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ABSTRACT. Let My m be the set of all n x m matrices with entries
in IF, where [F is the field of real or complex numbers. In this paper
we introduce the relation gs-majorization on Myu m. We study some
properties of this relation on Mn m. We also characterize all linear
operators that preserve (or strongly preserve) gs-majorization on
Mi,m.

1. Introduction

A matrix R € My, where all its row sums are equal to one is said
to be a g-row stochastic matrix and a g-column stochastic matrix is
the transpose of a g-row stochastic matrix. A matrix D € M, with
the property that D and D! are g-row stochastic matrices is said to
be g-doubly stochastic. The set of all g-doubly stochastic matrices is a
convex set in My. For more information see [5].
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The notion of majorization plays an important role in mathematics,
statistics and economics. We begin with the definition of matrix ma-
jorization. Let A and B be n x m real matrices.

(1) If there exists an n x n doubly stochastic matrix D such that
A = DB, then A is said to be multivariate majorized by B, and this is
denoted by A <,, B.

(2) If for every x € R™, Ax is vector majorized by Bz, then A is said
to be directionally majorized by B, and this is denoted by A <4 B.

The definitions of multivariate and directional majorization are mo-
tivated by the theorem of Hardy-Littlewood and Polya for vector ma-
jorization which says that for x,y € R™, x < y if and only if there exists
an n X n doubly stochastic matrix D such that x = Dy. For more
information see [2], [3], [6] and [9].

Now we introduce the notion of gs-majorization on My m as follows.

Definition 1.1. Let A,B € My . The matrix B is said to be gs-
majorized by A if there exists an n x n g-doubly stochastic matrix D
such that B = DA. This is denoted by A >4s B.

Let ~ be a relation on My m . A linear operator T : My m — Mpm
is said to be a linear preserver (or strong linear preserver) of ~ if T'(z) ~
T(y) whenever x ~y (or T'(z) ~ T(y) if and only if = ~ y).

Li and Poon proved the following result regarding the linear preservers
of multivariate majorization.

Proposition 1.2. [7, Theorem 2| Let T : My m—Mnm be a linear
operator, then T preserves directional majorization if and only if T pre-
serves multivariate majorization if and only if one of the following holds:

(a) There exist Ay, ..., Ay € My m, such that T(X) =Y. ™tr(xz;)A;,
where xj is Gt column of X.

(b) There exist R,S € Mpm and permutation P € My, such that
T(X)= PXR + JXS.

=1

The main result of this paper is to characterize all linear preservers of
gs-majorization on My m. Let T be a linear preserver of gs-majorization
on My, m, then one of the following holds:

(i) T(X) = 252, tr(z;)Aj,

where Ay, -+, A, € My m and z;j is 4t column of X, or
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(ii) T(X) = [AlXCLl’ T |AmXam] + JXS,

where S € My, a1, ,a, € F™ and Ay, -+, Ay € GDy, are invert-
ible.

The following elementary properties of gs-majorization on My, are
used throughout this paper.

Let X,Y € Muym, 4, B € GD,, C € My, and «a,3 € F such that
A, B and C are invertible and « # 0. Then the following conditions are
equivalent:

(1) X >4 Y,
(2) AX =45 BY,
(3) aX + B +gs OY + B,
(4) XC =4 YC,
where J, ,, is the n x m matrix with all entries equal to one.

Throughout this paper, GR,, GC,, and GD,, are the sets of g-row
stochastic, g-column stochastic and g-doubly stochastic matrices, re-
spectively. Also J is the n x n matrix with all entries equal to one.

2. Linear preservers of gs-majorization on F"

In this section we will characterize all linear operators that preserve
(or strongly preserve) gs-majorization on F". The following propo-
sition gives an equivalent condition for gs-majorization on F". Let
e=(1,..,1)t € F".

Proposition 2.1. Let x and y be two distinct vectors in F". Then,
x g5y if and only if x ¢ span{e} and tr(z)= tr(y).

Lemma 2.2. Let T : F" — F" be a linear operator. Then T pre-
serves the subspace {x € F" : Jx = 0} if and only if there exists
A € span(GC,,) such that T(x) = Ax, for each x € F™.

Proof. Let A € My, be the matrix representation of 7" with respect to
the standard basis of F". Let A € span(GCy), it is easy to show that
T preserves the subspace {z € F" : Jx = 0}.

Conversely, let T preserve the subspace {z € F" : Jx = 0}, then
J(T(e; —ej)) =0, for all 1 < i,5 < n, so J(A(e; —e;)) = 0, thus
> R_10ki = > j—10k;. Therefore, A € span(GCy). O
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By Lemma 2.2, we may state the following Proposition.

Proposition 2.3. Let T : F* — F™ be a linear operator that preserves
gs-magjorization. Then there exists A € span(GCy) such that T(x) =
Az, Vx € F".

We obtain a result similar to Ando’s Theorem in [1], for gs-majorization.

Theorem 2.4. Let T : F"* — F” be a linear operator. Then T preserves
gs-majorization if and only if one of the following holds :

(a) T'(z) = tr(x)a, for some a € F".

(b) T(x) = aDz + BJz, for some a,3 € F and invertible matriz
D € GD,,.

Proof. Let A € M, be the matrix representation of T' with respect
to the standard basis of F". If (a) or (b) holds, it is clear that T' pre-
serves gs-majorization. Conversely, let T' preserve gs-majorization. We
consider two parts:
Part (i): Let there exist b € (F" \ span{e}), such that T'(b) = se, for
some s € F. We consider two cases;
Case 1; Let tr(b)=0, then tr(Ab)=0, by Proposition 2.3. Hence

J(Ab) =0=J(se)=0=>se=0=s=0=T(b)=0 = Ab=0.

By Proposition 2.1, b >gs (e; —€j), for 1 < i,5 < n, so 0 = Ab >4
A(e; — e;) and hence Ae; = Ae;, for 1 <i,j <n. Then, A = [a]---]a],
for some a € F". Thus, T'(z) = tr(z)a, Vo € F".
Case 2; Let tr(b) = d # 0. Consider the basis{deq, - - ,dey } for F™.
By Proposition 2.1, b =45 de;, for all 1 < i < n. Then, T'(b) >4s 6T (e;)
and hence se =45 6T (e;) . Therefore, T'(e;) = e, for all 1 <i < n, so
T(x) = tr(x)(5e), Vo € F".
Part(ii): Let x ¢ span{e} imply that T'(z) ¢ span{e}. We consider
two cases;
Case 1; Let T be invertible. Then there exists b € F™ such that
T(b) = e, so by hypothesis b = se, for some s € F. Thus Ae = %e
and hence A € span(GR,,). Also A € span(GC,y), by Proposition 2.3.
Therefore, A € span(GDy,). Put D = sA, a = % and 8 = 0. So,
T(z) = aDzx + BJx.
Case 2; Let T be singular. By hypothesis, Ker(A)= span{e}, then
% € GR,,. It is clear that, % preserves gs-majorization, therefore,
by Proposition 2.3, % € GD,,. We will show that A + J is invertible.
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If x is in ker(A + J) then Az = —Jx lies in the span{e}, and hence
so does x by the hypothesis of part(ii), thus z = re for some r € F.
Then, (A + J)(re) = 0 implies that 7 = 0 and hence z = 0. Therefore,
A + J is invertible. Define D = %,a = n and § = —1. Then
T(x) =aDz+ pJz . O
Let T': My m—Munm be a linear operator that strongly preserves gs-
majorization. It is easy to show that T is invertible.

Corollary 2.5. Let T : F" — F™ be a linear operator. Then T strongly
preserves gs-magjorization if and only if T(x) = aDx, for some nonzero
scalar o € F and invertible matric D € GDy,.

3. Linear preservers of gs-majorization on M,

In this section we characterize all linear operators that preserve (strongly
preserve) gs-majorization on My m.

Lemma 3.1. Let A € GDy, be invertible. Then the following conditions
are equivalent:

(a) A= al + (3J, for some o, BE T,

(b) (x + Ay) >g¢s (Dx + ADy), for all D €GDy and for all x,y € F"

Proof. a — b) If A = ol + 3J, it is easy to show that (x + Ay) >gs
(Dx + ADy) for all D eGD,, and =,y € F".

b — a) The matrix A is invertible. Thus, for every 1 < i < n there
exists y; € F™ such that Ay; = e —¢; . It is trivial that tr(y;) = n — 1.
By hypothesis (e; + Ay;) >4s (De; + ADy;), VD € GDy, and hence
e >gs (De; + ADy;), VD € GDy,. Thus,

(De; + ADy;) = e, VD € GDy,. (3.1)

It is clear that [J — (n—1)A] € GDy and hence D[J — (n—1)A] € GDy,
VD € GDy,. Therefore, by (3.1),
D[J—(n—1)Ale; + AD[J — (n—1)Aly; = ¢
= (DA —AD)e; =0, forall1<i<n
= AD = DAY D € GD,,. (3.2)
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Put D = Pj; in (3.2), where P;; is the permutation that interchanges
the i and j** rows of the identity matrix. Then, Pj;A = APy, so
A = al + 8J, for some «, g€ F. d

Lemma 3.2. Let T1,Ty: F"™ — F" satisfy Ti(x) = aAx 4+ BJx and
Ty(xz) = tr(z)a, for some o, € F, a # 0, invertible matriz A € GDy,
and a € (F™\ span{e}). Then there exist a g-doubly stochastic matriz D
and a vector x € F™ such that Ty (z) + Ta(x).

Proof. Assume that, if possible, T (x) + Ta(z) >¢s T1(Dx) + To(Dzx),

V' D € GDy, Vo € F". Then by elementary properties of gs-majorization,
aAx + tr(z)a =45 «ADx + tr(z)a,V D € GDy ,Vz € F".

Put b:éa. Then

Ax +tr(x)b =g ADx +tr(x)b, VD € GDy, , Vx € F". (3.3)

The matrix A is invertible thus there exists zg € F" such that Azg =
(e —b). Put @ = xg — ("==®)ye in (3.3). Then ADzy = (e — b),

V D € GDy, so b € span{e} and hence a € span{e}, which is a contra-
diction. 0

Now, we state the main theorem of this section.

Theorem 3.3. Let T': Mym — Mum be a linear operator that pre-
serves gs-majorization. Then one the following holds:

(i) There exist A1, -+, Am € Mnm such that T(X)=3";_"tr(z;)A;,
where X = [z1] - - |Tm)].

(ii) There exist S € Mp, a1, -+ ,a;, € F™ and invertible matrices
Ay, -+, Ay € GDy, such that T(X)=[A1Xay|- - |AmXan] + JXS.

Proof. Define the embedding F7:F" — My m by E’(z) = ze;' and
projection E; :Mpm — F" by E;j(A) = Ae; for 1 < 4,5 < m. Put
T/ = E;TE’. Then,

T(X) =Tlwr| - om] = DT (@5)] -+ 1> Th,(x5)]. (3.4)
=1 =1

It is easy to show that T;7:F* — F" preserves gs-majorizaton. Then
each T;7 is of the form (a) or (b) in Theorem 2.4. Now, we consider two
cases:
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Case 1; Let Ty/(x) = tr(z)a;y, for some a7 € F*, V 1 < i,j
m. Define A; = [ay’| - |an?]. By (3.4), it is clear that T'(X)
> j=1"tr(z;)A; . Hence the condition (i) holds.

Case 2; Let there exist 1 < p,q < m, such that T,9(z) = 7,7B,% +
01 Jz, for some 1,01 € F, v # 0, and invertiblg matrix qu € GDI?.

Step 1. We show that for all 1 < j < m, Tg(x) = o’ Apx + By J,
for some o, 8,7 € F, and invertible matrix A, € GDnp.

For every z,y € F", define B, , = E’(z) + E%(y) € Mpm. Then for
every D € GDy,

I IA

Byy =gs DByy = T(Bgy) >gs T(DByy)
= [T{(z) + T{W)| - |T3.(z) + T3, (y)]
=gs [T{ (Dz) + T{ (Dy)| - - |T7,(Dz) + T}, (Dy)]
= T3(x) + Tj(y) »gs Ty (Dz) + T(Dy),
VD € GD,, . (3.5)

Then by Lemma 3.2, Tg(a:) = ’yngx + 5;{;Jx, for some fyg, (5% e IF, and
invertible matrix BZJ; € GD,,. Put Tg(:c) = ’ynga: + cing as in (3.5).
Thus

Y Blx + 6 Jx + IBly + 61y

=gs 'yngD:L‘ + 513;JD$ + v BiDy + 63J Dy

= Wngx + v By =gs WgBIJ;Dx + v, BiDy

= (VB Ba +y =gs (EBE) " '7)B)Dx + Dy

vD € GD,, . (3.6)

If 71; = 0, we choose BZJ; = 0. Let 713; # 0 then, by Lemma 3.1, Bg =
rg‘Bg+s%J, for some 'r;;, s;{; € . Define A, = B , then Tg(x) = ag,Apx—i—
By Jz, for some o, , ) € F.

Step 2. Now, we show that, for all 1 <i,j <m, T/ are of the form (b)
of Theorem 2.4. By Step 1, Tg(x) = oz%Ap:E + By Jx. For every z € F",
define B, = E’(x). Then for all D € GDy,

By =¢s DB, = T(B;) >¢s T(DBy)
= [T (z)] - |T},(2)] =gs [T{(Dz)| - - |15, (D)]
= TJ(x) + T/ (x) =gs TJ(Dz) + T/ (Dx),YD € GDp.
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) .
invertible matrix B} € GDy. Now again by Step 1, T/ (z) = ol Az +
B Jz, for some o, 3] € F and invertible matrix A; € GDy,. For every
1 < i <'m, define

Thus by Lemma 3.2, TZJ(JZ) = yngx + 5{Ja:, for some ~7,6 € F and

a; Bi o B
a; = and S = : : :
a;" o B
Then,
T(X) = Tlaa|--|wm] = 3T (25)] - | D T ()]
j=1 j=1
=AY adagl - [An D o] + T Blagl--- | By
j=1 j=1 j=1 j=1
= [AlXa1| s ]AmXam] + JXS
Hence the condition (ii) holds. O

Corollary 3.4. Let T satisfy the condition (ii) of Theorem 3.3 and let
rank[ai| - |apm) > 2. Then T(X) = AXR+JXS, for some R, S € M
and invertible matriz A € GDy,.

Proof. Without loss of generality, let {a1,as} be a linearly independent
set. Let X € My m, D € GDy be arbitrary. Then

X =46 DX = T(X) =4, T(DX)

= [AlXall\AmXam] ~gs [AlDXall\AmDXam]

= A1 Xa1 + Ay Xas ~gs A1DXay + AsDXao

= Xay + (A1 A9)Xag =gs DXay + (A7 A2)DXas . (3.7)
Since {a,as} is linearly independent, for every z,y € F", there exists
By € My m such that B, , a1 = x and B,y as = y. Put X = B, , as
in (3.7). Thus,
Byy a1+ (A7 A9) Byy as g5 DByy as+ (A7 As) DB,y as =

x4+ (AT As) y =45 Dx+ (A7'A2)Dy VD € GD,, .

Then by Lemma 3.1, Al_lAg = ol + 3J and hence A = aA; + 3J, for
some o, 8 € F, a # 0.
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For every ¢ > 3, if a; = 0 we can choose A; = Ay. If a; # 0 then
{a1,a;} or {ag,a;} is linearly independent. Then by the same argument
as above, A; = v;A1+6;J, for some v;,8; € F, v, £ 0, or A; = N\ Ao+,
for some \;, u; € F, A; #£ 0.

Define A = A;. Then for every ¢ > 2, A; = oA + 5;J, for some
«;, B; € F and hence

T(X)=[AXa1 | AX(r2a2)|---|AX (rmam)] + JXS = AXR+ JXS,

where, R = [ai|r2az|- - |rmam], for some ro,--- 1, € F and S is the
same as in Theorem 3.3. O
The following example shows that if rank[ay]|- - |a;,] = 1, the above

corollary does not hold when F = R.

Example 3.5. Let 7' : Mgy — Mg be defined by T'(X) = [Xe; |

0 0 1
PXe;| where P = ( 1 00 ) . We show that T preserves gs-majorization,
010

and T is not of the form T(X) = AXR + JXS in Corollary 3.4. Let
X=[x|d),Y=[yl|y]e€Mszand X -, Y. Now we consider two
cases:

Case 1; Let € span{e}, then y = z, therefore, T'(X) =T(Y).

xy Y1
Case 2; Let = ¢ span{e}. Put z = ( o ), y = ( Yo ), then
T3 Y3
T+ 22 + 23 = y1 + y2 + y3 .Set

R:<$1—ﬂ?3 332—563).
T3 — T2 T1 — X2
It is clear that R is invertible. Define,
1 ro 1—(r1+72)
D := 51 S9 1—(s1+ s2) )
1—(

ri+s1) 1—(ro+s2) ri+ro+si+s2—1

(T1>:R—1(y1—$3> and (81):R—1<y2—5€3 )
) Y3 — T2 52 Y1 — T2

It is easy to check that D € GDg, Dx = y and D Pz = Py. Therefore,
T preserves gs-majorization.
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Finally we show that T is not of the form T'(X) = AXR+ JXS as in
Corollary 3.4 . Assume that, if possible, T'(X) = AXR+ JXS, for some
R,S € My, and invertible matrix A € GDy,. Then AXR + JXS =
[X61 ‘ PXel], VX € M3’2, SO

[AXR, + JXS) | AXRy+JXS5]=[Xe; | PXe)] VX € Mg,

where R; and S; are i*" column of R and S respectively. Let z € F3 be
arbitrary. Put X = [z | 0] in the above equation, then [ri1 Az +s11Jz |
r19Az + s12Jz]= [z | Pz], Vo € F3. Therefore, P = ol + 3.J, for some
a, B € F, which is a contradiction.

Lemma 3.6. Let T : Mym—Mum be a linear operator, such that,
T(X)=DXR+ JXS for some R,S € My, and invertible matriz D €
GD,,. Then T is invertible if and only if R and (R+nS) are invertible.

Proof. Without loss of generality, we can assume that D = I. Let A
be the matrix representation of 7" with respect to the standard basis of
M, m. Then, it is easy to show that A is similar to the following block
matrix,

R+nS § --- S
0 R --- S
0 0 --- R

Therefore, T is invertible if and only if R and (R+nS) are invertible. [

Theorem 3.7. Let T : Mym — Mum be a linear operator. Then T
strongly preserves gs-majorization if and only if T(X) = AXR+ JXS
for some R, S € My, and invertible matriz A € GDy, such that, R and
R 4+ nS are invertible .

Proof. If m=1, the result holds by Corollary 2.5. So let m > 2.
Let T(X) = AXR 4+ JXS, such that R and (R + nS) are invertible.
Let X >4 Y. It is easy to show that T'(X) >, T(Y). Now, let
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T(X) »¢s T(Y). Then, DT(X) =T(Y), for some D € GDy. Thus,

DT(X)=T(Y) = DAXR+JXS=AYR+JYS
= JIDAXR+ JXS] = JJAYR + JYS]
= (JX)(R+nS)=(JY)(R+nS)
= JX=JY.

Then, (A"'DA)X =Y. Therefore, X =45 Y.

Conversely, let T strongly preserve gs-majorization. Then T is in-
vertible and by Theorem 3.3, T'(X) = [A1 X a1|...|AmXan] + JX S, for
some S’ € M,,, a1, -+ ,a, € F™ and invertible matrices Ay, ..., A4,, €
GD,. We show that rank[a;|...|a,,] > 2. Assume that, if possible,
{a1,...,am} C span{a}, for some a € F". Since m > 2, we choose
0 # b € (span{a})t. Define, Xy € My, such that the first and the
second rows are b* and —bf, respectively, and the other rows are zero. It
is clear that Xy # 0 and T'(X() = 0, which is a contradiction. Then by
Corollary 3.4, there exist R, S € My, and invertible matrix A € GDy
such that T(X) = AXR+ JXS. Hence by Lemma 3.6, R and R + nS
are invertible. Il
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