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COMMON FIXED POINTS OF TWO COMMUTING
MAPPINGS IN COMPLETE METRIC SPACES

T. SUZUKI, R. SAADATI*, D. O’REGAN

Communicated by Fraydoun Rezakhanlou

Abstract. We improve Park and Bae’s common fixed point the-
orem which is a generalization of Meir and Keeler’s fixed point
theorem. We extend Kannan’s fixed point theorem to a common
fixed point theorem of two commuting maps. Also, using the notion
of biased mappings, we prove another common fixed point theorem.

1. Introduction

In 1981, Park and Bae proved the following fixed point theorem.

Theorem 1.1 (Park and Bae [8]). Let (X, d) be a complete metric space.
Let S and T be mappings on X satisfying the following condition.

(a) T (X) ⊂ S(X);
(b) S is continuous;
(c) S and T commute;
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(d) for every ε > 0, there exists δ > 0 such that

d(Sx, Sy) < ε + δ implies d(Tx, Ty) < ε.

Then S and T have a unique common fixed point.

When S is the identity mapping on X, Theorem 1.1 becomes Meir and
Keeler’s fixed point theorem [7], which is one of the generalizations of
the Banach contraction principle [1] (see also Jungck [2]). On the other
hand, in 1969, Kannan [5] proved the following interesting fixed point
theorem, which is not an extension of the Banach contraction principle.

Theorem 1.2 (Kannan [5]). Let (X, d) be a complete metric space and
let T be a mapping on X. Assume that there exists α ∈ [0, 1/2) such
that

d(Tx, Ty) ≤ α d(Tx, x) + α d(Ty, y)

for all x, y ∈ X. Then T has a unique fixed point.

Some generalizations of Meir and Keeler’s and Kannan’s fixed point
theorem are proved. (For example, see [9, 12, 14, 15]). Lim [6] charac-
terized Meir-Keeler contractions.

The main purpose of this paper is to improve Theorems 1.1 and 1.2.
Also, we will prove a fixed point theorem, using the notion of biased
mappings introduced by Jungck and Pathak [3].

2. Preliminaries

Throughout this paper we denote the set of all positive integers by N.
In 2001, Suzuki introduced the notion of τ -distance in order to generalize
results in Kada, Suzuki and Takahashi [4], Tataru [16], Zhong [17, 18]
and others.

Definition 2.1 ([10]). Let (X, d) be a metric space. A function p from
X ×X into [0,∞) is called a τ -distance on X if there exists a function
η from X × [0,∞) into [0,∞) such that the following are satisfied:

(τ1) p(x, z) ≤ p(x, y) + p(y, z) for all x, y, z ∈ X;
(τ2) η(x, 0) = 0 and η(x, t) ≥ t for all x ∈ X and t ∈ [0,∞), and η

is concave and continuous in its second variable;
(τ3) limn xn = x and limn sup

{
η
(
zn, p(zn, xm)

)
: m ≥ n

}
= 0 imply

p(w, x) ≤ lim infn p(w, xn) for all w ∈ X;
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(τ4) limn sup{p(xn, ym) : m ≥ n} = 0 and limn η(xn, tn) = 0 imply
limn η(yn, tn) = 0;

(τ5) limn η
(
zn, p(zn, xn)

)
= 0 and limn η

(
zn, p(zn, yn)

)
= 0 imply

limn d(xn, yn) = 0.

The metric d is a τ -distance on X. Many useful examples and results
on τ -distance are stated in [4, 10, 11, 12, 13]. The following is Lemma
2 in [10].

Lemma 2.2 ([10]). Let X be a metric space with a τ -distance p. Then
p(z, x) = 0 and p(z, y) = 0 implies x = y.

Let (X, d) be a metric space with a τ -distance p. Then a sequence
{xn} in X is called p-Cauchy if there exist a function η from X × [0,∞)
into [0,∞) satisfying (τ2) – (τ5) and a sequence {zn} in X such that
limn sup

{
η
(
zn, p(zn, xm)

)
: m ≥ n

}
= 0. The following is known.

Lemma 2.3 ([10]). Let X be a metric space with a τ -distance p. If
{xn} is a p-Cauchy sequence, then {xn} is a Cauchy sequence in the
usual sense.

Lemma 2.4 ([10]). Let (X, d) be a metric space with a τ -distance p.
If a sequence {xn} in X satisfies limn sup{p(xn, xm) : m > n} = 0,
then {xn} is a p-Cauchy sequence. Moreover if a sequence {yn} in X
satisfies limn p(xn, yn) = 0, then {yn} is also a p-Cauchy sequence and
limn d(xn, yn) = 0.

Remark 2.5. We note that x = y does not necessarily imply p(x, y) = 0,
and p(x, y) = 0 does not necessarily imply x = y.

3. Main results

In this section, we prove our main results. We first improve Theorem
1.1. The following theorem is also a generalization of a result in [12].

Theorem 3.1. Let (X, d) be a complete metric space with a τ -distance
p. Let S and T be mappings on X satisfying the following conditions:

(a) T (X) ⊂ S(X);
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(b) if {xn} is p-Cauchy and converges to z ∈ X, then {Sxn} con-
verges to Sz;

(c) S and T commute;
(d) for every ε > 0, there exists δ > 0 such that

p(Sx, Sy) < ε + δ implies p(Tx, Ty) < ε.

Then S and T have a unique common fixed point z ∈ X such that
p(z, z) = 0.

Remark 3.2. Condition (b) is weaker than the continuity of S.

Proof. We first show that

p(Tx, Ty) ≤ p(Sx, Sy) holds for all x, y ∈ X. (3.1)

By (d), for every ε > 0 with p(Sx, Sy) < ε, there exists δ0 > 0 such that
p(Su, Sv) < ε + δ0 implies p(Tu, Tv) < ε. Since p(Sx, Sy) < ε + δ0, we
have p(Tx, Ty) < ε. Since ε > 0 is arbitrary, we obtain (3.1). By (a),
we can define a mapping I on X satisfying SIx = Tx for all x ∈ X. We
first show

lim
n→∞

p(SInx, SIny) = 0,

for all x, y ∈ X. Since

p(SIn+1x, SIn+1y) = p(TInx, TIny) ≤ p(SInx, SIny),

for all n ∈ N, {p(SInx, SIny)} converges to some nonnegative number t1.
If t1 > 0, then there exists δ1 > 0 such that p(Su, Sv) < t1 + δ1 implies
p(Tu, Tv) < t1. We choose ν1 ∈ N with p(SIν1x, SIν1y) < t1 + δ1. Then
we have

p(SIν1+1x, SIν1+1y) < t1 ≤ p(SIν1+1x, SIν1+1y),

which is a contradiction. Therefore t1 = 0.
We next fix x0 ∈ X and define a sequence {xn} by xn = Inx0 for

n ∈ N. We note that

Sxn+1 = SIxn = Txn,

for all n ∈ N. We will show

lim
n→∞

sup
m>n

p(Sxn, Sxm) = 0.
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Fix ε > 0. There exists δ2 ∈ (0, ε) such that p(Su, Sv) < ε + δ2

implies p(Tu, Tv) < ε. For such δ2, there exists ν2 ∈ N such that
p(Sxn, Sxn+1) < δ2 for all n ≥ ν2.
We assume lim supn supm>n p(Sxn, Sxm) > 2 ε. Then there exist k, ` ∈
N such that ν2 ≤ k < ` and

p(Sxk, Sx`) ≤ ε + δ2 < p(Sxk, Sx`+1)

holds. We have

p(Sxk, Sx`+1) ≤ p(Sxk, Sxk+1) + p(Sxk+1, Sx`+1) ≤ δ2 + ε,

which leads to a contradiction. Hence lim supn supm>n p(Sxn, Sxm) ≤
2 ε. Since ε > 0 is arbitrary, we have limn supm>n p(Sxn, Sxm) = 0. By
Lemma 2.4, {Sxn} is p-Cauchy. So, by Lemma 2.3, {Sxn} is a Cauchy
sequence in the usual sense. Since X is complete, {Sxn} converges to
some z ∈ X. Hence {Txn} also converges to z because Sxn = Txn−1.
By the assumptions, Sz = limn STxn holds. Since

p(Sxn, STxn) = p(Sxn, TSxn) = p(Txn−1, TSxn)

≤ p(Sxn−1, SSxn) = p(Sxn−1, STxn−1),

for n ∈ N, {p(Sxn, STxn)} converges to some nonnegative number t2.
If t2 > 0, then there exists δ3 > 0 such that p(Su, Sv) < t2 + δ3 implies
p(Tu, Tv) < t2. We choose ν3 ∈ N with p(Sxν3 , STxν3) < t2 + δ3. Then
we have

p(Sxν3+1, TSxν3+1) = p(Txν3 , TTxν3) < t2 ≤ p(Sxν3+1, TSxν3+1),

which leads to a contradiction. Therefore t2 = 0. Hence limn p(Sxn, STxn)
= 0. Again by Lemma 2.4, limn d(Sxn, STxn) = 0. This implies Sz = z.
Using this, we have

lim sup
n→∞

p(Sxn, T z) = lim sup
n→∞

p(Txn−1, T z)

≤ lim sup
n→∞

p(Sxn−1, Sz) = lim sup
n→∞

p(Sxn−1, z)

≤ lim sup
n→∞

lim inf
m→∞

p(Sxn−1, Sxm)

≤ lim
n→∞

sup
m≥n

p(Sxn−1, Sxm) = 0,

which implies limn d(Sxn, T z) = 0 and hence Tz = z, Therefore z is a
common fixed point of S and T . Let y be a common fixed point of S
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and T , and define a mapping J on X by

Jx =

{
Ix, if x 6= y and x 6= z,

x, if x = y or x = z.

Then we note that SJx = Tx for all x ∈ X. So we obtain

p(z, y) = lim
n→∞

p(SJnz, SJny) = 0.

Similarly we can prove p(z, z) = 0. So, by Lemma 2.2, we obtain y = z.
This means that z is the unique common fixed point of S and T . This
completes the proof. �

We next improve Theorem 1.2 as follows.

Theorem 3.3. Let (X, d) be a complete metric space with a τ -distance
p. Let S and T be mappings on X satisfying the following conditions:

(a) T (X) ⊂ S(X);
(b) if {xn} is p-Cauchy and converges to z ∈ X, then {Sxn} con-

verges to Sz;
(c) S and T commute;
(d) there exists α ∈ [0, 1/2) satisfying either of the following:

(A) p(Tx, Ty) ≤ α p(Tx, Sx) + α p(Ty, Sy) for all x, y ∈ X;
(B) p(Tx, Ty) ≤ α p(Tx, Sx) + α p(Sy, Ty) for all x, y ∈ X.

Then S and T have a unique common fixed point z ∈ X such that
p(z, z) = 0.

Proof. By (a), we can define a mapping I on X satisfying SIx = Tx
for all x ∈ X. Fix x0 ∈ X and define a sequence {xn} by xn = Inx0

for n ∈ N. We note that Sxn+1 = SIxn = Txn for all n ∈ N. We first
assume (A). Since

p(Sxn+2, Sxn+1) = p(Txn+1, Txn)

≤ α p(Txn+1, Sxn+1) + α p(Txn, Sxn)

= α p(Sxn+2, Sxn+1) + α p(Sxn+1, Sxn),

we have

p(Sxn+2, Sxn+1) ≤ r p(Sxn+1, Sxn) ≤ rn+1 p(Sx1, Sx0),
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for n ∈ N, where r := α/(1− α) ∈ [0, 1). Hence

lim
m,n→∞

p(Sxn, Sxm) = lim
m,n→∞

p(Txn−1, Txm−1)

≤ lim
m,n→∞

(
α p(Txn−1, Sxn−1) + α p(Txm−1, Sxm−1)

)
≤ lim

m,n→∞
α (rn−1 + rm−1) p(Sx1, Sx0)

= 0.

By Lemma 2.4, {Sxn} is p-Cauchy. Hence, by Lemma 2.3, {Sxn} is
a Cauchy sequence in the usual sense. Since X is complete, {Sxn}
converges to some z ∈ X. By (b), {SSxn} converges to Sz. Also we
have

p(SSxn+2, SSxn+1) = p(STxn+1, STxn) = p(TSxn+1, TSxn)

≤ α p(TSxn+1, SSxn+1) + α p(TSxn, SSxn)

= α p(STxn+1, SSxn+1) + α p(STxn, SSxn)

= α p(SSxn+2, SSxn+1) + α p(SSxn+1, SSxn).

Thus,

p(SSxn+1, SSxn) ≤ rn p(SSx1, SSx0),

for every n ∈ N. This implies limm,n→∞ p(SSxn, SSxm) = 0 and so
{SSxn} is p-Cauchy. Since

lim
n→∞

p(Sxn, z) ≤ lim
n→∞

lim inf
m→∞

p(Sxn, Sxm)

≤ lim
n→∞

sup
m>n

p(Sxn, Sxm)

= 0,

and

lim
n→∞

p(Sxn, Sz) ≤ lim
n→∞

lim inf
m→∞

p(Sxn, SSxm)

≤ lim
n→∞

sup
m>n

p(Sxn, SSxm)

= lim
n→∞

sup
m>n

p(Txn−1, TSxm−1)

≤ lim
n→∞

sup
m>n

(
α p(Txn−1, Sxn−1) + α p(TSxm−1, SSxm−1)

)
= 0,
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we obtain Sz = z, by Lemma 2.4. We also have

p(Tz, z) ≤ lim inf
n→∞

p(Tz, Txn)

≤ lim inf
n→∞

(
α p(Tz, z) + α p(Txn, Sxn)

)
= α p(Tz, z),

which implies p(Tz, z) = 0. From this and

p(Tz, Tz) ≤ 2 α p(Tz, Sz) = 2 α p(Tz, z) = 0,

we obtain Tz = z. Therefore, z is a common fixed point of S and T and
p(z, z) = 0. Let y be a common fixed point of S and T . Then we can
easily prove that p(y, y) = 0. We have

p(z, y) = p(Tz, Ty) ≤ α p(Tz, Sz)+α p(Ty, Sy) = α p(z, z)+α p(y, y) = 0,

and hence y = z, by Lemma 2.2. Therefore the common fixed point z is
unique. We next assume (B). We put

M = p(Sx0, Sx1) + p(Sx1, Sx0) + p(SSx0, SSx1) + p(SSx1, SSx0).

Since

p(Sxn+2, Sxn+1) = p(Txn+1, Txn)

≤ α p(Txn+1, Sxn+1) + α p(Sxn, Txn)

= α p(Sxn+2, Sxn+1) + α p(Sxn, Sxn+1),

and

p(Sxn+1, Sxn+2) = p(Txn, Txn+1)

≤ α p(Txn, Sxn) + α p(Sxn+1, Txn+1)

= α p(Sxn+1, Sxn) + α p(Sxn+1, Sxn+2),

we have
p(Sxn+2, Sxn+1) ≤ r p(Sxn, Sxn+1),

and
p(Sxn+1, Sxn+2) ≤ r p(Sxn+1, Sxn),

for n ∈ N. Hence

p(Sxn+1, Sxn) + p(Sxn, Sxn+1) ≤ rn M,

for every n ∈ N. We can similarly prove that

p(SSxn+1, SSxn) + p(SSxn, SSxn+1) ≤ rn M,
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for every n ∈ N. Using these, we can easily prove that

lim
m,n→∞

p(Sxn, Sxm) = lim
m,n→∞

p(SSxn, SSxm) = 0.

By Lemma 2.4, {Sxn} and {SSxn} are p-Cauchy. Hence by Lemma 2.3,
{Sxn} is a Cauchy sequence in the usual sense. Since X is complete,
{Sxn} converges to some z ∈ X. We can prove that such z is the unique
common fixed point of S and T similar to the case (A). This completes
the proof. �

4. Biased mappings

Jungck and Pathak [3] introduced the notion of biased mappings (Def-
inition 4.1). In this section, we prove a fixed point theorem for such
maps.

Definition 4.1 ([3]). Let (X, d) be a metric space and let S and T be
mappings on X. Then the pair (S, T ) is said to be S-biased if

lim sup
n→∞

d(Sxn, STxn) ≤ lim sup
n→∞

d(Sxn, TSxn),

for every sequence {xn} such that {Sxn} and {Txn} converge to some
point z ∈ X.

Motivated by the above definition, we introduce the τ -distance version
of biased mappings.

Definition 4.2. Let (X, d) be a metric space with a τ -distance p, and
let S and T be mappings on X. Then the pair (S, T ) is said to be
(p, S)-biased if

lim sup
n→∞

p(Sxn, STxn) ≤ lim sup
n→∞

p(Sxn, TSxn),

for every sequence {xn} such that {Sxn} and {Txn} are p-Cauchy and
converge to some point z ∈ X.

We note that a convergent sequence is not necessarily p-Cauchy. The
following lemma is obvious.

Lemma 4.3. If ST = TS, then (S, T ) is (p, S)-biased.

Lemma 4.4. For every metric space X and mappings S, T on X, (S, T )
is (d, S)-biased if and only if (S, T ) is S-biased.
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Proof. We note that a sequence {xn} in X is d-Cauchy if and only if
{xn} is a Cauchy sequence in the usual sense. �

Now we prove the following theorem.

Theorem 4.5. Let (X, d) be a complete metric space with a τ -distance
p. Let S and T be mappings on X satisfying the following conditions:

(a) T (X) ⊂ S(X);
(b) if {xn} is p-Cauchy and converges to z ∈ X, then {Sxn} is also

p-Cauchy and converges to Sz;
(c) (S, T ) is (p, S)-biased;
(d) there exists a continuous function ϕ from [0,∞) into itself sat-

isfying ϕ(t) < t for all t ∈ (0,∞) and p(Tx, Ty) ≤ ϕ
(
p(Sx, Sy)

)
for all x, y ∈ X.

Then S and T have a unique common fixed point z ∈ X such that
p(z, z) = 0.

Remark 4.6. While Conditions (b) and (d) in this theorem are stronger
than the corresponding conditions in of Theorem 3.1, Condition (c) in
this theorem is weaker than the corresponding one in Theorem 3.1.

Proof. Since ϕ(t) < t for all t ∈ (0,∞) and ϕ is continuous, we have
ϕ(0) = 0. Thus ϕ(t) ≤ t for all t ∈ [0,∞). Considering a function
t 7→ max{ϕ(s) : s ∈ [0, t]}, without loss of generality, we may assume
that ϕ is nondecreasing. By (a), we can define a mapping I on X
satisfying SIx = Tx for all x ∈ X. We first show that

lim
n→∞

p(SInx, SIny) = 0,

for all x, y ∈ X. Since

p(SIn+1x, SIn+1y) = p(TInx, TIny)

≤ ϕ
(
p(SInx, SIny)

)
≤ p(SInx, SIny),

for all n ∈ N, {p(SInx, SIny)} converges to some nonnegative number
t1. If t1 > 0, then as n tends to ∞, we have

t1 = lim
n→∞

p(SIn+1x, SIn+1y) ≤ lim
n→∞

ϕ
(
p(SInx, SIny)

)
= ϕ(t1),

which leads to a contradiction. Therefore t1 = 0. We next fix x0 ∈ X
and define a sequence {xn} by xn = Inx0 for n ∈ N. We note that
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Sxn+1 = SIxn = Txn for all n ∈ N. We will show that

lim
m,n→∞

p(Sxn, Sxm) = 0.

Fix ε > 0. There exists ν1 ∈ N such that

max
{
p(Sxn, Sxn), p(Sxn, Sxn+1), p(Sxn+1, Sxn)

}
< ε− ϕ(ε),

for all n ≥ ν1. We assume that lim supm,n p(Sxn, Sxm) > ε. Then there
exist k, ` ∈ N such that k ≥ ν1, ` ≥ ν1 and either of the following holds

(i) p(Sxk, Sx`) ≤ ε < p(Sxk, Sx`+1);
(ii) p(Sxk, Sx`) ≤ ε < p(Sxk+1, Sx`).

In the first case, we have

p(Sxk, Sx`+1) ≤ p(Sxk, Sxk+1) + p(Sxk+1, Sx`+1)

≤ p(Sxk, Sxk+1) + ϕ
(
p(Sxk, Sx`)

)
< ε− ϕ(ε) + ϕ(ε) = ε,

which is a contradiction. In the second case, we have

p(Sxk+1, Sx`) ≤ p(Sxk+1, Sx`+1) + p(Sx`+1, Sx`)

≤ ϕ
(
p(Sxk, Sx`)

)
+ p(Sx`+1, Sx`)

< ϕ(ε) + ε− ϕ(ε) = ε,

which is again a contradiction. Hence lim supm,n p(Sxn, Sxm) ≤ ε. Since
ε > 0 is arbitrary, we have limm,n p(Sxn, Sxm) = 0. By Lemma 2.4,
{Sxn} is p-Cauchy. Hence, by Lemma 2.3, {Sxn} is a Cauchy sequence
in the usual sense. Since X is complete, {Sxn} converges to some z ∈
X. Hence {Txn} also converges to z because Sxn = Txn−1. By the
assumptions, {STxn} is p-Cauchy and Sz = limn STxn. Since {STxn}
is p-Cauchy, there exist ν2 ∈ N and v ∈ X such that

sup
{
p(v, STxn) : n ≥ ν2

}
≤ 1.

Since limm,n p(Sxn, Sxm) = 0, there exists ν3 ≥ ν2 such that p(Sxn, Sxν3)
≤ 1, for all n ∈ N with n ≥ ν3. For each n ≥ ν3 we have

sup
{
p(Sxn, STxn) : n ≥ ν3

}
≤ sup

{
p(Sxn, Sxν3) + p(Sxν3 , v) + p(v, STxn) : n ≥ ν3

}
≤ 2 + p(Sxν3 , v) < ∞.
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Hence {p(Sxn, STxn)} is bounded. We assume t2 := lim supn p(Sxn, STxn)
> 0. Then we have

t2 = lim sup
n→∞

p(Sxn, STxn)

≤ lim sup
n→∞

p(Sxn, TSxn) = lim sup
n→∞

p(Txn−1, TSxn)

≤ lim sup
n→∞

ϕ
(
p(Sxn−1, SSxn)

)
= lim sup

n→∞
ϕ

(
p(Sxn−1, STxn−1)

)
= ϕ(t2) < t2,

which is a contradiction. Hence limn p(Sxn, STxn) = 0. Again by
Lemma 2.4, limn d(Sxn, STxn) = 0. This implies Sz = z. Using this,
we have

lim sup
n→∞

p(Sxn, T z) = lim sup
n→∞

p(Txn−1, T z)

≤ lim sup
n→∞

p(Sxn−1, Sz) = lim sup
n→∞

p(Sxn−1, z)

≤ lim sup
n→∞

lim inf
m→∞

p(Sxn−1, Sxm)

≤ lim
n→∞

sup
m≥n

p(Sxn−1, Sxm) = 0,

which implies limn d(Sxn, T z) = 0 and hence Tz = z. Therefore z is a
common fixed point of S and T . We can prove uniqueness of z similar
to the proof of this assertion in Theorem 3.1. �
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