On the bounds in Poisson approximation for independent geometric distributed random variables

Document Type: Research Paper

Authors

University of Finance and Marketing, 2/4 Tran Xuan Soan, District 7‎, ‎Ho Chi Minh city‎, ‎Vietnam.

Abstract

‎The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method‎. ‎Some results related to random sums of independent geometric distributed random variables are also investigated.

Keywords

Main Subjects


A. D. Barbour, L. Holst and S. Janson, Poisson Approximation, Oxford Studies in Probability 2, Clarendon Press, Oxford, 1992.

L. H. Y. Chen, On the convergence of Poisson binomial to Poisson distribution, Ann. Probab. 2 (1974), no. 1, 178--180.

L. H. Y. Chen, Poisson approximation for dependent trials, Ann. Probab. 3 (1975), no. 3, 534--545.

L. H. Y. Chen and D. Leung, An Introduction to Stein's Method, Singapore University Press, Singapore, World Scientific Publishing Co. Pte. Ltd., Hackensack, 2005.

L. H. Y. Chen and A. Rollin, Approximating dependent rare events, Bernoulli, 19 (2013), no. 4, 1243--1267.

P. Deheuvels, A. Karr, D. Pfeifer and R. Sering, Poisson approximations in selected metrics by coupling and semi-group methods with applications, J. Statist. Plann. Inference 20 (1988), no. 1, 1--22.

P. Deheuvels and D. Pfeifer, On a relationship between Uspensky's theorem and Poisson approximations, Ann. Inst. Statist. Math. 40 (1988), no. 4, 671--681.

T. L. Hung and V. T. Thao, Bounds for the Approximation of Poisson-binomial distribution by Poisson distribution, J. Inequal. Appl. 2013:30, (2013), 1--10.

S. Kongudomthrap, Bounds in Poisson Approximation for Random Sums of Bernoulli Random Variables, Journal of Mathematics Research, 4 (2012), no. 3, 29--35.

L. Le Cam, An approximation theorem for the Poisson Binomial distribution, Pacific J. Math., 10 (1960) 1181--1197.

K. Neammanee, A Nonuniform bound for the approximation of Poisson binomial by Poisson distribution, Int. J. Math. Math. Sci. 48 (2003) 3041--3046.

E. Pekoz, Stein's method for geometric approximation, J. Appl. Probab. 33 (1996), no. 3, 707--713.

A. Renyi, Probability Theory, North-Holland Publishing Company, Amsterdam-Lodon, 1970.

R. J. Sering, A general Poisson approximation theorem, Ann. Probab. 3 (1975), no. 4, 726--731.

J. M. Steele, Le Cam's Inequality and Poisson Approximations, Amer. Math. Monthly 101 (1994), no. 1, 48--50.

K. Teerapabolarn and P. Wongkasem, Poisson approximation for independent geometric random variables, Int. Math. Forum 2, (2007), no. 65-68, 3211--3218.

K. Teerapabolarn, A note on Poisson approximation for independent geometric random variables, Int. Math. Forum, 4 (2009), no. 9-12, 531--535.

K. Teerapabolarn, A pointwise approximation for independent geometric random variables, Int. J. Pure Appl. Math. 76 (2012) 727--732.

K. Teerapabolarn, A pointwise approximation for random sums of geometric random variables, Int. J. Pure Appl. Math. 89 (2013), no. 3, 353--356.

H. F. Trotter, An elementary proof of the central limit theorem, Arch. Math. 10 (1959) 226--234.


Volume 42, Issue 5
September and October 2016
Pages 1087-1096
  • Receive Date: 25 December 2014
  • Revise Date: 29 June 2015
  • Accept Date: 29 June 2015