Approximate solution of dual integral equations

Document Type: Research Paper

Authors

Faculty of Mathematical Sciences‎, ‎University of Tabriz‎, ‎Tabriz‎, ‎Iran.

Abstract

‎We study dual integral equations which appear in formulation of the‎ ‎potential distribution of an electrified plate with mixed boundary‎ ‎conditions‎. ‎These equations will be converted to a system of‎ ‎singular integral equations with Cauchy type kernels‎. ‎Using‎ ‎Chebyshev polynomials‎, ‎we propose a method to approximate the‎ ‎solution of Cauchy type singular integral equation which will be‎ ‎used to approximate the solution of the main dual integral‎ ‎equations‎. ‎Numerical results demonstrate effectiveness of this method.

Keywords

Main Subjects


U. Basu and B. N. Mandal, Techniques in Applied Mathematics, Alpha Science, Narsu, 2007.

A. Chakrabarti and G. V. Berghe, Approximate solution of singular integral equations, Appl. Math. Lett. 17 (2004), no. 5, 533--559.

A. Chakrabarti and S. C. Martha, Methods of solution of singular integral equations, Math. Sci. (2012) 29 pages.

N. I. Ioakimids, A new method for the numerical solution of singular integral equations appearing in crack and other elasticity problems, Acta Mech. 39 (1981), no. 1-2, 117--125.

A. J. Jerry, Introduction to Integral Equations with Applications, Second Edition, Wiley-Interscience, New York, 1999.

S. R. Manam, On the solution of dual integral equations, Appl. Math. Lett. 20 (2007), no. 4, 391--395.

J. C. Mason and D. C. Handscomb, Chebyshev Polynomials, Chapman & Hall/CRC, Boca Raton, 2003.

C. Nasim and B. D. Aggarwala, On some dual integral equations, Indian J. Pure Appl. Math. 15 (1984), no. 3, 323--340.

I. N. Sneddon, The elementary solution of dual integral equations, Proc. Glasgow Math. Assoc. 4 (1960) 108--110.

M. N. Snyder, Chebyshev Methods in Numerical Approximation, Prentice-Hall, Inc., Englewood Cliffs, 1966.

M. R. Spiegel, Mathematical Handbook of Formulas and Tables, Schaum's Outline Series, McGraw-Hill, 1968.