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Abstract. It is commonly accepted that fractional differential equations
play an important role in the explanation of many physical phenomena.
For this reason we need a reliable and efficient technique for the solution of

fractional differential equations. This paper deals with the numerical solu-
tion of a class of fractional differential equation. The fractional derivatives
are described based on the Caputo sense. Our main aim is to generalize
the Chebyshev cardinal operational matrix to the fractional calculus. In

this work, the Chebyshev cardinal functions together with the Chebyshev
cardinal operational matrix of fractional derivatives are used for numerical
solution of a class of fractional differential equations. The main advan-
tage of this approach is that it reduces fractional problems to a system of

algebraic equations. The method is applied to solve nonlinear fractional
differential equations. Illustrative examples are included to demonstrate
the validity and applicability of the presented technique.
Keywords: Fractional-order differential equation, operational matrix of
fractional derivative, Caputo derivative, Chebyshev cardinal function, col-
location method.
MSC(2010): Primary: 34A08; Secondary: 65M70, 65L60.

1. Introduction

Fractional differential equations have been found to be effective to describe
some physical phenomena such as damping laws, electromagnetic, acoustics, vis-
coelasticity, electroanalytical chemistry, neuron modeling, diffusion processing
and material sciences [3, 11, 13, 28, 32, 38].

The treatment of models of the above mentioned phenomena takes different
facets. For example, existence and uniqueness of solutions have been investigated
in [11, 21, 33, 34].
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In the recent decades, some attempts have been made to find analytical and
numerical solutions for the fractional problems. These attempts have included
finite difference methods [27, 30, 39], collocation– shooting methods ([1, 9, 37]),
spline and B-spline collocation methods [22, 26], Adomian decomposition method
[10, 40], flatlet oblique multiwavelets method [18], variational iteration methods
[17, 34], homotopy analysis methods [16, 20, 33] and etc.

Interpolation approximate base function have received considerable attention
in dealing with various problems. The main characteristic behind this work
using this technique is that it reduces fractional problems to those of solving
a system of algebraic equations thus greatly simplifying the problem. In this
method, a Chebyshev cardinal function is used for numerical solution of differ-
ential equations, with the goal of obtaining efficient computational solutions.
Several papers have appeared in the literature concerned with the application of
Chebyshev cardinal functions [12, 19, 23, 24, 25].

In the present paper we extend the application of Chebyshev cardinal functions
to solve a nonlinear fractional differential equation.

Consider the nonlinear multi-order fractional differential equation

(1.1) F (y(x), D(α)y(x), D(β1)y(x), . . . , D(βm)y(x)) = g(x),

with boundary or supplementary conditions

(1.2) Hi(y(ξi), y
′(ξi)) = di, i = 0, 1,

where F is a multivariable function and g(x) is a known function, ξi ∈ [0, 1], i =
0, 1, 1 < α ≤ 2, 0 < max{βi, i = 1, . . . ,m} ≤ 1, Hi are linear combinations
of y(x), y′(x) and D(α), D(βi) denote the Caputo fractional derivative of order α
and βi respectively and y(x) ∈ L2[0, 1].

The existence and uniqueness and continuous dependence of the solution of
proposed problem are discussed in [2, 31]. We apply the operational matrix of
fractional derivatives to solve nonlinear multi-order fractional differential equa-
tions.

We recall the existence and uniqueness of a special case of (1.1) from [31], and
we propose some stability analysis, convergence analysis, accuracy order of

(1.3) D(α)y(x) = f(x, y(x), D(β)y(x)), 1 < α ≤ 2, 0 ≤ β ≤ 1,

with initial conditions

y(0) = y0, y′(0) = y1(1.4)

or boundary conditions

y(0) = y0, y(1) = y1.(1.5)

Our main aim is to generalize Chebyshev cardinal operational matrix to frac-
tional calculus. It is worthy to mention here that, the method based on using the
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operational matrix of an interpolate function for solving differential equations is
computer oriented.

The rest of the paper is organized as follows: Basic concepts of fractional
differential problems are discussed in Section 2. Section 3 is devoted to the
analysis of the methods and the construction of operational matrix for fractional
derivative. Application of proposed methods for fractional problems are given
in Section 4. In Section 5, we express existence and uniqueness and we discuss
stability analysis, convergence analysis, accuracy order for class of nonlinear
multi-order fractional differential equation. The numerical results for confirming
effectively of the proposed methods are given in Section 6.

2. Concepts of fractional problems

We give some basic definitions and properties of the fractional calculus theory
which are used further in this paper.

Definition 2.1. A real function f(x), x > 0, is said to be in the space Cµ, µ ∈ R,
if there exists a real number p > µ such that f(x) = xpf1(x), where f1(x) ∈
C[0, 1). Clearly Cµ ⊂ Cβ if β ≤ µ.

Definition 2.2. A function f(x), x > 0, is said to be in the space Cm
µ , m ∈

N ∪ {0}, if f (m) ∈ Cµ.

Definition 2.3. The left sided Riemann–Liouville fractional integral operator
of order α ≥ 0 of a function f ∈ Cµ, µ ≥ −1, is defined in [29] as follows:

J (α)f(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α
dt, α > 0, x > 0,

J (0)f(x) = f(x).(2.1)

Definition 2.4. Let f ∈ Cm
−1, m ∈ N ∪ {0}. The Caputo fractional derivative

of f(x) is defined as in [29]:

(2.2) D(α)f(x) =

{
J (m−α)f (m)(x), m− 1 < α < m, m ∈ N,
Dmf(x)
Dxm , α = m.

It can be shown that [4, 8, 29, 36]:

(2.3)

1. J (α)J(ν)f = J(α+ν)f, α, ν > 0, f ∈ Cµ, µ > 0.

2. J (α)xγ =
Γ(γ + 1)

Γ(α+ γ + 1)
xα+γ , α > 0, γ > −1, x > 0.

3. J (α)D(α)f(x) = f(x)−
m−1∑
k=0

f (k)(0+)
xk

k!
, x > 0, m− 1 < α ≤ m.

4. D(α)J(α)f(x) = f(x), x > 0, m− 1 < α ≤ m,
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5. D(α)C = 0, C is constant,

6. D(α)xβ = 0, β ∈ N0 β < [α], N0 = {0, 1, . . .},

7. D(α)xβ =
Γ(β + 1)

Γ(β − α+ 1)
xβ−α, β ∈ N0 β > [α],

8. D(m+α)f(x) = D(α)[D(m)f(x)] ̸= D(m)[D(α)f(x)], m ∈ N, [α] ∈ Z,
9. J(α)f(x) = D(−α)f(x), α > 0.

10. D(α)J(β)f(x) = D(α−β)f(x),

11. J(α)D(β)f(x) = J(α)D(α)(J(α−β)f(x))

=D(β−α)f(x)−
|m−n|or|m−n−1|∑

k=0

f (k+|β−α|)(0+)xk

k!
, n≤α<n+ 1,m≤β<m+ 1,β≤α.

The Caputo fractional derivative is considered here because, it allows traditional
initial and boundary conditions to be included in the formulation of the problem.

3. Analysis of the methods

In this section, we first present a brief review of the Chebyshev cardinal func-
tions for solving fractional differential equations.

Chebyshev cardinal functions of order N in [−1, 1] are defined as [7]:

(3.1) ϕj(x) =
TN+1(x)

T ′
N+1(xj)(x− xj)

, j = 1, 2, ..., N + 1,

where TN+1(x) is the first kind Chebyshev function of order N + 1 in [−1, 1]
defined by

(3.2) TN+1(x) = cos((N + 1) arccos(x))

and xj , j = 1, 2, ..., N+1, are the zeros of TN+1(x) defined by cos((2j−1)/(2N+
2)), j = 1, 2, . . . , N + 1. We apply variable changing t = (x + 1)L/2 to use
these functions on [0, L]. Now any function f(t) on [0, L] can be approximated
as

(3.3) f(t) =
N+1∑
j=1

f(tj)ϕj(t) = FTΦN (t),

where tj , j = 1, 2, . . . , N+1, are the shifted points of xj , j = 1, 2, . . . , N+1,
by transforming t = (x + 1)L/2 (here we choose tj so that, t1 < t2 < . . . <
tN+1),

(3.4) F = [f(t1), f(t2), ..., f(tN+1)]
T , ΦN (t) = [ϕ1(t), ϕ2(t), ..., ϕN+1(t)]

T .

Note that the functions ϕj(t) satisfy the relation

ϕj(ti) = δj,i =

{
1, j = i,
0, j ̸= i

, j, i = 1, . . . , N + 1.
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So we have

(3.5) ΦN (ti) = ei, i = 1, . . . , N + 1,

where ei is the ith column of unit matrix of order N + 1.

Theorem 3.1. Let y(t) ∈ CN+1[0, L] and PN (t) be polynomial interpolation of
y(t) at the points ti, i = 1, . . . , N+1 (zeros of Chebyshev polynomial of degree
N + 1), then

(3.6) eN = max
0≤t≤L

|y(t)− PN (t)| ≤ MN+1

2N (N + 1)!
,

where MN+1 = max |y(N+1)(ξ)|, ξ ∈ [0, L]. Thus PN (t) → y(t) as N tends to
infinity [35].

Definition 3.2. [15] Let Mn : Rn → Pn−1 be the linear map associating to each
vector uT = [u1, u2, . . . , uk] ∈ Rn and

p(x) =
n∑

k=1

ukx
k−1 ∈ Pn−1, n ≥ 2.

For any p ∈ Pn−1, we shall write u = M−1
n p, where M−1 is the inverse map

of Mn. We define the condition of the map Mn, relative to the compact interval
[a, b], by [15]

(3.7) Cond∞Mn = ||Mn||∞||M−1
n ||∞,

where the norms are ||u||∞ = max
1<k<n

|uk| (in Rn) and ||p||∞ = max
a<x<b

|p(x)| (in
Pn−1[a, b]).

Definition 3.3. [15] The Chebyshev polynomial Tm, adjusted to the interval
[a, b], will be denoted by Tm[a, b],

Tm[a, b](x) = Tm(
2x− a− b

b− a
), a ≤ x ≤ b.

Relative to any such interval [a, b], the norm of the map Mn is easily seen to
be

||Mn||∞ =

{
bn−1
b−1 , b ̸= 1,

n, b = 1.

More delicate is the determination of ||M−1
n ||∞, as this amounts to finding the

norms of the linear functionals λk : p → p(k−1)(0)/(k − 1)!, p ∈ Pn−1[a, b], k =
1, 2, . . . , n. Indeed

||M−1
n ||∞ = max

1≤k≤n
||λk||∞.
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Theorem 3.4. The condition number (3.7) on [−w,w] is given by

(3.8) Cond∞Mn =
wn − 1

w − 1
max{||uTn−1(x/w)||∞, ||uTn−2(x/w)||∞},

where wn−1
w−1 (here and in the sequel) is to be interpreted as having the value n if

w = 1 (for more details see [15]).

We can get good approximate function f ∈ L2[0, 1] using Chebyshev cardinal
functions by small N where N is the number of Chebyshev cardinal basis. But
for large values of N , the expansion coefficients grows like (1+

√
2)2n ((1+

√
2)n

on L2[−1, 1]) and so the condition number is large, in this case. Therefore, we
use this expansion for small values of N (see [5, 6, 15]).

3.1. The operational matrix of derivative. The differentiation of vector ΦN

in (3.4) can be expressed as

(3.9) Φ′
N = DΦN ,

where D is (N + 1) × (N + 1) operational matrix of derivative for Chebyshev
cardinal functions.

It is shown [23] that the matrix D is in the form

(3.10) D =

 ϕ′
1(t1) . . . ϕ′

1(tN+1)
...

...
...

ϕ′
N+1(t1) . . . ϕ′

N+1(tN+1)

 ,

where

ϕ′
j(tj) =

N+1∑
i=1
i ̸=j

1

tj − ti
, j = 1, . . . , N + 1,

ϕ′
j(tk) =

β

T ′
N+1(tj)

N+1∏
l=1
l ̸=k,j

(tk − tl), j, k = 1, . . . , N + 1, j ̸= k(3.11)

and β = 22N+1/LN+1. Note that

(3.12)
TN+1(t)

t− tj
= β ×

N+1∏
k=1
k ̸=j

(t− tk).

3.2. The operational matrix of fractional derivative. The fractional dif-
ferentiation of vector ΦN (t) in (3.4) can be expressed as

(3.13) D(α)ΦN = DαΦN ,
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where Dα is (N + 1) × (N + 1) operational matrix of fractional derivative for
Chebyshev cardinal functions. The matrix Dα can be obtained by the following
process. Let

(3.14) D(α)ΦN (t) = [ϕ
(α)
1 (t), ϕ

(α)
2 (t), ..., ϕ

(α)
N+1(t)]

T .

Using Eqs. (2.2), (2.3), (3.4) and (3.12) the function ϕ
(α)
j (t) can be approximated

by two methods as

(3.15) ϕ
(α)
j (t) = β × 1

T ′
N+1(tj)

(
N+1∏
k=1
k ̸=j

(t− tk))
(α).

First method: We can expand
N+1∏
k=1
k ̸=j

(t− tk) as

N+1∏
k=1
k ̸=j

(t− tk) = tN − (
∑
k1 ̸=j

1≤k1≤N+1

tk1)t
N−1 + (

∑
k1,k2 ̸=j

1≤k1<k2≤N+1

tk1tk2)t
N−2 − . . .+ (−1)N

N+1∏
k=1
k ̸=j

tk,

j = 1, 2, . . . , N + 1.(3.16)

Lemma 3.5. Let ϕn(t) be a Chebyshev cardinal function such that n < α, then
Dαϕn(t) = 0.

Proof. Using Eqs.(2.3) in Eq.(3.16) the lemma can be proved. □

For 0 < α < 1 using (3.16), we get

ϕ
(α)
j (t) = β × 1

T ′
N+1(tj)

(
N+1∏
k=1
k ̸=j

(t− tk))
(α) =

β

T ′
N+1(tj)Γ(N + 1− α)

×[N !tN−α − (N − α)(N − 1)!(
∑
k1 ̸=j

1≤k1≤N+1

tk1)t
N−1−α

+(N − α)(N − α− 1)(N − 2)!(
∑

k1,k2 ̸=j
1≤k1<k2≤N+1

tk1
tk2

)tN−2−α − . . .

+(−1)(N−1)
N−2∏
k=0

(N − α− k)(
∑

k1,k2,...k(N−1) ̸=j
1≤k1<k2<...<k(N−1)≤N+1

tk1tk2 . . . tk(N−1)
)t1−α]

j = 1, 2, . . . , N + 1.(3.17)
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Any function ϕ
(α)
j (t), using (3.3) can be approximated as

(3.18) ϕ
(α)
j (t) =

N+1∑
k=1

ϕ
(α)
j (tk)ϕk(t).

By comparing (3.13) and (3.18), we get

(3.19) Dα =


ϕ
(α)
1 (t1) . . . ϕ

(α)
1 (tN+1)

...
. . .

...

ϕ
(α)
N+1(t1) . . . ϕ

(α)
N+1(tN+1)

 ,

where the entries of the matrix Dα can be found using Eq. (3.17).
Second method: Let

(3.20) T = [1, t, t2, . . . , tN ]T ,

then (3.4) results in

(3.21) ΦN (t) = [ϕ1(t), ϕ2(t), ..., ϕN+1(t)]
T = A. T,

where A is (N + 1) × (N + 1) operational matrix of coefficient for Chebyshev
cardinal functions as follows

(3.22)

A = β ×



(−1)N
1

T ′
N+1(t1)

N+1∏
k=1
k ̸=1

tk, . . .−(
1

T ′
N+1(t1)

∑
k1 ̸=1

1≤k1≤N+1

tk1
), 1

T ′
N+1

(t1)

(−1)N
1

T ′
N+1(t2)

N+1∏
k=1
k ̸=2

tk, . . .−(
1

T ′
N+1(t2)

∑
k1 ̸=2

1≤k1≤N+1

tk1
), 1

T ′
N+1

(t2)

.

.

.
. . .

..

.

(−1)N
1

T ′
N+1(tN+1)

N+1∏
k=1

k ̸=N+1

tk,. . .−(
1

T ′
N+1(tN+1)

∑
k1 ̸=N+1

1≤k1≤N+1

tk1
), 1

T ′
N+1

(tN+1)



.

Because of orthogonality of ϕj(t), j = 1, . . . , N + 1, this matrix is invertible.
From (2.3) and for 0 < α ≤ 1, we get
(3.23)

Dα T = [0,
Γ(2)

Γ(2− α)
t1−α,

Γ(3)

Γ(3− α)
t2−α, . . . ,

Γ(N + 1)

Γ(N + 1− α)
tN−α]T = t−α D1. T,

where D1 is (N + 1)× (N + 1) matrix of the following form

D1 =



0 0 0 . . . 0

0 Γ(2)
Γ(2−α)

0 . . . 0

0 0 Γ(3)
Γ(3−α)

. . . 0

...
...

...
. . . 0

0 0 0 . . . Γ(N+1)
Γ(N+1−α)

 .(3.24)
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If 1 < α ≤ 2 then the second row of D1 is zero and ... . Using (3.21) we have

(3.25) DαΦN (t) = A.Dα T = t−α A. D1. T.

Note that A is invertible, so

(3.26) DαΦN (t) = t−α A. D1.A
−1. A. T = t−α A. D1. A

−1.ΦN (t).

Hence

(3.27) DαΦN (t) = Dα.ΦN (t),

where Dα = t−α A. D1. A
−1.

4. Application of the operational matrix of fractional derivative

In this section, In order to use Chebyshev cardinal functions for Eq. (1.1),
we first approximate y(x), g(x), D(α)y(x) and D(βj)y(x), for j = 0, . . . ,m from
(3.3) and (3.18) on the interval [0, 1] as follows

(4.1)

y(x) ≃
N+1∑
j=1

cjϕj(x) = CTΦN (x),

g(x) ≃
N+1∑
j=1

gjϕj(x) = GTΦN (x),

D(α)y(x) ≃ D(α)(CTΦN (x)) = CTD(α)(ΦN (x)) = CTDαΦN (x),

D(βj)y(x) ≃ D(βj)(CTΦN (x)) = CTD(βj)(ΦN (x)) = CTDβjΦN (x), j = 1, . . . ,m,

where G = [g1, . . . , gN+1]
T , gj = g(tj), j = 1, . . . , N + 1, C = [c1, . . . , cN+1]

T

is an unknown vector and N > 1. Employing (4.1) in (1.1) we get

(4.2)

RN+1(x) = F (CTΦN (x), CTDαΦN (x), CT Dβ1ΦN (x), . . . , CT DβmΦN (x))−GTΦN (x)

∼= 0.

Collocating Eq. (4.2) in the points ti, i = 3, . . . , N + 1 and using Eq.(3.5), we
get

(4.3) RN+1(ti) = F (CT ei, C
TDαei, C

T Dβ1ei, . . . , C
T Dβmei)−GT ei.

Also, by substituting Eqs. (3.9) and (4.1) in Eq. (1.2) we obtain

Hi(C
TΦN (ξi), C

TDΦN (ξi)) = di, i = 0, 1.(4.4)

Equation (4.3) together with equation (4.4) gives a system of equations with
N +1 set of algebraic equations, which can be solved to find ci, i = 1, . . . , N +1.
Consequently, the unknown function y(x) given in Eq. (4.1) can be calculated.
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5. Main results

The aim of this section is to analyze the numerical scheme (1.1) with special
cases (1.3)-(1.5).

5.1. Existence and uniqueness. We consider the space ß = {y(t) : y(t) ∈
C[0, 1], D(β)y(t) ∈ C[0, 1]} furnished with the norm ||y(t)|| = maxt∈C[0,1] |y(t)|+
maxt∈C[0,1] |D(β)y(t)|. The space ß is a Banach space [41].

Theorem 5.1. (Theorem 3.2 in [31]) Let f : [0, 1]× R× R → R be continuous
and there exists a function µ : [0, 1] → [0,∞], such that

|f(x, y, z)| ≤ µ(t) + a1|y|+ a2|z|, a1, a2 ≥ 0, a1 + a2 ≤ m,(5.1)

where m = min{Γ(α+1)
2 , Γ(α)Γ(2−β)+Γ(α−β+1)

4Γ(α−β+1)Γ(α)Γ(2−β) }. Then, the boundary value prob-

lem (1.3)-(1.5) has a solution.

Theorem 5.2. (Theorem 3.3 in [31]) Let f : [0, 1]× R× R → R be continuous.
If f satisfies Lipschitz condition with respect to the second and third variables as

(5.2)

|f(x, y, z)− f(x, y1, z1)| ≤ k(|y − y1|+ |z − z1|), for each x ∈ [0, 1] y, y1, z, z1 ∈ R k < 1,

then there exists a unique solution of the boundary value problem (1.3), (1.5)
such that y(x) is the solution of integral equation

(5.3)

y(x) = J (α)(f(x, y(x), D(β)y(x)))− xJ (α)(f(1, y(1), D(β)y(1))) + (y1 − y0)x+ y0,

=

∫ 1

0

G(x, s)f(s, y(s), D(β)y(s))ds+ (y1 − y0)x+ y0,

where G(x, s) is the Green function, given by

G(x, s) =
1

Γ(α)

{
(x− s)α−1 − x(1− s)α−1 0 ≤ s ≤ x
−x(1− s)α−1 x ≤ s ≤ 1.

(5.4)

Theorem 5.3. Under the hypothesis of theorem 5.1 with m=min{Γ(α+1)
2

,Γ(α−β+1)
4

}
the initial value problem (1.3)–(1.4) has a solution.

Theorem 5.4. Under the hypothesis of theorem 5.2 with k ≤ min{Γ(α+1),Γ(α−
β + 1)} the initial value problem (1.3)–(1.4) has a unique solution.

The proofs of Theorem 5.3 and 5.4 are similar to those of Theorem 5.1 and
5.2.

5.2. Stability analysis. The sufficient conditions for the local asymptotical sta-
bility of (1.3) are discussed in this part.
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Definition 5.5. we define an operator A : ß → ß by

(5.5)

Ay(x) = J(α)(f(x, y(x), D(β)y(x)))− xJ(α)(f(1, y(1), D(β)y(1))) + (y1 − y0)x+ y0,

=

∫ 1

0

G(x, s)f(s, y(s), D(β)y(s))ds+ (y1 − y0)x+ y0.

Definition 5.6. The equilibrium y∗ = 0 of nonlinear fractional differential equa-
tion (1.3) is said to be locally asymptotically stable if ∃δ > 0 such that ∀ya ∈ K,
one has

lim
x→∞

||y(x, ya)|| = 0,(5.6)

where K = {y : ||y|| < δ} and y(x, ya) denotes the solution of (1.3) with initial
or boundary conditions.

By assuming that 0 < α − β < 1, u1(x) = y(x), u2(x) = D(β)y(x), we can
reduce (1.3) to the system of fractional differential equation as follows(

u1(x)
u2(x)

)(α−β)

=

(∫ 1

0
Ĝ(x, s)f(s, u1(s), u2(s))ds+

(u1(1)−u1(0))x
1−α+β

Γ(2−α+β)

f(x, u1(x), u2(x))

)
,

U (α−β) = F (x,U),(5.7)

where U = (u1, u2)
T and Ĝ(x, s) is obtained as follows:

D(α−β)(Ay)(x) = J (1−α+β)(DAy)(x)

= J (1−α+β)(J (α−1)f(x, y(x), D(β)y(x))

−J (α)(f(1, y(1), D(β)y(1))) + (y1 − y0))

= J (β)f(x, y(x), D(β)y(x))− (J (α)(f(1, y(1), D(β)y(1)))

+(y1 − y0))
x1−α+β

Γ(2− α+ β)

=

∫ 1

0

Ĝ(x, s)f(s, y(s), D(β)y(s))ds+
(y1 − y0)x

1−α+β

Γ(2− α+ β)
,(5.8)

where Ĝ(x, s), (with respect to x) is of order (α− β) as

Ĝ(x, s) =

{
(x−s)β−1

Γ(β) − (1−s)α−1x1−α+β

Γ(α)Γ(2−α+β) , 0 ≤ s ≤ x,

− (1−s)α−1x1−α+β

Γ(α)Γ(2−α+β) , x ≤ s ≤ 1
.(5.9)

If 1 ≤ α − β < 2 then, we get 0 ≤ α − β − 1 < 1 and we continue the similar
process of (5.7)-(5.9) as follows(

u1(x)
u2(x)

)(α−β−1)

=

(∫ 1

0
Ĝ(x, s)f(s, u1(s), u2(s))ds+

(u1(1)−u1(0))x
−α+β

Γ(1−α+β)∫
f(x, u1(x), u2(x))dx

)
,

U (α−β−1) = F (x,U),(5.10)
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where Ĝ(x, s), (with respect to x) is of order (α− β − 1) as

Ĝ(x, s) =

{
(x−s)β−2

Γ(β) − (1−s)α−1x−α+β

Γ(α)Γ(1−α+β) , 0 ≤ s ≤ x,

− (1−s)α−1x−α+β

Γ(α)Γ(1−α+β) , x ≤ s ≤ 1
.(5.11)

Theorem 5.7. The equilibrium U∗ = 0 of autonomous nonlinear fractional
differential equation of (5.7) or (5.10) with ∇F (U) ∈ C([0, 1]× [0, 1]× [0, 1]) and
(α−β) ∈ (0, 1] or (α−β−1) ∈ (0, 1] is locally asymptotically stable if Re(Λ) < 0
where Λ is eigenvalues of the Jacobian matrix ∇F .

The proof of this theorem is similar to the proof of Theorem 3.2 in [14].

5.3. Convergence analysis, accuracy order of the proposed method.

Theorem 5.8. Let eN+1(x) = y(x)−yN+1(x) be the error function of Chebyshev
cardinal approximation, where y(x) is the exact solution of (1.3) and yN+1(x) =
N+1∑
i=1

ciϕi(x) = CTΦN (x) is the Chebyshev cardinal approximation for y(x). Un-

der the hypothesis of Theorems 5.1, 5.2 or 5.3, 5.4, eN+1(x) → 0 as N → ∞ for
(1.3), (1.5) or (1.3)–(1.4), respectively.

Proof. Using Eqs. (4.1), (5.3) and (5.4) we have

|eN+1(x)| = |
∫ 1

0

G(x, s)f(s, y(s), D(β)y(s))ds+ (y1 − y0)x+ y0 − CTΦN (x)|

= |
∫ 1

0

G(x, s)[f(s, y(s), D(β)y(s))− f(s, yN+1(s), D
(β)yN+1(s))

+f(s, yN+1(s), D
(β)yN+1(s))]ds+ (y1 − y0)x+ y0 − CTΦN (x)|

= |
∫ 1

0

G(x, s)
(
f(s, y(s), D(β)y(s))− f(s, yN+1(s), D

(β)yN+1(s))
)
ds

+

∫ 1

0

G(x, s)f(s, yN+1(s), D
(β)yN+1(s))ds+ (y1 − y0)x+ y0 − CTΦN (x)|.

(5.12)
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Using Eq. (5.2) we get

|eN+1(x)| ≤ k||eN+1(x)||
(∫ x

0

(x− s)α−1

Γ(α)
ds+ x

∫ 1

0

(1− s)α−1

Γ(α)
ds

)
+|
∫ 1

0

G(x, s)f(s, CTΦN (s), CTDβΦN (s))ds+ (y1 − y0)x+ y0 − CTΦN (x)|

≤ k||eN+1(x)||
(

xα

Γ(α+ 1)
+

x

Γ(α+ 1)

)
+|
∫ 1

0

G(x, s)f(s, CTΦN (s), CTDβΦN (s))ds+ (y1 − y0)x+ y0 − CTΦN (x)|

≤ k||eN+1(x)||
2

Γ(α+ 1)
+ |

∫ 1

0

G(x, s)f(s, CTΦN (s), CTDβΦN (s))ds

+(y1 − y0)x+ y0 − CTΦN (x)|.(5.13)

On the other hand we have

(5.14) RN+1(x) = f(x,CTΦN (x), CT DβΦN (x))− CT DαΦN (x)) ∼= 0.

Employing J (α) on RN+1(x) and using Eq. (5.3) we have

(5.15)

|J (α)RN+1(x)| = |
∫ 1

0

G(x, s)f(s, CTΦN (s), CTDβΦN (s))ds

+(yN+1(1)− yN+1(0))x+ yN+1(0)− yN+1(x)|.

Using (5.15) in (5.13) and assuming yN+1(0) = y0, yN+1(1) = y1 we get

|eN+1(x)| ≤ k||eN+1(x)||
2

Γ(α+ 1)
+ |J (α)RN+1(x)|.(5.16)

On the other hand, we have

|D(β)eN+1(x)| ≤
∫ 1

0

|G̃(x, s)||f(s, y(s), D(β)y(x))ds−f(s, yN+1(s), D
(β)yN+1(x))|ds

≤ ||eN+1(x)||(
∫ 1

0

(t− s)α−β−1

Γ(α− β)
ds+

x1−β

Γ(2− β)

∫ 1

0

(1− s)α−1

Γ(α)
ds)

= ||eN+1(x)||(
xα−β

Γ(α− β + 1)
+

x1−β

Γ(α+ 1)Γ(2− β)
)

≤ ρ||eN+1(x)||,(5.17)

where ρ < 1 and G̃(x, s) is defined by Eq. (3.6) in [31]. Thus, we have

||eN+1(x)|| ≤ (1− ρ− 2k

Γ(α+ 1)
)−1|J (α)RN+1(x)|.(5.18)

If we set x = ti, i = 1, . . . , N + 1, then our aim is to have RN+1(ti) ≤ 10−ri ,
where ri is any positive integer. If we prescribe, max ri = r, then we increase N
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as long as the following inequality holds at each point ti:

|RN+1(ti)| ≤ 10−r,(5.19)

in other words, by increasing N the error function RN+1(ti) approaches zero. If
RN+1(ti) → 0 whenN is sufficiently large enough, then the error decreases. 2

□

In this part we present accuracy order of numerical approach for solving (1.3).

Let y(x) is the exact solution of (1.3) and yN+1(x) =
N+1∑
i=1

ciϕi(x) = CTΦN (x) is

the Chebyshev cardinal approximation. So, by using (3.2), (5.2) for sufficiently
large enough N , we have

(5.20)

|D(α)y(x)−D(α)yN+1(x)| = |D(α)y(x)−DαyN+1(x) +DαyN+1(x)−D(α)yN+1(x)|.

Thus

(5.21)

|D(α)y(x)−DαyN+1(x)|
= |f(x, y(x), D(β)y(x))− f(x, yN+1(x),DβyN+1(x))|
≤k[|y(x)− yN+1(x)|+ |D(β)y(x)−D(β)yN+1(x)+D

(β)yN+1(x)−DβyN+1(x)|]

≤k[
|y(N+1)(x)|
2N (N + 1)!

+ . . .+ |D(β)[y(x)− yN+1(x)]|+ |D(β)yN+1(x)−DβyN+1(x)|].

On the other hand, by using (2.3), (3.16), we have

|D(α)yN+1(x)−DαyN+1(x)| = |
N+1∑
k=1

ck(ϕ
(α)
k (x)−

N+1∑
j=1

ϕ
(α)
k (tj)ϕj(x))|

≤

N+1∑
k=1

|ckDN+1(ϕ
(α)
k (x))|

2N (N + 1)!
+ . . . .(5.22)

If α = 1 + θ, 0 ≤ θ < 1, it is shown in Lemma 3.2 in [22] that

(5.23)

DN+1(ϕ
(α)
k (x)) = DN+1[D(ϕ

(θ)
k (x)) +

ϕk(0)x
−2−θ

Γ(−2− θ)
−

1∑
h=0

ϕ
(h)
k (0)xh−θ

Γ(h+ 1− θ)
]

= DN+2(ϕ
(θ)
k (x))− S(−2− θ −N,N + 1)ϕk(0)x

−3−θ−N

Γ(−2− θ)

+

1∑
h=0

ϕ
(h)
k (0)S(k − θ −N,N + 1)xh−θ−N−1

Γ(h+ 1− θ)
, k = 1, . . . , N + 1
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and

DN+2(ϕ
(θ)
k (x)) = ϕ

(N+2+θ)
k (x)− ϕk(0)x

−2(N+2)−θ

Γ(−3− 2N − θ)
+

N+2∑
p=0

ϕ
(p)
k (0)xp−N−1−θ

Γ(p−N − θ)

= −ϕk(0)x
−2(N+2)−θ

Γ(−3− 2N − θ)
+

N+2∑
p=0

ϕ
(p)
k (0)xp−N−1−θ

Γ(p−N − θ)

k = 1, . . . , N + 1,(5.24)

where S(z, n) = z(z + 1) . . . (z + n− 1). However, by using (2.3) and employing
J (α) in (5.22), we get

|J (α)(D(α)yN+1(x)−DαyN+1(x))|

≤ 1

2N (N + 1)!

N+1∑
j=1

|cj [−
ϕj(0)x

−2(N+2)

Γ(−2N − 1)
+

N+2∑
p=0

ϕ
(p)
j (0)xp−N+1

Γ(p+ 1−N)
+ . . .]|

≤ 1

2N (N + 1)!
|[y(0)x

−2(N+1)

Γ(−2N − 1)
+

N+2∑
p=0

y(p)(0)xp−N

Γ(p+ 1−N)
+ . . .]|,

≤ 1

2N (N + 1)!
|(y(N)(0) + y(N+1)(0)x+ y(N+2)(0)

x2

2!
)|

≤ 1

2N (N + 1)!
(|y(N)(x)|+ |ϵ(N)|),(5.25)

where ϵ(N) =
∞∑

p=N+3

y(p)(0)xp−N+1

Γ(p+ 1−N)
→ 0 as N → ∞, 1

Γ(−2N−1) ≈ 0 and

1
Γ(p+1−N) ≈ 0, p = 0, . . . , N − 2. However, by using (2.3) in (5.21)

|eN+1(x)| ≤ kJ (α)[
|y(N+1)(x)|
2N (N + 1)!

+ . . .+ |D(β)[y(x)− yN+1(x)]|+ . . .]

≤ k[
|y(N+1−α)(x)|
2N (N + 1)!

+ . . .+ |D(β−α)[
|y(N+1)(x)|
2N (N + 1)!

]

−
1∑

k=0

|y(k+N+1+β−α)(x)|x=0x
k

2N (N + 1)!k!
|+ . . .]

≤ k[
|y(N+1−α)(x)|
2N (N + 1)!

+ . . .+
|y(N+1+β−α)(x)|

2N (N + 1)!
+ . . .].(5.26)

Thus

|eN+1(x)| ≤ k
|y(N+1−α)(ξx)|
2N (N + 1)!

,(5.27)
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where ξx ∈ [0, 1]. Eqs (5.25) and (5.27) show that for y(x) ∈ CN
−1, we get an

exponentially convergence approximation.

6. Numerical examples

In this section we give a computational results of numerical experiments with
methods based on preceding sections, to support our theoretical discussion. It
should be noted that in Examples 6.1 and 6.3 the exact solution y(x) does not
belong to CN

−1, N ≥ 1. So, we have not exponential convergence. But for

Examples 6.2, 6.4 and 6.5 y(x) belongs to CN
−1, N ≥ 1, so we get exponentially

convergence.

Example 6.1. Consider the nonlinear fractional differential equation:

D
4
3 y(x) +D

1
2 y(x) + y(x)2 =

9Γ
(
5
6

)
6
√
x

4
√
π

+
3

4

√
πx+ x3, x ∈ [0, 1],

y(0) = 0, y(1) = 1.(6.1)

The exact solution of this problem is y(x) = x
√
x. Table 1 shows the L2 and

L∞ errors for the method presented in Section 4 for different values of N .
Table 1. L2 and L∞ errors using presented method for Exam-
ple 6.1

N + 1 L2 error L∞ error

2 1.0× e− 1 1.4× e− 1
4 1.3× e− 2 2.3× e− 2
8 2.2× e− 3 2.9× e− 3
10 1.3× e− 3 2.3× e− 3

Example 6.2. Consider nonlinear boundary value problem

xD
5
4 y(x) + (1 + 2x2)D

1
3 y(x)(y(x)) =

243

55Γ( 23 )
x

29
3 +

243

110Γ( 23 )
x

23
3

+
243

55Γ( 23 )
x

17
3 +

512

77Γ( 34 )
x

15
4 +

243

110Γ( 23 )
x

11
3 ,

y(0) = 1, y(1) = 2.(6.2)

The exact solution is

(6.3) y(x) = x4 + 1.

Table 2 shows the L2 and L∞ errors for the method presented in Section 4 for
different values of N .
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Table 2. L2 and L∞ errors using presented method for Exam-
ple 6.2

N + 1 L2 error L∞ error

2 3.3× e− 1 4.7× e− 1
4 6.3× e− 2 8.7× e− 2
8 1.7× e− 6 3.4× e− 6
10 1.8× e− 8 9.5× e− 8

Example 6.3. Consider the fractional differential equation:

(6.4)

4(x+ 1)D
4
3 y(x) + 4D

1
4 y(x) +

1√
x+ 1

y(x)

= −2
√
x+ 2 arcsin

(
−1 + x

x+ 1

)
+ π +

√
π (x+ 1)√
x+ 1

,

y(0) =
√
π, y(1) =

√
2π.

The exact solution is y(x) =
√
π(x+ 1). The L2 and L∞ errors are obtained in

Table 4 for different values of N using presented method in Section 4.

Table 3. L∞ and L2 errors using presented method for Exam-
ple 6.3

N + 1 L2error L∞error
3 5.1× e− 3 7.4× e− 3
4 3.6× e− 4 7.0× e− 4
5 7.9× e− 5 1.1× e− 4
6 6.5× e− 6 9.7× e− 6
7 1.6× e− 6 2.3× e− 6
8 1.3× e− 7 2.7× e− 7

Example 6.4. Consider the nonlinear fractional differential equation:

D
3
2 y(x) +D

1
2 y(x) + (y(x))2 =

32768

715

x
15
2

√
π
+

65536

12155

x
17
2

√
π
+ x18

y(0) = 0, y(1) = 1.(6.5)

The exact solution is y(x) = x9.
Table 3 shows the L∞ and L2 errors that obtains for different values of N .

Table 4. L∞ and L2 errors using presented method for Exam-
ple 4

N + 1 L2error L∞error
7 7.3× e− 3 8.2× e− 3
8 5.4× e− 4 1.2× e− 3
9 4.1× e− 5 7.0× e− 5
10 5.6× e− 35 9.1× e− 35
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Example 6.5. Consider the fractional differential equation:

y′′(x) + Γ(
4

5
)(x)

6
5D

6
5 y(x) +

11

9
Γ(

5

6
)(x)

1
6D

1
6 y(x)− (y′(x))2 = 2 +

1

10
x2

y(0) = 1, y(1) = 2.(6.6)

The exact solution is y(x) = x2 + 1.
Figure 1 shows the plot of error with N = 3 using the method presented in

section 4.

Figure 1. Plot of error for y(x) with N = 3 for Example 6.5

7. Conclusion

In this paper we presented a numerical scheme for solving the nonlinear frac-
tional differential equation. The Chebyshev cardinal functions was employed.
The obtained results showed that this approach can solve the problem effectively.
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