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1. Introduction

Let (Xn,j , j = 1, 2, · · · , n;n = 1, 2, · · · ) be a row-wise triangular array of
independent geometric distributed random variables with success probabilities
P (Xn,j = k) = pn,j(1− pn,j)

k, 0 < pn,j < 1; k = 0, 1, 2, · · · ; j = 1, 2, · · · , n;n =
1, 2, · · · . Let us denote by Sn the number of failures before the nth success in a
sequence of independent Bernoulli trials. Then, Sn = Xn,1+Xn,2+ · · ·+Xn,n.

Write λn = E(Sn) =
n∑

j=1

(1 − pn,j)p
−1
n,j and suppose that lim

n→∞
λn = λ, (0 <

λ < +∞). We denote by Zλn the Poisson random variables with means λn.
Up to the present the Poisson approximation for many discrete distributions

(notably the Poisson-binomial distribution) has received extensive attention in
the literature and many different approaches have been proposed. (see [1, 2,
3, 5, 6, 7, 10, 11, 15, 14] for more details). The problem will be considered
in this paper are similar to those encountered in [8]. Actually, based on a
linear operator due to A. Renyi in [13], some bounds in Poisson approximation
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for non-random sums and random sums of independent geometric distributed
random variables are established.

Let K denote the class of all real-valued bounded functions f on the set of
all non-negative integers Z+ = {0, 1, 2, · · · }. The norm of a function f ∈ K
is defined by ∥f∥= sup

x∈Z+

|f (x)| . The Renyi operator associated with random

variable X, denoted by AX , is given by

(1.1) AXf(x) = E
(
f(X + x)

)
=

∞∑
k=0

f(x+ k)P (X = k),∀f ∈ K, ∀x ∈ Z+.

(Recall the definition in [13]). It is to be noticed that the linear operator defined
in (1.1) is actually a discrete form of the Trotter’s operator (see [20] for more
details).

Let ASn and AZλn
, denote the Renyi’s operators associated with Sn and

Zλn , respectively. The main purpose of this note is to establish the upper
bounds for ∥ ASnf − AZλn

f ∥ in Poisson approximation for independent
geometric distributed random variables. Some bounds related to ∥ ASN f −
AZλNn

f ∥ in Poisson approximation for random sums of independent geomet-

ric distributed random variables are also investigated, with Nn, n = 1, 2, · · · are
positive integer-valued random variables independent of all Xn,1, Xn,2, · · · ;n =
1, 2, · · · . The results in this paper are extensions of published results in [10],
[15, 16, 17, 18, 19, 11, 9]. The present paper is also a continuation of earlier
results in [8].

It is to be noticed that in recent years, based on the Stein-Chen method there
are many papers related to bounds in Poisson approximation for independent
geometric distributed random variables (we refer the reader to [2, 5, 6, 10, 1,
12, 14, 16, 17, 18, 19], and references therein). However, the linear operator
used in this paper is very elementary and elegant. The basic idea is very simple
and based on elementary properties of a linear operator introduced by Renyi
([13], 1970). The results in this note present a new approach to the Poisson
approximation problems for the discrete independent random variables.

2. Preliminaries

In the sequel we shall need some properties of Renyi’s operator in (1.1). We
recall some definitions and notations (see [13] for more details). Let us denote
by AX and AY two Renyi’s operators associated with two discrete random
variables X and Y. Moreover, let α, β be two real numbers and f, g ∈ K. Then,
it is easily seen that

(1) AX(αf + βg) = αAX(f) + βAX(g).
(2) ∥ AX(f) ∥⩽∥ f ∥ .
(3) ∥ AX(f) +AY (f) ∥⩽∥ AX(f) ∥ + ∥ AY (f) ∥ .
(4) ∥ AXAY (f) ∥⩽∥ AY (f) ∥ .
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(5) Suppose that AX1 , AX2 , · · · , AXn are operators associated with the in-
dependent random variables X1, X2, · · · , Xn. Then, for f ∈ K,

AX1+X2+···+Xn(f) = AX1AX2 · · ·AXn(f).

(6) Suppose that AX1 , AX2 , · · · , AXn and AY1 , AY2 , · · · , AYn are opera-
tors associated with independent random variables X1, X2, · · · , Xn and
Y1, Y2, · · · , Yn, respectively. Moreover, assume that all random vari-
ables X1, X2, · · · , Xn and Y1, Y2, · · · , Yn are independent. Then, for
f ∈ K,

(2.1) ∥ A∑n
k=1 Xk

(f)−A∑n
k=1 Yk

(f) ∥⩽
n∑

k=1

∥ AXk
(f)−AYk

(f) ∥.

Clearly

AX1AX2 · · ·AXn −AY1AY2 · · ·AYn

=
n∑

k=1

AX1
AX2

· · ·AXk−1
(AXk

−AYk
)AYk+1

· · ·AYn
.

Accordingly

∥ A∑n
k=1 Xk

(f)−A∑n
k=1 Yk

(f) ∥

≤
n∑

k=1

∥ AX1 · · ·AXk−1
(AXk

−AYk
)AYk+1

· · ·AYn(f) ∥

≤
n∑

k=1

∥ AYk+1
· · ·AYn(AXk

−AYk
)(f) ∥

≤
n∑

k=1

∥ AXk
(f)−AYk

(f) ∥.

(7) ∥ An
X(f)−An

Y (f) ∥≤ n ∥ AX(f)−AY (f) ∥ .
(8) Suppose that X1, X2, · · · , Xn and Y1, Y2, · · · , Yn are independent ran-

dom variables (in each group), and let Nn, n = 1, 2, · · · be a sequence
of positive integer-valued random variables independent of all Xk and
Yk, k = 1, 2, · · · Then, for f ∈ K,

(2.2)

∥ A∑Nn
j=1 Xk

(f)−A∑Nn
k=1 Yk

(f) ∥⩽
∞∑

n=1

P (Nn = n)
n∑

j=1

∥ AXk
(f)−AYk

(f) ∥.

Lemma 2.1. The equation AXf(x) = AY f(x) for f ∈ K, x ∈ Z+, provides
that X and Y are identically distributed random variables.

Let AX1 , AX2 , · · · be a sequence of Renyi’s operators associated with the
independent discrete random variables X1, X2, · · · , and assume that AX is a
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Renyi’s operator associated with the discrete random variable X. The following
lemma states one of the most important properties of the Renyi’s operator

Lemma 2.2. A sufficient condition for a sequence of random variables X1, X2, · · ·
converging in distribution to a random variable X is that

lim
n→∞

∥AXn(f)−AX(f)∥ = 0, for f ∈ K.

Proof. Since lim
n→∞

∥AXn(f)−AX(f)∥ = 0, for f ∈ K, we conclude that

lim
n→∞

∣∣∣∣ ∞∑
k=0

f (x+ k) (P (Xn = k)− P (X = k))

∣∣∣∣ = 0,

for f ∈ K and for x ∈ Z+.

Taking

f (x) =

{
1, if 0 ⩽ x ⩽ t

0, if x > t,

we obtain

lim
n→∞

∣∣∣∣∣
t∑

k=0

(P (Xn = k)− P (X = k))

∣∣∣∣∣ = 0.

It follows that, P (Xn ⩽ t)−P (X ⩽ t) → 0 as n → +∞. We infer that Xn
d−→ X

as n → +∞, here and from now,
d−→ denotes the convergence in distribution.

This finishes the proof. □

3. Results

In this section, based on Renyi’s operator-method the theorems 3.1, 3.3,
3.5 and 3.7 are devoted to the discussions on bounds (in term of inequalities
(3.1) (3.2) (3.3) and (3.4) in Poisson approximation for independent geometric
distributed random variables with parameters pn,j ∈ (0, 1), j = 1, 2, · · · , n;n =
1, 2, · · · from row-wise triangular arrays or double arrays and for Poisson ran-

dom variable Zλn
with mean λn = E(Sn) =

n∑
j=1

p−1
n,j (1− pn,j) . Actually, some

upper bounds for ∥ ASnf −AZλn
f ∥ are established for f ∈ K. The analogous

results related to random sums SNn = X1 + X2 + · · · + XNn and ZλNn
are

also considered, where Nn is a positive integer-valued random variable inde-

pendent from all X1, X2, · · · and λNn = E(SNn) =
∞∑

n=1
P (Nn = n)E(Sn) =

∞∑
n=1

P (Nn = n)
n∑

j=1

p−1
n,j (1− pn,j) . The results considered in this section are

somewhat similar to the results in [16, 17, 18] and [19].
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Theorem 3.1. Let (Xn,j , j = 1, 2, · · ·n;n = 1, 2, · · · ) be a row-wise triangular
array of independent, non-identically geometric distributed random variables

with probabilities pn,j ∈ (0, 1). Set Sn =
n∑

j=1

Xn,j and let us denote by Zλn the

Poisson random variable with mean λn = E(Sn) =
n∑

j=1

(1− pnj) p
−1
n,j . Then,

for f ∈ K

(3.1) ∥ ASnf −AZλn
f ∥≤ 2 ∥f∥

n∑
j=1

[
(1− pn,j)

2 +
(1− pn,j)

p2n,j

]
.

Proof. We first observe that

∥∥ASnf −AZλn
f
∥∥ ≤

n∑
j=1

∥∥∥∥AXn,jf −AZ
(1−pn,j)p

−1
n,j

f

∥∥∥∥.
For f ∈ K, and for x ∈ Z+,

AZ
(1−pn,j)p

−1
n,j

f (x)−AXn,jf (x)

=

∞∑
k=0

f (x+ k)
[
P
(
Zpn,j = k

)
− P (Xn,j = k)

]
=

∞∑
k=0

f (x+ k)

[
e−(1−pn,j)p−1

n,j

[
(1− pn,j) p

−1
n,j

]k
k!

− pn,j(1− pn,j)
k

]
.

Hence∣∣∣∣AZ
(1−pn,j)p

−1
n,j

f (x)−AXn,jf (x)

∣∣∣∣
≤

∞∑
k=0

∣∣∣∣f (x+ k)

(
e−(1−pn,j)p−1

n,j
[(1−pn,j)p−1

n,j ]
k

k!
− (1− pn,j)

kpn,j

)∣∣∣∣
≤ sup

y∈Z+

|f (y)|
∞∑

k=0

∣∣∣∣e−(1−pn,j)p−1
n,j

[(1−pn,j)p−1
n,j ]

k

k!
− (1− pn,j)

kpn,j

∣∣∣∣
= ∥f∥

∞∑
k=0

∣∣∣∣e−(1−pn,j)p−1
n,j

[(1−pn,j)p−1
n,j ]

k

k!
− (1− pn,j)

kpn,j

∣∣∣∣
= ∥f∥

(∣∣∣e−(1−pn,j)p−1
n,j − pn,j

∣∣∣+ ∣∣∣e−(1−pn,j)p−1
n,j (1−pn,j) p

−1
n,j − (1− pn,j) pn,j

∣∣∣
+

∞∑
k=2

∣∣∣∣e−(1−pn,j)p−1
n,j

[(1−pn,j)p−1
n,j ]

k

k!
− (1− pn,j)

kpn,j

∣∣∣∣)
≤ ∥f∥

[(
p−1
n,j − pn,j

)
+ (1− pn,j) p

−1
n,j

(
p−1
n,j − p2n,j

)
+
∑
k≥2

e−(1−pn,j)p−1
n,j

[(1−pn,j)p−1
n,j ]

k

k!
+
∑
k≥2

(1− pn,j)
kpn,j

]
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= ∥f∥
[(
p−1
n,j − pn,j

)
+ (1− pn,j) p

−1
n,j

(
p−1
n,j − p2n,j

)
+
(
1− e−(1−pn,j)p−1

n,j − (1− pn,j) p
−1
n,je

−(1−pn,j)p−1
n,j

)
+ (1− pn,j)

2
]

≤ ∥f∥
[
2p2n,j − 4pn,j + p−2

n,j + p−1
n,j − (1− pn,j) p

−1
n,j + (1− pn,j) p

−1
n,j (1− pn,j) p

−1
n,j

]
= 2 ∥f∥

[
(1− pn,j)

2 +
1−pn,j

p2n,j

]
.

Therefore ∥∥∥∥AXn,jf −AZ
(1−pn,j)p

−1
n,j

f

∥∥∥∥
=
∥∥∥AZpn,j

f −AXnjf
∥∥∥ ≤ 2 ∥f∥

[
(1− pn,j)

2 +
(1− pn,j)

p2n,j

]
.

Thus

∥ ASnf −AZλn
f ∥≤ 2 ∥f∥

n∑
j=1

[
(1− pn,j)

2 +
(1− pn,j)

p2n,j

]
.

The proof is complete. □

Corollary 3.2. Under the assumptions of Theorem 3.1, from (2.1) with k ∈
{0, 1, · · · , n}

|P (Sn = k)− P (Zλn = k)| ≤ 2
n∑

j=1

[
(1− pn,j)

2
+

(1− pn,j)

p2n,j

]
.

Theorem 3.3. Let (Xn,j , j = 1, 2, · · · , n;n = 1, 2, · · · ) be a row-wise triangular
array of independent, geometric distributed random variables with parameters
pn,j ∈ (0, 1). Moreover, we suppose that Nn, n = 1, 2, · · · are independent posi-
tive integer-valued random variables independent of all Xn,j , n = 1, 2, · · ·n;n =

1, 2, · · · . Set SNn =
Nn∑
j=1

XNn,j . Moreover, let us denote by ZλNn
the Poisson

random variable with mean

λNn = E(SNn) =

∞∑
n=1

P (Nn = n)E(Sn) =

∞∑
n=1

P (Nn = n)

n∑
j=1

p−1
n,j (1− pn,j) .

Then, for f ∈ K

(3.2) ∥ ASNn
f −AZλNn

f ∥≤ 2 ∥f∥E

(
Nn∑
j=1

[
(1− pNn,j)

2 +
(1− pNn,j)

p2Nn,j

])
.
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Proof. According to the Theorem 3.1, for f ∈ K, and x ∈ Z+,

∥ ASNn
f −AZλNn

f ∥≤
∞∑

m=1

P (Nn = m)
∥∥ASm (f)−AZλm

(f)
∥∥

≤ 2
∞∑

m=1

P (Nn = m) ∥f∥
m∑

j=1

[
(1− pNn,j)

2 +
(1−pNn,j)

p2
Nn,j

]

= 2 ∥f∥
∞∑

m=1

[
P (Nn = m)

(
m∑

j=1

[
(1− pNn,j)

2 +
(1−pNn,j)

p2
Nn,j

])]

= 2 ∥f∥E

(
Nn∑
j=1

[
(1− pNn,j)

2 +
1−pNn,j

p2
Nn,j

])

Thus, for f ∈ K

∥ ASNn
f −AXλNn

∥≤ 2 ∥ f ∥ E

(
Nn∑
j=1

[
(1− pNn,j)

2 +
(1− pNn,j)

p2Nn,j

])
.

This finishes the proof. □

Corollary 3.4. On account of (3.2), for k ∈ {0, 1, · · · , n},

∣∣P (SNn = k)− P
(
ZλNn

= k
)∣∣ ≤ 2E

(
Nn∑
j=1

[
(1− pn,j)

2 +
(1− pn,j)

p2n,j

])
.

Theorem 3.5. Let (Xi,j , i = 1, 2, · · · ; j = 1, 2, · · · ) be a double array of inde-
pendent geometric distributed random variables with probabilities

P (Xi,j = k) = pi,j(1− pi,j)
k
, 0 < pi,j < 1, k = 0, 1, 2, · · · ; i, j = 1, 2, · · · .

Assume that for every i = 1, 2, · · · the random variables Xi,1, Xi,2, . . . , are
independent, and for every j = 1, 2, · · · the random variables X1,j , X2,j , · · ·

are independent. Set Sn,m =
n∑

i=1

m∑
j=1

Xi,j . Let us denote by Zλn,m the Poisson

random variable with mean λn,m = E(Sn,m) =
n∑

i=1

m∑
j=1

(1− pi,j) p
−1
i,j . Then, for

f ∈ K

(3.3) ∥ ASn,mf −AZλn,m
f ∥≤ 2 ∥f∥

n∑
i=1

m∑
j=1

[
(1− pi,j)

2
+

(1− pi,j)

p2i,j

]
.

Proof. It is easy to check that

∥ ASn,mf −AZλn,m
f ∥≤

n∑
i=1

m∑
j=1

∥ AXi,jf −AZ
(1−pi,j)p

−1
i,j

f ∥ .
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According to the Theorem 3.1, for f ∈ K, and for all x ∈ Z+,

∥ AXi,jf −AZ
(1−pi,j)p

−1
i,j

f ∥≤ 2 ∥f∥

[
(1− pi,j)

2 +
(1− pi,j)

p2i,j

]
.

Thus

∥ ASn,mf −AZλn,m
f ∥≤ 2 ∥f∥

n∑
i=1

m∑
j=1

[
(1− pi,j)

2 +
(1− pi,j)

p2i,j

]
.

This finishes the proof. □
Corollary 3.6. According to the Theorem 3.5, for r ∈ {0, 1, . . . , n},∣∣P (Sn,m = r)− P

(
Zλn,m = r

)∣∣ ≤ 2

n∑
i=1

m∑
j=1

[
(1− pi,j)

2
+

(1− pi,j)

p2i,j

]
.

Theorem 3.7. Let (Xi,j , i = 1, 2, · · · ; j = 1, 2, · · · ) be a double array of inde-
pendent geometric distributed random variables with probabilities

P (Xi,j = k) = pi,j(1− pi,j)
k
, 0 < pi,j < 1, k = 0, 1, 2, · · · ; i, j = 1, 2, · · ·

Assume that for every i = 1, 2, · · · the random variables Xi,1, Xi,2, · · · , are
independent, and for every j = 1, 2, · · · the random variables X1,j , X2,j , · · ·

are independent. Set Sn,m =
n∑

i=1

m∑
j=1

Xi,j . Moreover, suppose that Nn,Mm

are non-negative integer-valued random variables independent of all (Xi,j , i =
1, 2, · · · ; j = 1, 2, · · · ). Let us denote by ZλNnMm

the Poisson random variable
with mean

λNn,Mm = E(SNn,Mm) =
∞∑

n=1

∞∑
m=1

P (Nn = n)P (Mm = m)E(Sn,m).

Then, for f ∈ K
(3.4)

∥ ASNn,Mm
f −AZλNn,Mm

f ∥≤ 2 ∥f∥E

Nn∑
i=1

Mm∑
j=1

[
(1− pi,j)

2
+

(1− pi,j)

p2i,j

] .

Proof. On account of the definition of Renyi’s operator in (1.1), we check at
once that(

ASNn,Mm
f
)
(x) := E (f (SNnMm + x))

=

∞∑
n=1

P (Nn = n)

∞∑
m=1

P (Mn = m)
(
ASn,mf

)
(x)

and (
AZλNn,Mm

f
)
(x) := E

(
f
(
ZλNnMm

+ x
))

=

∞∑
n=1

P (Nn = n)

∞∑
m=1

P (Mn = m)
(
AZλnm

f
)
(x) .
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Hence, for f ∈ K, and for x ∈ Z+, we see at once that∥∥P (Sn,m = r)− P
(
Zλn,m = r

)∥∥
≤

∞∑
n=1

P (Nn = n)

∞∑
m=1

P (Mn = m)
∥∥ASnmf −AZλnm

f
∥∥

≤ 2 ∥f∥
∞∑

n=1

P (Nn = n)

∞∑
m=1

P (Mn = m)

(
n∑

i=1

m∑
j=1

[
(1− pi,j)

2 +
(1− pi,j)

p2i,j

])

= 2 ∥f∥
∞∑

n=1

P (Nn = n)E

(
n∑

i=1

Mm∑
j=1

[
(1− pi,j)

2 +
1− pi,j
p2i,j

])

= 2 ∥f∥E

(
Nn∑
i=1

Mm∑
j=1

[
(1− pi,j)

2 +
(1− pi,j)

p2i,j

])
.

Thus

∥ ASNn,Mm
f −AZλNnMm

f ∥≤ 2 ∥f∥E

(
Nn∑
i=1

Mm∑
j=1

[
(1− pi,j)

2 +
(1− pi,j)

p2i,j

])
.

This completes the proof. □

Corollary 3.8. According to the Theorem 3.5, for r ∈ {0, 1, · · · , n},

∣∣P (SNn,Mm = r)− P
(
ZλNnMm

= r
)∣∣ ≤ 2E

Nn∑
i=1

Mm∑
j=1

[
(1− pi,j)

2
+

(1− pi,j)

p2i,j

] .

We conclude this paper with the following comments. The results obtained
in this note are illustrations for simplicity and elegant of the Renyi’s operator
method in Poisson approximation for independent geometric distributed ran-
dom variables. Especially, this method is likely to be more effective for random
vectors in higher dimension spaces.
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