Title:
Which elements of a finite group are non-vanishing?

Author(s):
M. Arezoomand and B. Taeri
WHICH ELEMENTS OF A FINITE GROUP ARE NON-VANISHING?

M. AREZOOMAND AND B. TAERI*

(Communicated by Jamshid Moori)

Abstract. Let G be a finite group. An element $g \in G$ is called non-vanishing, if for every irreducible complex character χ of G, $\chi(g) \neq 0$. The bi-Cayley graph $BCay(G, T)$ of G with respect to a subset $T \subseteq G$, is an undirected graph with vertex set $G \times \{1, 2\}$ and edge set $\{(x, 1), (tx, 2)\}$ $x \in G, t \in T$. Let $nv(G)$ be the set of all non-vanishing elements of a finite group G. We show that $g \in nv(G)$ if and only if the adjacency matrix of $BCay(G, T)$, where $T = Cl(g)$ is the conjugacy class of g, is non-singular. We prove that if the commutator subgroup of G has prime order p, then

1. $g \in nv(G)$ if and only if $|Cl(g)| < p$.
2. if p is the smallest prime divisor of $|G|$, then $nv(G) = Z(G)$.

Also we show that

(a) if $Cl(g) = \{g, h\}$, then $g \in nv(G)$ if and only if gh^{-1} has odd order,
(b) if $|Cl(g)| \in \{2, 3\}$ and $(o(g), 6) = 1$, then $g \in nv(G)$.

Keywords: Non-vanishing element, character, conjugacy class, Bi-Cayley graph.

MSC(2010): Primary: 20C15; Secondary: 05C25, 05C50.

1. Introduction

Let G be a finite group and $Irr(G)$ be the full set of complex irreducible characters of G. A classical theorem of W. Burnside states that every non-linear $\chi \in Irr(G)$ vanishes on some element of G. This is equivalent to say that in the character table of G, the rows which do not contain the value 0 are precisely those corresponding to linear characters.

The dual question: Which columns of a character table can fail to contain zero? posed by M. Issacs, G. Navarro and T. Wolf [7] in 1999. To investigate the question they introduced the concept of non-vanishing element of a finite group G: an element $x \in G$ is called non-vanishing if $\chi(x) \neq 0$ for every
Which elements of a finite group are non-vanishing?

\(\chi \in \text{Irr}(G)\). Violating the standard duality between characters and conjugacy classes, it is in general not true that the columns not containing the value 0 are precisely those corresponding to conjugacy classes of central elements, as there are finite groups having non-central non-vanishing elements. In fact, a non-vanishing element of \(G\) can even fail to lie in an abelian normal subgroup of \(G\) (see Theorem 5.1 in [7]).

In [7] it is proved that non-vanishing odd order elements of a solvable group \(G\) all lie in a nilpotent normal subgroup of \(G\), i.e. they lie in the Fitting subgroup \(F(G)\). Some authors recently found other sufficient conditions for a non-vanishing element to lie in \(F(G)\), see [3, 5, 6]. In fact a non-vanishing element \(x \in G\) lies in \(F(G)\), when (1) the order of \(x\) is coprime to 6 [3] (2) \(G\) is a nilpotent-by-supersolvable group [5] (3) \(G\) is solvable of order divisible by neither a Fermat nor a Mersenne prime [6].

Issacs et.al. [7] proved that in a nilpotent group every non-vanishing element is central. Also they showed that in a group \(G\) with a normal Sylow \(p\)-subgroup \(P\), every element of \(Z(P)\), the center of \(P\), is non-vanishing. These results encourage some authors to find some groups with non-trivial non-vanishing elements. If \(G\) possesses a non-trivial elementary abelian normal \(p\)-subgroup \(A\) and \(P\) is a Sylow \(p\)-subgroup of \(G\), then all elements of \(Z(P) \cap A\) are non-vanishing in \(G\) [14]. Every irreducible character of \(G\) vanishes only on involutions if and only if \(G = E \times F\), where \(E\) is an elementary abelian 2-group and \(F\) is a Frobenius group with Frobenius complement of order two [2].

Our motivation differs from all previous works. Certainly, every central element of a group \(G\) is non-vanishing because if \(x \in Z(G)\), then \(|\chi(x)|^2 > 1\) for all characters \(\chi \in \text{Irr}(G)\), by [8, Corollary 2.28]. So it is a natural question that when a non-central element is non-vanishing. In this paper, we focus on the size of conjugacy class of non-central elements. We use the concept of bi-Cayley graph of a finite group to establish a relation between non-vanishing elements of a finite group \(G\) and the eigenvalues of a suitable bi-Cayley graph of \(G\) (by an eigenvalue (eigenvector) of a graph we mean an eigenvalue (eigenvector) of the corresponding adjacency matrix).

Let \(S\) be a subset of a group \(G\) not containing the identity element of \(G\). Recall that the Cayley graph \(\Gamma = \text{Cay}(G, S)\) of \(G\) with respect to \(S\) is the graph with vertex set \(G\), where \((x, y)\) is a directed edge if and only if \(yx^{-1} \in S\). Clearly \(\text{Cay}(G, S)\) is undirected if and only if \(G = S^{-1}\), where \(S^{-1} = \{s^{-1} | s \in S\}\).

Now we define a family of undirected bipartite graphs, the bi-Cayley graphs. For a finite group \(G\) and a non-empty subset \(S \subseteq G\), the bi-Cayley graph \(BCay(G, S)\) of \(G\) with respect to \(S\) is the graph with vertex set \(G \times \{1, 2\}\) and edge set \(\{(x, 1), (sx, 2)\} | x \in G, s \in S\). Then \(BCay(G, S)\) is a well-defined bipartite \(|S|\)-regular with bipartition subsets \(G \times \{1\}\) and \(G \times \{2\}\). By [11, p. 1259], \(BCay(G, S)\) is connected if and only if \(G = \langle SS^{-1} \rangle\). Furthermore, if \(1 \in S\) then \(BCay(G, S)\) is connected if and only if \(G = \langle S \rangle\). Also note that if
$S = S^{-1}$ then $\text{BCay}(G, S)$ is isomorphic to the tensor product $\text{Cay}(G, S) \otimes K_2$. Note that the connectivity of $\text{BCay}(G, S)$ is not equivalent to the connectivity of $\text{Cay}(G, S)$.

In Section 2, we compute the spectrum of $\text{BCay}(G, T)$, where T is a conjugacy class of G containing an element x. Recall that a graph with non-singular adjacency matrix is called non-singular. Note that a graph Γ is non-singular if and only if 0 is not an eigenvalue of Γ. We prove that x is non-vanishing if and only if $\text{BCay}(G, T)$ is non-singular.

We denote the set of all non-vanishing elements of a finite group G by $\text{nv}(G)$. When T_x^{-1} is a union of conjugacy classes of $\langle T \rangle$, or in particular when $\langle T \rangle$ is abelian, we prove that $x \in \text{nv}(G)$ if and only if $\sum_{t \in T} \chi(t x^{-1}) \neq 0$, for all $\chi \in \text{Irr}(\langle TT^{-1} \rangle)$. In most cases we assume that $\langle TT^{-1} \rangle$ is abelian and characterize non-vanishing elements. We prove that in a finite nilpotent group G with an abelian commutator p-subgroup G', $|G| = |\text{nv}(G)| \pmod{p}$, see Corollary 2.11. Also we show that in a finite group G with $|G'| = p$, p a prime, G is nilpotent if and only if every non-central element has exactly p conjugates in G, see Theorem 2.12.

In Section 3, we focus on the elements with 2 or 3 conjugates. Using the spectrum of $\text{BCay}(G, T)$, where $T = \{g, h\}$ is a conjugacy class of G, we prove that $g \in \text{nv}(G)$ (and so $h \in \text{nv}(G)$) if and only if $g h^{-1}$ is of odd order, see Corollary 3.1. As a result, we prove that every element x with conjugacy class size 2 or 3 and $(o(x), 6) = 1$ is a non-vanishing element, see Corollary 3.5. Also we show that in a finite solvable group G with derived length 2, if $(|G'|, 3) = 1$ then every element with 3 conjugates is non-vanishing, see Corollary 3.4.

2. Main results

The eigenvalues and eigenvectors of Cayley graphs with respect to a union of conjugacy classes were determined by Rô:

Theorem 2.1. (See [9, pp. 1-3]) Let $\Gamma = \text{Cay}(G, T)$ be a Cayley graph with respect to T. If T is a union of conjugacy classes of G, then every eigenvalue of Γ is of the form $\lambda_\chi := \sum_{t \in T} \chi(t)/\chi(1)$, for some $\chi \in \text{Irr}(G)$ and the eigenspace of Γ corresponding to the eigenvalue λ_χ is generated by the eigenvectors $v_{\chi,i} := (\chi(g_1 g_1^{-1}), \chi(g_2 g_2^{-1}), \ldots, \chi(g_n g_n^{-1}))$, $i = 1, \ldots, n$.

Our terminology and notation will be standard. For the group-theoretic and graph-theoretic terminology not defined here we refer the reader to [8, 1]. In the following proposition, we find a relation between non-vanishing elements of a group G and a non-singular bi-Cayley graph of G.

Proposition 2.2. Let T be a union of conjugacy classes of G. Then $\text{BCay}(G, T)$ is non-singular if and only if for each $\chi \in \text{Irr}(G)$, $\sum_{t \in T} \chi(t) \neq 0$. In particular, if T is a conjugacy class of G containing x, then $x \in \text{nv}(G)$ if and only if $\text{BCay}(G, T)$ is non-singular.
Proof. Let $\Gamma = \text{BCay}(G, T)$ and A be the adjacency matrix of Γ. A fixed chosen ordering $g_1 = 1, g_2, \ldots, g_n$ of elements of G naturally determines the following induced ordering:

$$(g_1, 1), (g_2, 1), \ldots, (g_n, 1), (g_1, 2), (g_2, 2), \ldots, (g_n, 2)$$

of vertices of Γ. Hence relative to this ordering we have

$$A = \begin{bmatrix} 0 & B \\ C & 0 \end{bmatrix},$$

where B is the adjacency matrix of $\text{Cay}(G, T)$ and $C = B^\top$, the transposed matrix of B, is the adjacency matrix of $\text{Cay}(G, T^{-1})$. Since T is a union of conjugacy classes of G, by Theorem 2.1, the vectors

$$v_{\chi, i} = (\chi(g_1 g_1^{-1}), \chi(g_2 g_2^{-1}), \ldots, \chi(g_n g_n^{-1})), \quad i = 1, \ldots, n,$$

are eigenvalues of B corresponding to the eigenvalue $\lambda_\chi := \sum_{t \in T} \chi(t)/\chi(1)$, where $\chi \in \text{Irr}(G)$. Also $v_{\chi, i}, i = 1, \ldots, n$, are eigenvectors of C corresponding to the eigenvalue $\sum_{t \in T} \chi(t^{-1})/\chi(1) = \overline{\lambda_\chi}$, the complex conjugate of λ_χ.

On the other hand $\det(xI_{2n} - A) = \det(x^2I_n - CB)$ is the characteristic polynomial of A, where I_n is the identity matrix of order m. Hence λ is an eigenvalue of A if and only if λ^2 is an eigenvalue of CB. Also for each $\chi \in \text{Irr}(G),

$$CBv_{\chi, i} = C\lambda_\chi v_{\chi, i} = \lambda_\chi Cx_{\chi, i} = \lambda_\chi \sum_{i} v_{\chi, i} = |\lambda_\chi|^2 v_{\chi, i},$$

$i = 1, \ldots, n$. Since CB and B have the same number of eigenvalues, this shows that λ is an eigenvalue of B if and only if $|\lambda|^2$ is an eigenvalue of CB. Since Γ is a bipartite graph, for each eigenvalue λ of Γ, $-\lambda$ is also an eigenvalue, with the same multiplicity, see [1, Proposition 3.4.1]. Consequently, λ is an eigenvalue of B if and only if $|\lambda|$ and $-|\lambda|$ are eigenvalues of A. Hence Γ is non-singular if and only if for each $\chi \in \text{Irr}(G)$, $\lambda_\chi \neq 0$ if and only if for each $\chi \in \text{Irr}(G), \sum_{t \in T} \chi(t) \neq 0$. This completes the proof. □

Lemma 2.3. Let $T \subseteq G$, $\Gamma = \text{BCay}(G, T)$ and $H = \langle TT^{-1} \rangle$. Then

1. for each $x \in T$, $Tx^{-1} \subseteq H$, $\text{BCay}(H, Tx^{-1})$ is connected and Γ is non-singular if and only if $\text{BCay}(H, Tx^{-1})$ is non-singular,
2. if T is a conjugacy class of G, then $H \preceq G'$ and $H \preceq G$.

Proof. Let $x \in T$. Clearly $Tx^{-1} \subseteq H$. On the other hand $\langle Tx^{-1} (Tx^{-1})^{-1} \rangle = \langle TT^{-1} \rangle = H$. Hence, by [4], $\text{BCay}(H, Tx^{-1})$ is a connected bi-Cayley graph. Also $\langle G : H \rangle | \text{BCay}(H, Tx^{-1}) \cong \text{BCay}(G, Tx^{-1})$, see [11, p. 1260], and $\text{BCay}(G, Tx^{-1}) \cong \text{BCay}(G, T)$, by [13, Lemma 2.2]. Hence 0 is an eigenvalue of Γ if and only if 0 is an eigenvalue of $\text{BCay}(H, Tx^{-1})$.

Now suppose that T is a conjugacy class of G. For each $t_1, t_2 \in T$, there exists $g \in G$ such that $t_1 = g^{-1}tg$. Hence $t_1 t_2^{-1} = g^{-1} t_2 g t_2^{-1} \in G'$ which
shows that $H \leq G'$. Also for each $g \in G$, and $t_1, t_2 \in T$, $g^{-1}t_1t_2^{-1}g = g^{-1}t_1(g^{-1}t_2g)^{-1} \in TT^{-1}$. Hence $H \leq G$. \hfill \Box

Now combining Proposition 2.2 and Lemma 2.3, we have the following result.

Theorem 2.4. Let $T = \text{Cl}(x)$ be a conjugacy class of G containing x. Then the following statements are equivalent.

1. $x \in \text{nv}(G)$,
2. $\text{BCay}(G, T)$ is non-singular,
3. $\text{BCay}(TT^{-1}, Tx^{-1})$ is non-singular.

In the following corollary, as an application of Theorem 2.4, we obtain a necessary condition for an element to be a non-vanishing element. First we recall that 0 is not an eigenvalue of the complete bipartite graph $K_{m,n}$ if and only if $m + n = 2$, i.e. $m = n = 1$, see [1, 1.5.2].

Corollary 2.5. Let $g \in \text{nv}(G)$ and T be a non-central conjugacy class containing g. Then $|TT^{-1}| \neq |T|$.

Proof. Suppose, for a contradiction, that $|TT^{-1}| = |T|$. Let $H = \langle TT^{-1} \rangle$. Since $|Ty^{-1}| = |T| = |H|, Ty^{-1} = H$, it follows that $\text{BCay}(H, Ty^{-1})$ is isomorphic to the complete bipartite graph $K_{|H|,|H|}$. By Theorem 2.4, $\text{BCay}(H, Ty^{-1})$ is non-singular. So $K_{|H|,|H|}$ is non-singular which implies that $|H| = 1$, a contradiction. \hfill \Box

Theorem 2.6. Let G be a group, $T = \text{Cl}(g)$ and $H = \langle TT^{-1} \rangle$. If Ty^{-1} is a union of conjugacy classes of H (or in particular if H is abelian) then

$$g \in \text{nv}(G) \iff \text{for all } \chi \in \text{Irr}(H), \sum_{t \in T}\chi(ty^{-1}) \neq 0.$$

Proof. Let $\Gamma = \text{BCay}(H, Ty^{-1})$. Then by Theorem 2.4, $g \in \text{nv}(G)$ if and only if Γ is non-singular. On the other hand, by Proposition 2.2, Γ is non-singular if and only if for each $\chi \in \text{Irr}(H), \sum_{t \in T}\chi(ty^{-1}) \neq 0$. This completes the proof. \hfill \Box

Now we are ready to determine some non-vanishing elements of a finite group. First let us recall the main theorem of [12].

Theorem 2.7. There is some vanishing sum $\varepsilon_1 + \varepsilon_2 + \cdots + \varepsilon_n = 0$ of m-th roots of unity if and only if n is a linear combination, with non-negative integer coefficients, of the prime divisors of m.

The following theorem is well-known, see for example [8, Theorem 4.21].

Theorem 2.8. Let $G = \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_t}$, where $t \geq 1$, be a finite abelian group. Then for every $g = (g_1, \ldots, g_t) \in G$, $g_i \in \mathbb{Z}_{n_i}$, and $\chi \in \text{Irr}(G)$, there exist $\chi_i \in \text{Irr}(\mathbb{Z}_{n_i}), i = 1, \ldots, t$, such that $\chi(g) = \chi_1(g_1) \cdots \chi_t(g_t)$. Furthermore, each $\chi_i(g_i)$ is an n_i-th root of unity.
Lemma 2.9. Let \(g \) be an element of a finite group \(G \), \(T = \text{Cl}(g) \) and \(H = \langle TT^{-1} \rangle \cong \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_t} \), where \(n_1 \mid n_2 \mid \cdots \mid n_t \). If \(|T| \) is not any linear combination, with non-negative integer coefficients, of prime divisors of \(n_t \), then \(g \in \text{nv}(G) \).

Proof. First note that since \(n_i \mid n_t \), \(i = 1, \ldots, t \), Theorem 2.8 implies that for every \(\chi \in \text{Irr}(H) \) and \(t \in T \), \(\chi(tg^{-1}) \) is an \(n_i \)th root of unity. Now suppose \(|T| \) is not any linear combination, with non-negative integer coefficients, of prime divisors of \(n_t \). Suppose, by contrary, that \(g \in G \setminus \text{nv}(G) \). Then Theorem 2.6 implies that \(\sum_{t \in T} \chi(tg^{-1}) = 0 \), for some \(\chi \in \text{Irr}(H) \). Hence, by Theorem 2.7, \(|T| \) is a linear combination, with non-negative integer coefficients, of the prime divisors of \(n_t \), a contradiction.

Remark 2.10. Consider the non-abelian group \(G \cong ((\mathbb{Z}_2 \times \mathbb{Z}_2) \times \mathbb{Z}_3) \times \mathbb{Z}_2 \) of order 72. One can check, for example by GAP software, that there exists a conjugacy class \(T := \text{Cl}(x) \) in \(G \) of size 6 where \(x \in \text{nv}(G) \). Also \(H := \langle TT^{-1} \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_6 \). This shows that the converse of Lemma 2.9 is not true in general (Here \(H \times K \) denotes the semidirect product of \(H \) by \(K \)). Hence the natural question is that in which groups the converse of Lemma 2.9 is true?

Corollary 2.11. Let \(p \) be a prime, \(g \) an element of a finite group \(G \), \(T = \text{Cl}(g) \) and \(H = \langle TT^{-1} \rangle \) be an abelian \(p \)-group. If \((|T|, p) = 1 \) then \(g \in \text{nv}(G) \). In particular, in a finite nilpotent group \(G \) with abelian \(p \)-subgroup \(G' \), \(|G| \equiv |\text{nv}(G)| \) (mod \(p \)).

Proof. The first part is a direct consequence of Lemma 2.9. Now let \(G \) be a finite nilpotent group with an abelian \(p \)-subgroup \(G' \). Let \(g \) be a non-central element of \(G \), \(T = \text{Cl}(g) \) and \(H = \langle TT^{-1} \rangle \). By Lemma 2.3, \(H \) is also an abelian \(p \)-group. On the other hand by [7, Theorem B], \(\text{nv}(G) = \mathbb{Z}(G) \), which implies that \(g \in G \setminus \text{nv}(G) \). Hence, by the first part, \(p \mid |T| \). Now the class equation implies that \(|G| \equiv |\mathbb{Z}(G)| \) (mod \(p \)) and so \(|G| \equiv |\text{nv}(G)| \) (mod \(p \)).

In the following theorem we consider finite groups whose commutator subgroups have prime order.

Theorem 2.12. Let \(p \) be a prime and \(g \) be an element of a finite group \(G \). If \(|G'| = p \), then

1. \(g \in \text{nv}(G) \) if and only if \(|\text{Cl}(g)| < p \) (or equivalently \(|\text{Cl}(g)| \neq p \)),
2. if \(p \) is the smallest prime divisor of \(|G| \), then \(\text{nv}(G) = \mathbb{Z}(G) \),
3. \(G \) is nilpotent if and only if \(|\text{Cl}(g)| = \{1, p\} \), where \(\text{Cl}(G) = \{|\text{Cl}(g)| \mid g \in G\} \).

Proof. (1) Let \(T = \text{Cl}(g) \) be the conjugacy class containing \(g \). Since \(|G'| = p \), \(|T| \leq p \). Also, by Lemma 2.3, \(|H| = p \). Let \(g \in \text{nv}(G) \), then by Corollary 2.5, \(|T| < p \). Conversely, let \(|T| < p \). Then \(p \nmid |T| \) and Corollary 2.11 implies that \(g \in \text{nv}(G) \).
Let \(f : G \to H \) implies that \(f(g) = f(h) \) if and only if \(g = h \) since \(H \). Thus by \([7, \text{Theorem B}], \) \(g \in G \backslash \text{nv}(G) \). So Lemma 2.11 implies that \(p \mid |\text{Cl}(g)| \). On the other hand \(|\text{Cl}(g)| \leq |G'| = p \), which means that \(|\text{Cl}(g)| = p \). Hence \(\text{Cl}(G) = \{1, p\} \).

3. Non-vanishing elements with 2 or 3 conjugates

In this section, we focus on elements with 2 or 3 conjugates. In the following corollary, we give a complete classification of non-vanishing elements with 2 conjugates. Let \(C_n \) be the undirected graph of a cycle with \(n \) vertices. Then the eigenvalues of \(C_n \) are the numbers \(2\cos(2\pi j/n), j = 0, \ldots, n-1 \), see [1, 1.5.3]. Now it is easy to see that \(C_n \) is non-singular if and only if \(4 \nmid n \).

Corollary 3.1. Let \(G \) be a finite group with an element \(g \) such that \(T := \text{Cl}(g) = \{g, h\} \). Then \(g \in \text{nv}(G) \) if and only if \(gh^{-1} \) has odd order. In particular,

1. if \(\langle g \rangle \cap \langle h \rangle = 1 \), then \(g \in \text{nv}(G) \) if and only if \(g \) is of odd order,
2. if \(g \) is of odd order, then \(g \in \text{nv}(G) \),
3. if \(G' \) is of odd order, then \(g \in \text{nv}(G) \).

Proof. Let \(H = \langle TT^{-1} \rangle \), and \(\Gamma = \text{BCay}(G, T) \). By Lemma 2.3, \(\Gamma \cong |G : H|\text{BCay}(H, Tg^{-1}) \), and \(\Sigma := \text{BCay}(H, Tg^{-1}) \) is a connected graph. Indeed since \(|Tg^{-1}| = 2 \), \(\Sigma \) is an undirected cycle with \(2|H| \) vertices. Now

\[
\begin{align*}
g \in \text{nv}(G) & \iff \Sigma \text{ is non-singular (by Theorem 2.4)} \\
& \iff 4 \nmid 2|H| \text{ (by above discussion)} \\
& \iff |H| \text{ is odd.}
\end{align*}
\]

On the other hand \(H = \langle TT^{-1} \rangle = \langle 1, gh^{-1}, h^{-1}g \rangle = \langle gh^{-1} \rangle \). Hence \(g \in \text{nv}(G) \) if and only if \(gh^{-1} \) is of odd order.

Since \(h^{-1}gh \in T \) and \(h \neq g \), \(h^{-1}gh = g \). So \(g \) and \(h^{-1} \) commute. Also \(g \) and \(h \) have the same order. Hence the following results are straightforward.

If \(\langle g \rangle \cap \langle h \rangle = 1 \) then \(o(gh^{-1}) = o(g) \).

If \(g \) is of odd order \(n \) then, since \(o(gh^{-1}) \mid n \), \(o(gh^{-1}) \) is odd.

If \(|G'| \) is odd then, since \(gh^{-1} \in G' \), \(o(gh^{-1}) \) is odd. \(\square \)

Lemma 3.2. Let \(x \in G \) be an element of odd order \(k \) and \(T = \{x, y, z\} \) be the conjugacy class of \(G \) containing \(x \). Then the elements of \(T \) commute and so \(\langle TT^{-1} \rangle = \langle xy^{-1}, zy^{-1} \rangle \) is a normal abelian subgroup of \(G \).
Proof. Let \(a \in T \), \(b \in T \setminus \{a\} \), and suppose, by contrary, that \(ab \neq ba \). Since \(b^{-1}ab \in T \), \(b^{-1}ab = c \). On the other hand \(bab^{-1} \in T \), which implies that \(bab^{-1} = c = b^{-1}ab \). Hence \(b^2a = ab^2 \). Since \(k \) is odd, there exist \(r, s \in \mathbb{Z} \) such that \(1 = rk + 2s \). So \(ab = ab^r b^2 s = ab^2 = b^s a = bv^{k+2}s a = ba \). This shows that \(\langle TT^{-1} \rangle \) is abelian. Also

\[
\langle TT^{-1} \rangle = \langle 1, xy^{-1}, yx^{-1}, xz^{-1}, zy^{-1} \rangle = \langle xy^{-1}, zy^{-1} \rangle \quad (\text{since } xy^{-1}(zy^{-1})^{-1} = xz^{-1}),
\]

which completes the proof.

\[\square\]

Theorem 3.3. Let \(G \) be a finite group, \(x \in G \), \(T := \text{Cl}(x) = \{x, y, z\} \), and \(H := \langle TT^{-1} \rangle \) be abelian. Suppose that

\[H = \mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2} \times \cdots \times \mathbb{Z}_{n_t},\]

where \(n_1 \mid n_2 \mid \cdots \mid n_t \), and for \(j = 1, \ldots, t \), \(\mathbb{Z}_{n_j} = \langle a_j \rangle \) and \(n_j \geq 2 \) and \(t \geq 1 \). Then \(x \in G \setminus \text{nv}(G) \) if and only if for all \(j \in \{1, \ldots, t\} \), there exists \(r_j \in \{0, \ldots, n_j - 1\} \) such that

\[3n_t \mid \left(3 \sum_{j=1}^{t} b_j k_j r_j - n_t \right) \quad \text{and} \quad 3n_t \mid \left(3 \sum_{j=1}^{t} b_j l_j r_j + n_t \right),\]

where \(xy^{-1} = (a_1^{b_1}, \ldots, a_t^{b_t}) \), \(zy^{-1} = (a_1^{l_1}, \ldots, a_t^{l_t}) \) and \(b_j = n_t/n_j \), \(j = 1, \ldots, t \).

Proof. We have \(Ty^{-1} \subseteq H \). Since \(H \) is abelian, by Theorem 2.6, \(x \in \text{nv}(G) \) if and only if for each \(\chi \in \text{Irr}(H) \), \(\sum_{t \in T} \chi(ty^{-1}) \neq 0 \); that is \(x \in \text{nv}(G) \) if and only if for each \(\chi \in \text{Irr}(H) \), \(1 + \chi(xy^{-1}) + \chi(zy^{-1}) \neq 0 \). Thus \(x \in G \setminus \text{nv}(G) \) if and only if there exists \(\chi \in \text{Irr}(H) \) such that \(1 + \chi(xy^{-1}) + \chi(zy^{-1}) = 0 \).

Suppose that \(\chi \in \text{Irr}(H) \). Then by Theorem 2.8, there exist \(\chi_j \in \text{Irr}(\mathbb{Z}_{n_j}) \), \(j = 1, \ldots, t \), such that for all \(h = (a_1^{m_1}, \ldots, a_t^{m_t}) \in H \), \(\chi(h) = \chi_1(a_1^{m_1}) \chi_2(a_2^{m_2}) \cdots \chi_t(a_t^{m_t}) \). On the other hand, for each \(j = 1, \ldots, t \), there exists \(r_j \in \{0, \ldots, n_j - 1\} \) such that \(\chi_j(a_j^{m_j}) = \exp(2\pi im_j r_j / n_j) \). Let \(xy^{-1} = (a_1^{l_1}, \ldots, a_t^{l_t}) \),
Let 3.2 an integer i. Since (6)

\[j \in \mathbb{N}, \quad i_1, i_2, i_3, \quad 3 \not| 1. \]

Then by Theorem 3.3.1, there exists an integer k such that

\[3 | n \cdot k - n. \]

So $3 \not| n$, which implies that 3 divides $|H|$, a contradiction.

Since, by Lemma 2.3, $H \leq G'$, the second part follows immediately.

Corollary 3.5. Let G be a finite group, $x \in G$ and $|\text{Cl}(x)| = 2$ or 3. If $(o(x), 6) = 1$ then $x \in \text{nv}(G)$.

Proof. Since $(6, o(x)) = 1, x$ is of odd order and $3 \not| o(x)$. If $|\text{Cl}(x)| = 2$ then by Corollary 3.1, $x \in \text{nv}(G)$. Now suppose that $|\text{Cl}(x)| = 3$. Then by Lemma 3.2, elements of $T := \text{Cl}(x) = \{x, y, z\}$ commute and $H := \langle TT^{-1} \rangle = \langle xy^{-1}, zy^{-1} \rangle$ is abelian. So every element h of H is of the form $h = x^{i_1}y^{i_2}z^{i_3}$, for some integers i_1, i_2, i_3. Since $o(x) = o(y) = o(z), o(h) = o(x)$. This shows that $3 \not| |H|$. Hence, by Corollary 3.4, $x \in \text{nv}(G)$, which completes the proof.
REFERENCES

(Majid Arezoomand) DEPARTMENT OF MATHEMATICAL SCIENCES, ISFAHAN UNIVERSITY OF TECHNOLOGY, P.O. BOX 84156-83111, ISFAHAN, IRAN.
E-mail address: arezoomand@math.iut.ac.ir

(Bijan Taeri) DEPARTMENT OF MATHEMATICAL SCIENCES, ISFAHAN UNIVERSITY OF TECHNOLOGY, P.O. BOX 84156-838111, ISFAHAN, IRAN.
E-mail address: b.taeri@cc.iut.ac.ir