Which elements of a finite group are non-vanishing?

Document Type : Research Paper

Authors

1 Department of‎ ‎Mathematical Sciences, Isfahan University‎ ‎of Technology‎, ‎P‎.‎O‎. ‎Box 84156-83111, Isfahan‎, ‎Iran.

2 Department of‎ ‎Mathematical Sciences, Isfahan University‎ ‎of Technology‎, ‎P‎.‎O‎. ‎Box 84156-838111, Isfahan‎, ‎Iran.

Abstract

‎Let $G$ be a finite group‎. ‎An element $g\in G$ is called non-vanishing‎, ‎if for‎ ‎every irreducible complex character $\chi$ of $G$‎, ‎$\chi(g)\neq 0$‎. ‎The bi-Cayley graph ${\rm BCay}(G,T)$ of $G$ with respect to a subset $T\subseteq G$‎, ‎is an undirected graph with‎ ‎vertex set $G\times\{1,2\}$ and edge set $\{\{(x,1),(tx,2)\}\mid x\in G‎, ‎\ t\in T\}$‎. ‎Let ${\rm nv}(G)$ be the set‎ ‎of all non-vanishing elements of a finite group $G$‎. ‎We show that $g\in nv(G)$ if and only if the adjacency matrix of ${\rm BCay}(G,T)$‎, ‎where $T={\rm Cl}(g)$ is the‎ ‎conjugacy class of $g$‎, ‎is non-singular‎. ‎We prove that ‎if the commutator subgroup of $G$ has prime order $p$‎, ‎then‎  ‎(1) $g\in {\rm nv}(G)$ if and only if $|Cl(g)|<p$,
‎(2) if $p$ is the smallest prime divisor of $|G|$‎, ‎then ${\rm nv}(G)=Z(G)$‎.
‎‎Also we show that‎
(a) if ${\rm Cl}(g)=\{g,h\}$‎, ‎then $g\in {\rm nv}(G)$ if and only if $gh^{-1}$ has odd order‎,
(b) if $|{\rm Cl}(g)|\in \{2,3\}$ and $({\rm ord}(g),6)=1$‎, ‎then $g\in {\rm nv}(G)$‎.

Keywords

Main Subjects


A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Springer, New York, 2012.
D. Bubboloni, S. Dolfi and P. Spiga, Finite groups whose irreducible characters vanish only on p-elements, J. Pure Appl. Algebra 213 (2009), no. 3, 370-376.
S. Dolfi, G. Navvaro, E. Pacifici, L. Sanus, P. H. Tiep, Non-vanishing elements of finite groups, J. Algebra 323 (2010), no. 2, 540--545.
S. F. Du and M. Y. Xu, A classification of semisymmetric graphs of order 2pq, Comm. Algebra 28 (2000), no. 6, 2685--2715.
[5] L. He, S. Yu and J. Lu, A result related to non-vanishing elements of finite solvable groups, Int. J. Algebra 7 (2013), no. 5-8, 223--227.
L. He, Notes on non-vanishing elements of finite solvable groups, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 1, 163--169.
I. M. Isaacs, G. Navarro, and T.R. Wolf, Finite group elements where no irreducible character vanishes, J. Algebra 222 (1999), no. 2, 413-423.
I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York-London, 1976.
N. Ito, The spectrum of a conjugacy class graph of a finite group, Math. J. Okayama Univ. 26 (1984) 1--10.
N. Ito, On finite groups with given conjugate types I, Nagoya Math. J. 6 (1953) 17--28.
 W. Jin and W. Liu, A classification of nonabelian simple 3-BCI-groups, European J. Combin. 31 (2010), no. 5, 1257--1264.
T. Y. Lam and K. H. Leung, On vanishing sums of roots of unity, J. Algebra 224 (2000) 91-109.
Z. P. Lu, C. Q. Wang, and M. Y. Xu, Semisymmetric cubic graphs constructed from bi-Cayley graphs of An, Ars Combin. 80 (2006) 177--187.
M. Miyamoto, Non-vanishing elements in finite groups, J. Algebra 364 (2012) 88--89.