∗, then |Xα| = |Xβ|.
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Proof. If ξ = 0, the proof is similar to that of TE∗(X). If ξ > 0, the proof is
similar to that of K∗(X, ξ). □
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