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Abstract. We study dual integral equations which appear in formula-

tion of the potential distribution of an electrified plate with mixed bound-
ary conditions. These equations will be converted to a system of singular
integral equations with Cauchy type kernels. Using Chebyshev polyno-

mials, we propose a method to approximate the solution of Cauchy type
singular integral equation which will be used to approximate the solution
of the main dual integral equations. Numerical results demonstrate effec-
tiveness of this method.
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1. Introduction

Many problems in different branches of mathematical physics and in par-
ticular boundary value problems with mixed boundary conditions (See [1] and
[5]) can be formulated as dual integral equations (DIEs). Sneddon[9] has solved
certain DIEs which appear in solving mixed boundary value problems by Han-
kel transforms. Nasim et al. [8] studied some DIEs with the kernels involv-
ing Bessel, Hankel and trigonometric functions. Manam [6] proposed a quick
method of solution for DIEs involving trigonometric kernels.

Solving DIEs can be reduced to solving a Cauchy type singular integral
equation (SIE) or a system of such equations. The SIEs have been studied by
many researchers (see for example Ioakimids [4] and Chakrabarti et al. [2, 3]).

In the next section we illustrate formulation of a mixed boundary value
problem, which will result in the DIEs

(1.1)

∫ ∞

−∞
A(λ) eiλy dλ =

√
2πg(y) , |y| < a
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and

(1.2)

∫ ∞

−∞
|λ| A(λ) eiλy dλ = 0 , |y| > a

in terms of the unknown function A(λ). Decomposing the kernels of these DIEs
will result a system of DIEs with trigonometric kernels which will be converted
to a system of Cauchy type SIEs. Section 3 demonstrates the proposed method
based on orthogonality of Chebyshev polynomials on the interval [−1, 1] and
use of Fourier-Chebyshev series. In the last section illustrative examples are
given to show efficiency of our proposed method.

2. Modeling

We consider the potential distribution u(x, y) in the half-plane x > 0 (be-
cause of symmetry), due to the presence of a plate of width 2a (see Fig.1)
placed along the y axis with center at the origin and extending in the z direc-
tion (see [5], p.124). The plate is kept at a potential u(0, y) = g(y),−a < y < a
and where the rest of the yz plane is assumed to be insulated. The potential

Figure 1. The electrified plate

distribution in free space here is assumed to be independent of z. Thus u(x, y)
is formulated as

(2.1)
∂2u

∂x2
+
∂2u

∂y2
= 0 , x > 0 , −∞ < y <∞

with the following boundary conditions

(2.2) u(0, y) = g(y) , −a < y < a
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and

(2.3)
∂u(0, y)

∂x
= 0 , |y| > a.

Using the Fourier exponential transform, we let

(2.4) U(x, λ) =
1√
2π

∫ ∞

−∞
u(x, y)e−iλydy,

and use the Fourier-transform to the Laplace equation (2.1) to obtain

(2.5)
d2U(x, λ)

dx2
− λ2U(x, λ) = 0.

General solution of (2.5) is as

(2.6) U(x, λ) = A(λ)e−|λ|x +B(λ)e|λ|x.

Here, as x → ∞ the term involving the positive exponential factor e|λ|x will
blow up, therefore in (2.6), one should let B(λ) = 0, consequently

(2.7) U(x, λ) = A(λ)e−|λ|x.

The mixed conditions (2.2)-(2.3) at x = 0, are not suitable for the substitution
in (2.4), since they are given as function for |y| < a and as derivative of a
function for |y| > a, respectively. Therefore we can’t find A(λ) in (2.7), hence
we proceed to find u(x, y) as the inverse Fourier transform of (2.7),

(2.8) u(x, y) =
1√
2π

∫ ∞

−∞
A(λ)e−|λ|xeiλydλ.

Now, we can apply the mixed boundary conditions (2.2)-(2.3) on u(x, y) above
to obtain the DIEs (1.1) and (1.2) in A(λ).

Throughout this paper, we set a = 1 (this can be considered by rescaling the

parameters). To find a real type solution in (1.1)-(1.2), we consider
√
2π g(y) =

g1(y) + ig2(y), where g1 and g2 are real functions on [0, 1]. Equating the real
and imaginary parts in (1.1)-(1.2) yields the following system of dual integral
equations with trigonometric kernels

(2.9)

∫ ∞

0

E(λ) cosλy dλ = g1(y) , 0 < y < 1

(2.10)

∫ ∞

0

λE(λ) cosλy dλ = 0 , y > 1

and

(2.11)

∫ ∞

0

O(λ) sinλy dλ = g2(y) , 0 < y < 1

(2.12)

∫ ∞

0

λO(λ) sinλy dλ = 0 , y > 1,
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where

(2.13) E(λ) = A(λ) +A(−λ) and O(λ) = A(λ)−A(−λ).

Our main goal is to find approximate values of E(λ) and O(λ), since then we
approximate the solution by A(λ) = 1

2 (E(λ) +O(λ)).

3. Description of the method

We explain the procedure of solving (2.9)-(2.10) in details and the other
ones: (2.11)-(2.13), somewhat briefly. For any t > 1, integrating both sides of
(2.10) with respect to y from 0 to t, gives∫ ∞

0

E(λ) sinλt dλ = 0 , t > 1.

For 0 < t < 1, we define

(3.1) φ(t) =

∫ ∞

0

E(λ) sinλt dλ.

Hence for t > 0, we have ∫ ∞

0

E(λ) sinλt dλ = H(t),

where

H(t) =

 φ(t), 0 < t < 1

0, t > 1

therefore, using the inverse sine Fourier transform, we obtain

(3.2) E(λ) =
2

π

∫ ∞

0

H(t) sinλt dt =
2

π

∫ 1

0

φ(t) sinλt dt.

Substituting E(λ) from (3.2) into (2.10) and using the formula∫ ∞

0

sin(λt) cos(λy)dλ =
t

t2 − y2

(see [1], p.26), we have

(3.3)

∫ 1

0

φ(t)
2t

t2 − y2
dt = πg1(y).

Let

(3.4) s = 2t2 − 1 , x = 2y2 − 1.

Then the Eq. (3.3) as the Cauchy type singular integral equation

(3.5)

∫ 1

−1

ψ(s)

s− x
ds = G(x) ,
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where

(3.6) φ(t) = ψ(2t2 − 1) , G(x) = πg1

(
y =

√
x+ 1

2

)
.

Using the Fourier-Chebyshev series, we let

(3.7) G(x) ≃
M∑
n=0

′
cnTn(x) , cn =

2

π

∫ 1

−1

G(x)Tn(x)√
1− x2

dx ,

where the symbol (
∑ ′

) denotes that the first term in the summation is multi-
plied by 1

2 . The coefficients cn can be approximated as

(3.8) cn ≃ 2

M + 1

M+1∑
k=1

G(xk)Tn(xk) , n = 0 , 1 , . . . ,M

in which xk = cos
(

(k− 1
2 )π

M+1

)
, k = 1 , 2 , . . . ,M +1, are the roots of Chebyshev

polynomial TM+1(x).
Using the relation

(3.9)

∫ 1

−1

√
1− s2Un−1(s)

s− x
ds = −πTn(x) , n = 1 , 2 , . . . ,M

(see [7], Chap.8), along with (3.7), we obtain the approximation

(3.10) ψ(s) ≃
M∑
n=1

bn
√

1− s2Un−1(s) , s ∈ [−1, 1] ,

for the Eq. (3.5), where Un’s are the second kind Chebyshev polynomials.
Using (3.10) in (3.5) and (3.9), imply

c0 = 0 and bn = −cn
π
, n = 1 , 2 , . . . ,M.

Due to (3.7) the value c0 = 0, is equivalent to

(3.11)

∫ 1

−1

G(x)√
1− x2

dx = 0 ,

which is the solvability condition. Hence we can represent the solution of (3.5)
as

(3.12) ψ(s) = −
√
1− s2

π

M∑
n=1

cnUn−1(s) ,

which is similar to the solution that is given in [2]. By choosing other kinds of
Chebyshev polynomials in (3.7) one can construct other forms of solution.
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From (3.6) and (3.12), we obtain

φ(t) = ψ(2t2 − 1) = −2t
√
1− t2

π

M∑
n=1

cnU
∗
n−1(t

2) ,

where U∗
n is the shifted second kind Chebyshev polynomial on [0, 1]. Using the

relation 2tU∗
n−1(t

2) = U2n−1(t), φ(t) can be rewritten as

(3.13) φ(t) = −
√
1− t2

π

M∑
n=1

cnU2n−1(t).

On the other hand expanding sin(λt) based on using Bessel’s functions of the
first kind (Snyder[10]), we have

sin(λt) = 2

∞∑
k=0

(−1)kJ2k+1(λ)T2k+1(t)

and using the relation 2Tn(t) = Un(t)− Un−2(t) one gets

(3.14) sin(λt) =
∞∑

m=1

(−1)m−1
[
J2m−1(λ) + J2m+1(λ)

]
U2m−1(t) .

To compute the function E(λ) in (3.2), it is convenient to rewrite it as

E(λ) =
1

π

∫ 1

−1

φ(t) sinλt dt

since the integrand is an even function with respect to t. Hence, using (3.13)
and (3.14), yields

(3.15) E(λ) ≃ 1

2π

M∑
n=1

(−1)ncn
[
J2n−1(λ) + J2n+1(λ)

]
,

by the orthogonality of Um:s in [−1, 1], where cn:s are given by (3.8).
We now briefly describe the process of solving (2.11)-(2.12). Considering

(2.12) we define another unknown function φ̃(y) as

(3.16) φ̃(y) =

∫ ∞

0

λ O(λ) sinλy dλ, 0 < y < 1.

Then using inverse sine Fourier transform, (2.12) and (3.16) return to

(3.17) λO(λ) =
2

π

∫ 1

0

φ̃(t) sinλtdt.

Differentiating (2.11) with respect to y, gives∫ ∞

0

λO(λ) cosλydλ = h(y),



1083 Ahdiaghdam, Ivaz and Shahmorad

where h(y) = π d
dy (g2(y)) and using (3.17), it will be simplified as

(3.18)

∫ 1

0

φ̃(t)
2t

t2 − y2
dt = h(y).

Assuming (3.4), Eq.(3.18) can be written as (3.5), where

(3.19) φ̃(t) = ψ(2t2 − 1) , G(x) = h

(
y =

√
x+ 1

2

)
.

To compute O(λ) from (3.17), it is convenient to rewrite it in the form

(3.20) O(λ) =
1

2

√
2

π

∫ 1

−1

φ̃(t)
sinλt

λ
dt,

Dividing both sides of (3.14) by λ and using Jn(λ)
λ = Jn−1(λ)+Jn+1(λ)

2n (Spiegel
[11]), yield the expansion
(3.21)

sin(λt)

λ
=

∞∑
m=1

(−1)m
[J2m−2(λ) + J2m(λ)

2(2m− 1)
+
J2m(λ) + J2m+2(λ)

2(2m+ 1)

]
U2m−1(t).

Putting (3.21) in (3.20) and using orthogonality of Um:s we conclude that

(3.22) O(λ) ≃ 1

2π

M∑
n=1

(−1)ncn

[J2n−2(λ) + J2n(λ)

2(2n− 1)
+
J2n(λ) + J2n+2(λ)

2(2n+ 1)

]
.

4. Numerical results

In this section, some examples are given to demonstrate the theory estab-
lished in the previous section.

Example 4.1. Let g1(y) = sinh(2y2−1). We find the function E(λ) satisfying
in (2.9)-(2.10).

For this function (3.6) takes the form G(x) = π sinh(x) which is an odd
function and (3.11) holds. By choosing M = 8 in (3.8) the roots of T9(x) will
be used to obtain

c1 = 3.550999380, c3 = 0.1392883220, c5 = 0.0017056518, c7 = 0.0000100475

and the other coefficients are zero. Hence, using (3.15), we obtain

E(λ) ≃ − 1

2π

[
c1(J1(λ) + J3(λ)) + c3(J5(λ) + J7(λ))

+c5(J9(λ) + J11(λ)) + c7(J13(λ) + J15(λ))
]
,

which satisfies the Eq.(2.10). By defining the error function

g1,app(y) =

∫ ∞

0

E(λ) cosλy dλ , 0 < y < 1
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we report the result in Table 1 to confirm accuracy of the approximate solution.

Table 1. Comparison of approximate and exact values of g1

y g1,app(y) g1(y) Absolute Error
0 -1.175201182 -1.175201194 1.1 E-8

0.01 -1.174892590 -1.174892601 1.1 E-8
0.15 -1.106929230 -1.106929219 1.1 E-8
0.24 -1.004851564 -1.004851559 4.8 E-9
0.35 -0.8288004434 -0.8288004543 1.0 E-8
0.5 -0.5210953163 -0.5210953055 1.1 E-8
0.62 -0.2332652412 -0.2332652512 9.7 E-9
0.73 0.06584748590 0.06584749200 6.2 E-9
0.9 0.6604918047 0.6604918021 3.0 E-9
0.98 1.056549150 1.056549136 1.1 E-8

Example 4.2. Let g2(y) = y7 − (2.1)y5 + (1.75)y. Find the function O(λ) for
which the equations (2.11)-(2.12) are satisfied.

In (3.19), one can get G(x) = 7π
8 (x3 − 3x) which is an odd function from

which (3.11) holds. By setting M = 3 in (3.8) the roots of T4(x) will be used
to obtain

c0 = 0 , c1 = −6.185010537 , c2 = 0 , c3 = 0.687223392.

Hence,

G(x) ≃ c1T1(t) + c3T3(t) and φ(t)≃−
√
1− t2

π
(c1U1(t) + c3U3(t))

and using (3.22) one gets

O(λ) ≃ − 1

4π

(
c1J0(λ) +

4

3
c1J2(λ) +

8

15
(c1 + c3)J4(λ) +

12

35
c3J6(λ) +

1

7
c3J8(λ)

)
,

which satisfies the Eq.(2.12). Table 2 demonstrates the accuracy of this solu-
tion by setting

g2,app(y) =

∫ ∞

0

O(λ) sinλy dλ , 0 < y < 1.

5. Conclusion

The boundary integral value problems with mixed boundary conditions can
be formulated as dual integral equations and solving the dual integral equations
is connected to solving singular integral equations. Using Fourier-Chebyshev



1085 Ahdiaghdam, Ivaz and Shahmorad

Table 2. Comparison of approximate and exact values of g2

y g2,app(y) g2(y) Absolute Error
0 0 0 0

0.01 0.017499999785 0.0174999997900 5.0 E-12
0.15 0.262342239752 0.262342239844 6.0 E-11
0.24 0.418373713504 0.418373713674 1.7 E-10
0.35 0.602113798921 0.602113799219 2.8 E-10
0.5 0.817187499482 0.8171875 5.2 E-10
0.62 0.927828250655 0.927828251342 6.9 E-10
0.73 0.952628949865 0.952628950661 7.8 E-10
0.9 0.813267899165 0.8132679 8.3 E-10
0.98 0.684891859135 0.68489185997 1.0 E-9

series, we constructed approximate solutions to Cauchy type singular integral
equations by using orthogonal Chebyshev polynomials.

We conclude that the proposed method is not only useful to approximate
the solution of DIEs but also to approximate the solution of SIE like (3.5). In
comparing with the method of Chakrabarti et al. [2], in our method there is
no need to solve a system of algebraic equations.

We remark here that the boundary value problem (2.1)-(2.3) also describes
the steady-state temperature distribution u(x, y) in the xy plane, due to a given
temperature on the segment |y| < a of the y axis and where the rest of the y
axis is completely insulated. Another physical problem that is represented by
(2.1)-(2.3) is that of the steady irrotational flow of a perfect fluid through the
opening |y| < a of an infinite wall along the y axis.
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