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Abstract. Let A be a C∗ algebra, T : A → A be a linear map which

satisfies the functional equation T (x)T (y) = T 2(xy), T (x∗) = T (x)∗.
We prove that under each of the following conditions, T must be the
trivial map T (x) = λx for some λ ∈ R :
i) A is a simple C∗-algebra. ii) A is unital with trivial center and has

a faithful trace such that each zero-trace element lies in the closure of
the span of commutator elements. iii) A = B(H) where H is a separable
Hilbert space.

For a given field F , we consider a similar functional equation T (x)T (y) =

T 2(xy), T (xtr) = T (x)tr, where T is a linear map on Mn(F ) and ”tr” is
the transpose operator. We prove that this functional equation has trivial
solution for all n ∈ N if and only if F is a formally real field.
Keywords: Functional Equations, C∗ algebras, formally real field.
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1. Introduction

Motivated by the classical operator of differentiation, we shall consider the
functional equation

(1.1)

{
T (x)T (y) = T 2(xy)

T (x∗) = T (x)∗

where T is a linear operator on a C∗ algebra A. We give some sufficient
conditions under which the equation (1.1) has only trivial solution T (x) = λx
for some λ ∈ R. On the other hand, in the particular case A = Mn(C), this
equation gives us the following functional equation on Mn(R) or more generally
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Functional equations on C∗ algebras 1170

on Mn(F ) where F is an arbitrary field:

(1.2)

{
T (x)T (y) = T 2(xy)

T (xtr) = T (x)tr

where ”tr” is the transpose operator. We observe that for all n ∈ N, this
functional equation has only trivial scalar solution

T (x) = λx, for some λ ∈ F

if and only if F is a formally real field, that is
∑n

i=1 f
2
i = 0, fi ∈ F, n ∈ N

implies that fi = 0, ∀i = 1, 2, . . . , n.
First we explain that how we construct our main functional equation (1.1) from
the differentiation operator:

Recall that a complex coalgebra is a complex vector space C with linear
maps ∆ : C → C ⊗ C and ε : C → C such that

(Id⊗∆) ◦∆ = (∆⊗ Id) ◦∆
(Id⊗ ε) ◦∆ = Id = (ε⊗ Id) ◦∆.

Let C = (C[x],∆, ε) be the coalgebra of complex polynomials with the di-
vided power structure ∆(xn) =

∑n
i=0

(
n
i

)
xn−i ⊗ xi, ε(1) = 1, ε(xn) = 0

for n > 0. The formulation of this structure comes from both the expansion
(x+ y)n =

∑n
k=1

(
n
k

)
xkyn−k and formula Bn(x+ y) =

∑n
k=1

(
n
k

)
Bk(x)Bn−k(y)

where Bk’s are Bell polynomials introduced by E.T. Bell in [1]. Assume that
T is the operator of differentiation on C[x]. Then T satisfies

(1.3) (T ⊗ T ) ◦∆ = ∆ ◦ T 2.

So we have the following commutative diagram;

C ⊗ C
∆←−−−− C

T⊗T

x xT 2

C ⊗ C
∆←−−−− C

Now assume that A is a (not necessarily unital) algebra with multiplication
m : A⊗A→ A and T is a linear map on A. By reversing the direction of arrows
in the above diagram and replacing the coproduct ∆ of C by the product m of
A, we find the following commutative diagram:

A⊗A
m−−−−→ A

T⊗T

y yT 2

A⊗A
m−−−−→ A

This means that T is a linear map on the algebra A which satisfies:

(1.4) T (x)T (y) = T 2(xy).
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In fact, motivated by the classical operator of differentiation, we construct (1.3)
as a coalgebraic functional equation on an arbitrary coalgebra. This equation
naturally gives us the equation (1.4), as an algebraic functional equation for
linear maps on a complex algebra A. If we wish to consider (1.4) on a C∗

algebra A, it is natural to add the symmetric condition T (x∗) = (T (x))∗.

In this paper we are mainly interested in the functional equation

(1.5)
T (x)T (y) = T 2(xy)

T (x∗) = (T (x))∗

where T is a (not necessarily continuous) linear map on a C∗ algebra A and
T 2 = T ◦ T . An operator which satisfies (1.5) is called a partial multiplier.
We observe that a partial multiplier is automatically continuous. Despite of its
pure algebraic nature, we will see that for certain C∗ algebras, this functional
equation has a geometric interpretation in terms of inner product preserving
maps, see Proposition 2.

Our reason that we choose the name ”partial multiplier” for such operators
is that an injective partial multiplier on an algebra A can be considered as an
element of multiplier algebra of A, see (d) Proposition 1. Another reason for
this name is that a partial multiplier T on a unial C∗ algebra A is equal to
multiplication by T (1), provided that we restrict T to T (A).

Obviously for every λ ∈ R, the trivial linear map T (x) = λx is a partial
multiplier. In this paper we are interested in conditions on a C∗ algebra A,
under which every partial multiplier is necessarily a trivial map.

Theorem 1.1. Every partial multiplier on a C∗ algebra A is trivial if A satisfies
any one of the following conditions:

(I) A is a simple C∗-algebra.

(II) A is unital, with trivial center, and has a faithful trace such that each
zero-trace element lies in the closure of the span of commutator elements.

(III) A = B(H) where H is a separable Hilbert space.

Our next Theorem, is a characterization of all formally real fields F , in terms
of the functional equation (1.2) on the matrix algebra Mn(F ):

Theorem 1.2. A field F is a formally real field if and only if for each n ∈ N
the equation (1.2) has only trivial solution T (x) = λx for some λ ∈ F .
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2. Preliminaries

In this section we give some definitions and notations. For a C∗ algebra A,
a positive linear map on A is a linear map T such that T (x) ≥ 0 for x ≥ 0. A
faithful (positive) trace on A is a bounded linear map tr : A → C such that
tr(xy) = tr(yx) and tr(x) > 0 for x > 0 (tr(x) ≥ 0 for x ≥ 0). A zero trace
element is an element x ∈ A with tr(x) = 0. Elements of the form xy − yx are
called commutators. For a C∗ algebra A with a faithful trace tr we define an
inner product < . >tr on A with < a, b >tr= tr(ab∗).

The dual and bidual of A is denoted by A∗ and A∗∗, respectively. A bounded
linear map T on A induces natural linear maps T ∗ and T ∗∗ on A∗ and A∗∗,
respectively. The space A∗∗ is a C∗ algebra with the Arens product and a
natural involution. The Arens product is defined in three stages as follows:
(for more information on Arens product see [3])

• For f ∈ A∗ and x ∈ A define < f, x >∈ A∗ with < f, x > (y) = f(xy)
for y ∈ A.
• For F ∈ A∗∗ and g ∈ A∗ define [F, g] ∈ A∗ with
[F, g](x) = F (< g, x >) for x ∈ A.
• For F,G ∈ A∗∗ the Arens product F.G ∈ A∗∗ is defined with
F.G(f) = F ([G, f ]) for f ∈ A∗.

The involution on A∗∗ is defined as follows: F ∗(ϕ) = F (ϕ∗), ϕ∗(a) = ϕ(a∗),
where F ∈ A∗∗, ϕ ∈ A∗, a ∈ A. Note that the natural involution is avail-
able when A is a C∗ algebra but not in general when A is just a Banach
∗ algebra. Then A∗∗ is a unital C∗ algebra which contains A as a C∗ sub-
algebra, via the natural imbedding of A into A∗∗. The multiplier algebra
of A, denoted by M(A), is the idealizor of A in A∗∗, that is the algebra
{z ∈ A∗∗ | zA ⊆ A & Az ⊆ A}.

A pair (L, R) of linear maps on A is called a double centralizer if R(x)y =
xL(y) for x, y ∈ A. The space of double centralizers on A is a C∗ algebra with
natural operations and is isomorphic to the multiplier algebraM(A). In fact for
every double centralizer (L, R) on A there is a unique element a ∈M(A) such
that L(x) = ax, R(x) = xa for x ∈ A. For the algebra of double centralizers
of a C∗ algebras see [7].

3. Partial multipliers

Let A be a C∗ algebra. A linear map T : A → A is called a partial multi-
plier if T satisfies (1.5). Some algebraic properties of partial multipliers are as
follows:

Proposition 3.1. Let T be a partial multiplier on a C∗ algebra A. Then
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(a) T is a bounded operator, and T ∗∗ is a partial multiplier on A∗∗.

(b) ker(T ) is a closed two sided ideal in A.

(c)
∏n

i=1 T (xi) = Tn(
∏n

i=1 xi) where xi ∈ A for i = 1, 2, . . . , n.

(d) If T is an injective operator then (T, T ) is a double centralizer on A.

Proof. To prove (a) assume that T is a partial multiplier on A. Then T 2(xx∗) =
T (x)(T (x))∗ so T 2 is a positive map. Since T 2 is a positive map on a C∗ algebra,
it is a bounded operator, see ’[4, page 260]’. This implies that T is a bounded
operator too because

∥ T (x) ∥2=∥ T (x)(T (x))∗ ∥=∥ T 2(xx∗) ∥≤∥ T 2 ∥∥ xx∗ ∥=∥ T 2 ∥∥ x ∥2 .

We omit the proof of the last part of (a) since it is a repetition of the proof of
Theorem 6.1 in [3]

Now we prove (b). Assume that T (x) = 0. Then for each y ∈ A

T (xy)(T (xy))∗ = T (xy)T (y∗x∗) = T 2(xyy∗x∗) = T (x)T (yy∗x∗) = 0.

This shows that kerT is a right ideal in A. On the other hand kerT is a ∗-
subspace of A, since T is a symmetric operator. This shows that kerT is a two
sided ideal in A.

To prove the remaining parts of the Proposition, without loss of generality,
we may assume that A is a unital algebra. Otherwise we consider the extension
T ∗∗ of T on A as a linear operator on A∗∗. So in the remaining part of the
proof, in the non-unital case, T is implicitly used for T ∗∗. This implicit usage
of T for T ∗∗ is legal since the restriction of T ∗∗ to A is equal to T .

To prove (c) we first note that T (1)kT (x) = T k+1(x) for all k ∈ N. Now
we prove (c) by induction on n. Assume that the statement is true for all
k ≤ n− 1. Then

n∏
i=1

T (xi) = Tn−1(

n−1∏
i=1

xi)T (xn) =

T (1)n−2T (

n−1∏
i=1

xi)T (xn) = T (1)n−2T 2(

n∏
i=1

xi) =

T (1)n−2T (T (

n∏
i=1

xi)) = Tn−1(T (

n∏
i=1

xi) = Tn(

n∏
i=1

xi).

To prove (d) we note that for all x, y ∈ A

(3.1) T (x)T 2(y) = T 2(x)T (y)
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since each side of the equality is equal to T (x)T (1)T (y). In the non-unital case,
this T (1) is replaced by T ∗∗(1). Now (3.1) implies that

(3.2) T 2(xT (y)) = T 2(T (x)y).

Since T is injective we conclude that xT (y) = T (x)y. Then (T, T ) is a double
centralizer on A. □

In the next result we give a geometric interpretation for partial multipliers.
First we need the following lemma which is proved in [2, Theorem 1]:

Lemma 3.2. Assume that T is a linear map on a complex inner product space
V which preserves orthogonality. Then there is a real number k such that
< T (x), T (y) >= k < x, y > for all x, y ∈ V .

In the following result < x, y >tr= tr(xy∗), is the inner product induced
from a faithful trace.

Proposition 3.3. Assume that a C∗ algebra A has a faithful trace such that
every zero trace element lies in the closure of span of commutator elements.
Let T be a partial multiplier on A. Then there is a λ ∈ C such that <
T (x), T (y) >tr= λ < x, y >tr, for all x, y ∈ A

Proof. By the above Lemma, it is sufficient to prove that T preserves the
orthogonality with respect to the inner product < ., . >tr. Note that for every
a, b ∈ A, tr(T 2(ab− ba)) = tr(T (a)T (b)− T (b)T (a)) = 0. Hence the functional
tr ◦ T 2 vanishes on the closure of the span of commutator elements. Next
suppose that tr(xy∗) = 0 for some x, y ∈ A. Then tr(T 2(xy∗)) = 0. Hence
tr(T (x)T (y)

∗
) = 0. So T preserves the orthogonality with respect to < ., . >tr.

This completes the proof of the Proposition.
□

Proof of Theorem 1.1. To prove (I), assume that T is a non-zero partial
multiplier on a simple C∗ algebra A. By proposition 1 (b), the kernel of T is
an ideal in A so kerT = {0}, that is T is injective. By (d), (T, T ) is a double
centralizer on A. This means that there is an element z ∈ M(A) such that
zx = xz for all x ∈ A. By the following argument we conclude that z is a
multiple of the identity element ofM(A). (Communicated to us by Professor
J. Rosenberg).
Every C∗ algebra has an irreducible representation on a Hilbert space H, see
[4, Corollary I.9.11]. Since A is simple this representation is injective. So A is
an irreducible subalgebra of B(H). From an equivalent definition of the multi-
plier algebra which is mentioned in [8, Proposition 2.2.11], we have thatM(A)
is the idealizer of A in B(H). Moreover irreducibility of A in B(H) implies
that the centralizer of A in B(H) reduces to one dimensional scalars C.1,[4,
Lemma I.9.1]. This obviously shows that z is a multiple of the identity. Then
the partial multiplier T is in the form T (x) = λx for some λ ∈ C. Since T is a
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symmetric operator, λ is a real number. This completes the proof of (I).

Assume that T is a partial multiplier on a C∗ algebra A which satisfies the
hypothesis of (II). Then T is injective by Proposition 2 and M(A) = A since
A is unital. Then, similar to the above situation, (T, T ) is a double centralizer
for A. SinceM(A) = A we have T (x) = zx = xz for a central element z ∈ A.
Since A has trivial center we conclude that the symmetric linear map T is in
the form T (x) = λx for some λ ∈ R. This proves (II).

The same argument as above also shows that an injective partial multiplier
on B(H) is a trivial map. Then to prove (III) we assume that kerT is non
trivial, then we will obtain a contradiction.
Since K(H), the space of compact operators on H, is the unique closed two
sided ideal in B(H), we may assume that kerT = K(H). Then T induces

the quotient operators T̃ : B(H)/K(H) → B(H)and T̂ : B(H)/K(H) →
B(H)/K(H). The Calkin algebra B(H)/K(H) is a simple algebra and T̂ is a

partial multiplier on B(H)/K(H). Then (I) implies that T̂ (a) ≡ λa for some
λ ∈ R. If λ = 0 then T (x) is a compact operator, for all x ∈ B(H). Thus T 2 = 0
since kerT = K(H). So T (x)T (x)

∗
= T 2(xx∗) = 0, then T (x) = 0 for all

x ∈ B(H). Now assume that λ ̸= 0. After a rescaling T := T/λ we can assume

that T̂ is the identity operator. This means that T (x) − x ∈ K(H) = kerT
for all x ∈ B(H). Then T 2 = T so T is a C∗ morphism on B(H), since T
satisfies (1.5). Let π : B(H) → B(H)/K(H) be the canonical map. We have

π ◦ T̃ = Id, the identity operator on the Calkin algebra. This is a contradiction
by each of the following arguments:

• It is well known that the Calkin algebra can not be embedded in B(H),
see [5, page 41].

• The equality π ◦ T̃ = Id implies that the following short exact sequence
is splitting:

0→ K(H)→ B(H)→ B(H)/K(H)→ 0.

On the other hand a splitting short exact sequence of C∗ algebras, gives
us a splitting exact sequence of their K-theory, see [8, Corollary 8.2.2].
In particular for i = 0, 1 we would obtain that

Ki(B(H)) ≈ Ki(K(H))
⊕

Ki((B(H)/K(H)).

This is a contradiction, see the catalogue of K-groups in [8, pages 123].

This completes the proof of Theorem 1.1. □

To prove Theorem 1.2 we need the following lemma:
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Lemma 3.4. Assume that T is a linear operator on Mn(F ) which satisfies
(1.2) then, for all x ∈ ker(T ) and for all y ∈ Mn(F ), xy and yx belong to
ker(T 2). Moreover, for every k ∈ N, T k satisfies (1.2).

Proof. The last part of the Lemma is obvious. We prove the first part. Assume
that T (x) = 0. Then for each y ∈ Mn(F ) we have T 2(xy) = T (x)T (y) = 0.
Moreover (T 2(yx))tr = (T 2(yx)tr) = T (xtr)T (ytr) = 0, hence T 2(yx) = 0. □

Proof of Theorem 1.2. Assume that F is a formally real field and T is a
linear map on Mn(F ) which satisfies (1.2). We prove that if T ̸= 0 then T is
an injective operator. On the other hand T satisfies (3.2) hence injectivity of
T implies xT (y) = T (x)y, ∀x, y ∈ Mn(F ). Then T (x) = xT (Id) = T (Id)x.
So T (Id), being a central element in Mn(F ), is an scalar element. This would
complete the proof of one side of the Theorem. Now assume that T ̸= 0 and is
not injective. Since ker(T i)i∈N is an increasing sequence of sub vector spaces of
Mn(F ), there exists k ∈ N such that ker(T k) = ker(T 2k). So the above Lemma
implies that kerT k is an ideal in Mn(F ). This shows that ker(T k) = Mn(F ),
since Mn(F ) is a simple algebra. Then T is a nilpotent operator. Note that
(c) of Proposition 2 is applicable here. Then for all x ∈ Mn(F ), T (x) is a
nilpotent matrix. So the image of T : Mn(F )→Mn(F ) is a vector subspace of
Mn(F ) which consists of nilpotent matrices together with zero, moreover it is
closed under transpose operator. This implies that the image of T is the zero
space, that is T is identically zero, a contradiction to T ̸= 0. The reason is
that for a formally real field F , the zero matrix is the only nilpotent symmetric
or anti symmetric matrix. So the above contradiction completes the proof of
one side of the Theorem. Now we prove the converse: Assume that F is not a
formally real field. Then there are b1, b2, . . . , bn in F with

∑n
i=1 b

2
i = 0. Put

B = (bibj)n×n. Then B = Btr ̸= 0, B2 = 0. Now define T : Mn(F )→Mn(F )
with T (A) = trace(A)B. T is a non-scalar operator which satisfies (1.2). □

4. Remarks

Remark 4.1. There is a wide class of C∗ algebras which satisfy part(II) of
Theorem 1. Apart from the matrix algebra Mn(C), for every non Abelian free
group F , the reduced C∗ algebra C∗

red(F ), being a unital C∗ algebra with trivial
center, possesses a unique faithful trace with the property that each zero trace
element is a limit of commutator elements. This was communicated to us by
Professor A. Valette.

Remark 4.2. The following example shows that the assumption ”faithful trace”
in Theorem 1, part (II) cannot be weakened to ”positive trace”:
Let K be the algebra of compact operators on an infinite dimensional separable
Hilbert space. Assume that A = K

⊕
C is the unitization of K. Obviously A is

a unital algebra with trivial center. Then define tr : A→ C with tr(x, λ) = λ.
This is a positive but not faithful trace on A. Every zero trace element is in



1177 Taghavi

the form (T, 0) which is a sum of three commutator elements, because every
compact operator on an infinite dimensional separable Hilbert space is a sum
of three commutators, see [6]. The operator T (x, λ) = (0, λ) is a nontrivial
partial multiplier on A. This shows that we cannot replace the assumption
”faithful trace” in (II) by the weaker assumption ”positive trace”.

Remark 4.3. As a consequence of part (II) of the main Theorem we conclude
that the existence of a nontrivial idempotent C∗ morphism on a unital C∗

algebra A with trivial center, is necessary for A to have a faithful trace with
the property that each zero trace element is a sum of commutator elements.

Remark 4.4. We observed in Proposition 1 that every partial multiplier on a
C∗ algebra is automatically continuous. The following example shows that if
we remove the symmetric condition T (x∗) = (T (x))∗ from the definition of
partial multiplier, we may loose the automatic continuity: Let H be an infinite
dimensional Hilbert space and A = B(H

⊕
H). Then each element of A is in

the form

(
X Y
Z W

)
where X,Y, Z and W are elements of B(H). Assume that

ϕ is an unbounded functional on B(H).

Then T (

(
X Y
Z W

)
) =

(
0 ϕ(X)Id
0 0

)
is an unbounded operator on A which

satisfies T (x)T (y) = T 2(xy).
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