Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 5, pp. 1179-1195

Title:
The Fischer-Clifford matrices and character ta-
ble of the maximal subgroup $2^{9}:\left(L_{3}(4): S_{3}\right)$ of $U_{6}(2): S_{3}$
Author(s):
A. L. Prins

Published by Iranian Mathematical Society
http://bims.ims.ir

THE FISCHER-CLIFFORD MATRICES AND CHARACTER TABLE OF THE MAXIMAL SUBGROUP $2^{9}:\left(L_{3}(4): S_{3}\right)$ OF

 $U_{6}(2): S_{3}$
A. L. PRINS

(Communicated by Ali Reza Ashrafi)

Abstract

The full automorphism group of $U_{6}(2)$ is a group of the form $U_{6}(2): S_{3}$. The group $U_{6}(2): S_{3}$ has a maximal subgroup $2^{9}:\left(L_{3}(4): S_{3}\right)$ of order 61931520. In the present paper, we determine the Fischer-Clifford matrices (which are not known yet) and hence compute the character table of the split extension $2^{9}:\left(L_{3}(4): S_{3}\right)$. Keywords: Coset analysis, Fischer-Clifford matrices, permutation character, fusion map. MSC(2010): Primary: 20C15; Secondary: 20C40.

1. Introduction

The outer automorphism of the the unitary group $U_{6}(2)$, often referred to as $F i_{21}$, is the symmetric group S_{3} and thus the full automorphism group of $U_{6}(2)$ is a group of the form $U_{6}(2): S_{3}$. We found in the ATLAS [7] that the group $U_{6}(2): S_{3}$ has a maximal subgroup of the form $2^{9}:\left(L_{3}(4): S_{3}\right)$ and has order 61931520 . We should add here that $U_{6}(2): S_{3}$ is a maximal subgroup of the Conway group $C o_{1}$.

The Fischer-Clifford matrices method [8] seems generally to have been used to calculate character tables of many complicated maximal subgroups of sporadic simple groups and their automorphism groups; see for example [2, 3, 16, 17] and [19]. Recently, the technique of Fischer-Clifford matrices to compute the character tables of some split group extensions, has been used by Ali [4] and others, including the author (see [9, 10, 11] and [20]). The Fischer-Clifford matrices method relies on the fact that every irreducible character of an extension group $\bar{G}=N \cdot G$ can be obtained by induction from the inertia groups of \bar{G}. Since the character tables of these inertia subgroups are usually much

[^0]larger and more complicated to compute than the character table of \bar{G}, it suffices to use only the ordinary or projective character tables of the inertia factor groups H_{i} of \bar{G} and arithmetical properties of the Fischer-Clifford matrices to assemble the character table of \bar{G}.

In the present paper, the author computes the Fischer-Clifford matrices of $2^{9}:\left(L_{3}(4): S_{3}\right)$ using the properties of these matrices as discussed in [18]. Consequently, the associated character table of $2^{9}:\left(L_{3}(4): S_{3}\right)$ is determined. Although the computation of the character table of the group $2^{9}:\left(L_{3}(4): S_{3}\right)$ can be done in the computer algebra systems MAGMA [5] and GAP [21], the process of constructing the character table of $2^{9}:\left(L_{3}(4): S_{3}\right)$ using the method of Fischer-Clifford matrices reveals interesting facts about the group itself.

The method of coset-analysis (see [14, 15] and [18]) is used to compute the conjugacy classes of elements of $2^{9}:\left(L_{3}(4): S_{3}\right)$. Let $\bar{G}=N \cdot G$ be an extension of N by G, where N is abelian. Then for $g \in G$, we write \bar{g} for a lifting of g in \bar{G} under the natural homomorphism $\bar{G} \longrightarrow G$. We consider a coset $N \bar{g}$ for each class representative g of G, writing k for number of orbits of N acting by conjugation on the coset $N \bar{g}$, and f_{j} for the number of these fused by the action of $\left\{\bar{h}: h \in C_{G}(g)\right\}$. Note if \bar{G} is a split extension then \bar{g} becomes g since $G \leq \bar{G}$. The order of the centralizer $C_{\bar{G}}(x)$ for each element $x \in \bar{G}$ in a conjugacy class $[x]_{\bar{G}}$ is given by $\left|C_{\bar{G}}(x)\right|=\frac{k_{\left|C_{G}(g)\right|}^{f_{j}}}{}$. Most of our computations were carried out with the aid of the computer algebra systems MAGMA and GAP. Our notation is standard and readers may refer to the ATLAS.

2. Theory of Fischer-Clifford matrices

Since the character table of $2^{9}:\left(L_{3}(4): S_{3}\right)$ will be constructed by means of its Fischer-Clifford matrices the author will give a brief theoretical background of this technique.

Let $\bar{G}=N \cdot G$ be an extension of N by G and $\theta \in \operatorname{Irr}(N)$, where $\operatorname{Irr}(N)$ denotes the irreducible characters of N. Define θ^{g} by $\theta^{g}(n)=\theta\left(g n g^{-1}\right)$ for $g \in \bar{G}$ and $n \in N$ and $\theta^{g} \in \operatorname{Irr}(N)$. Let $\bar{H}=\left\{x \in \bar{G} \mid \theta^{x}=\theta\right\}=I_{\bar{G}}(\theta)$ be the inertia group of θ in \bar{G} then N is normal in \bar{H}. We say that θ is extendible to \bar{H} if there exists $\phi \in \operatorname{Irr}(\bar{H})$ such that $\phi \downarrow_{N}=\theta$. If θ is extendible to \bar{H}, then by Gallagher [13], we have

$$
\left\{\phi \mid \phi \in \operatorname{Irr}(\bar{H}),<\phi \downarrow_{N}, \theta>\neq 0\right\}=\{\beta \phi \mid \beta \in \operatorname{Irr}(\bar{H} / N)\} .
$$

Let \bar{G} have the property that every irreducible character of N can be extended to its inertia group. Now let $\theta_{1}=1_{N}, \theta_{2}, \cdots, \theta_{t}$ be representatives of the orbits of \bar{G} on $\operatorname{Irr}(N), \bar{H}_{i}=I_{\bar{G}}\left(\phi_{i}\right), 1 \leq i \leq t, \phi_{i} \in \operatorname{Irr}\left(\bar{H}_{i}\right)$ be an extension of θ_{i} to
\bar{H}_{i} and $\beta \in \operatorname{Irr}\left(\bar{H}_{i}\right)$ such that $N \subseteq \operatorname{ker}(\beta)$. Then it can be shown that

$$
\begin{aligned}
\operatorname{Irr}(\bar{G}) & =\bigcup_{i=1}^{t}\left\{\left(\beta \phi_{i}\right)^{\bar{G}} \mid \beta \in \operatorname{Irr}\left(\bar{H}_{i}\right), N \subseteq \operatorname{ker}(\beta)\right\} \\
& =\bigcup_{i=1}^{t}\left\{\left(\beta \phi_{i}\right)^{\bar{G}} \mid \beta \in \operatorname{Irr}\left(\bar{H}_{i} / N\right)\right\}
\end{aligned}
$$

Hence the irreducible characters of \bar{G} will be divided into blocks, where each block corresponds to an inertia group \bar{H}_{i}.

Let H_{i} be the inertia factor group and ϕ_{i} be an extension of θ_{i} to \bar{H}_{i}. Take $\theta_{1}=1_{N}$ as the identity character of N, then $\bar{H}_{1}=\bar{G}$ and $H_{1} \cong G$. Let $X(g)=\left\{x_{1}, x_{2}, \cdots, x_{c(g)}\right\}$ be a set of representatives of the conjugacy classes of \bar{G} from the coset $N \bar{g}$ whose images under the natural homomorphism $\bar{G} \longrightarrow G$ are in $[g]$ and we take $x_{1}=\bar{g}$. We define $R(g)=\left\{\left(i, y_{k}\right) \mid 1 \leq i \leq t, H_{i} \cap[g] \neq\right.$ $\emptyset, 1 \leq k \leq r\}$ and we note that y_{k} runs over representatives of the conjugacy classes of elements of H_{i} which fuse into $[g]$ in G. Let $\left\{y_{l_{k}}\right\}$ be the representatives of conjugacy classes of \bar{H}_{i} that contain y_{k}. Then we define the FischerClifford matrix $M(g)$ by $M(g)=\left(a_{\left(i, y_{k}\right)}^{j}\right)$, where $a_{\left(i, y_{k}\right)}^{j}=\sum_{l}^{\prime} \frac{\left|C_{\bar{G}}\left(x_{j}\right)\right|}{\left|C_{\overline{H_{i}}}\left(y_{l_{k}}\right)\right|} \phi_{i}\left(y_{l_{k}}\right)$, with columns indexed by $X(g)$ and rows indexed by $R(g)$ and where \sum_{l}^{\prime} is the summation over all l for which $y_{l_{k}} \sim x_{j}$ in \bar{G}. Then the partial character table of \bar{G} on the classes $\left\{x_{1}, x_{2}, \cdots, x_{c(g)}\right\}$ is given by $\left[\begin{array}{c}C_{1}(g) M_{1}(g) \\ C_{2}(g) M_{2}(g) \\ \vdots \\ C_{t}(g) M_{t}(g)\end{array}\right]$ where the Fischer-Clifford matrix $M(g)=\left[\begin{array}{c}M_{1}(g) \\ M_{2}(g) \\ \vdots \\ M_{t}(g)\end{array}\right]$ is divided into blocks $M_{i}(g)$ with each block corresponding to an inertia group \bar{H}_{i} and $C_{i}(g)$ is the partial character table of H_{i} consisting of the columns corresponding to the classes that fuse into $[g]$ in G. Hence the full character table of \bar{G} will be $\left[\begin{array}{c}\Delta_{1} \\ \Delta_{2} \\ \vdots \\ \Delta_{t}\end{array}\right]$, where $\Delta_{i}=\left[C_{i}(1) M_{i}(1)\left|C_{i}\left(g_{2}\right) M_{i}\left(g_{2}\right)\right| \ldots \mid C_{i}\left(g_{k}\right) M_{i}\left(g_{k}\right)\right]$ with $\left\{1, g_{1}, g_{2}, \ldots, g_{k}\right\}$ the representatives of conjugacy classes of G. We can also observe that $|\operatorname{Irr}(\bar{G})|$ $=\left|\operatorname{Irr}\left(H_{1}\right)\right|+\left|\operatorname{Irr}\left(H_{2}\right)\right|+\ldots+\left|\operatorname{Irr}\left(H_{t}\right)\right|$.

Let $x_{j} \in X(g)$ and define $m_{j}=\left[C_{\bar{g}}: C_{\bar{G}}\left(x_{j}\right)\right]$, where $C_{\bar{g}}=\{x \in \bar{G} \mid x(N \bar{g})=$ $(N \bar{g}) x\}$ is the set stabilizer of $N \bar{g}$ in \bar{G} under the action by conjugation of \bar{G} on $N \bar{g}$. Hence $C_{\bar{g}} \leq \bar{G}$ and it can be shown that N is normal in $C_{\bar{g}}$. The Fischer-Clifford matrix $M(g)$ is partitioned row-wise into blocks, where each block corresponds to an inertia group. The columns of $M(g)$ are indexed by $X(g)$ and for each $x_{j} \in X(g)$, at the top of the columns of $M(g)$, we write $\left|C_{\bar{G}}\left(x_{j}\right)\right|$ and at the bottom we write m_{j}. The rows of $M(g)$ are indexed by $R(g)$ and on the left of each row we write $\left|C_{H_{i}}\left(y_{k}\right)\right|$, where y_{k} fuses into $[g]$ in G. Then in general we can write $M(g)$ with corresponding weights for rows and columns as follows, where blocks corresponding to the inertia groups are separated by horizontal lines.

	$\mid C_{\bar{G}}\left(x_{1}\right)$	$C_{\bar{G}}\left(x_{2}\right)$		$\bar{G}_{\bar{G}}\left(x_{c(g)}\right) \mid$
$\left\|C_{G}(g)\right\|$	$a_{(1, g)}^{1}$	$a_{(1, g)}^{2}$		$a_{(1, g)}^{c(g)}$
$\left\|C_{H_{2}}\left(y_{1}\right)\right\|$	$a_{\left(2, y_{1}\right)}^{1}$	$a_{\left(2, y_{1}\right)}^{2}$		$a_{\left(2, y_{1}\right)}^{c(g)}$
$\left\|C_{H_{2}}\left(y_{2}\right)\right\|$	$a_{\left(2, y_{2}\right)}^{1}$	$a_{\left(2, y_{2}\right)}^{2}$.	$a_{\left(2, y_{2}\right)}^{c(g)}$
:	:	.		.
$\left\|C_{H_{i}}\left(y_{1}\right)\right\|$	$a^{1}{ }_{\left(i, y_{1}\right)}$	$a_{\left(i, y_{1}\right)}^{2}$	\cdots	$a_{\left(i, y_{1}\right)}^{c(g)}$
$\left\|C_{H_{i}}\left(y_{2}\right)\right\|$	$a_{\left(i, y_{2}\right)}^{1}$	$a_{\left(i, y_{2}\right)}^{2}$.	$a_{\left(i, y_{2}\right)}^{c(g)}$
:	:	:	:	:
$\left\|C_{H_{t}}\left(y_{1}\right)\right\|$	$a_{\left(t, y_{1}\right)}^{1}$	$a_{\left(t, y_{1}\right)}^{2}$	\ldots	$a_{\left(t, y_{1}\right)}^{c(g)}$
$\left\|C_{H_{t}}\left(y_{2}\right)\right\|$	$a_{\left(t, y_{2}\right)}^{1}$	$a_{\left(t, y_{2}\right)}^{2}$.	$a_{\left(t, y_{2}\right)}^{c(g)}$
:	:	.	.	:
-				
	m_{1}	m_{2}		$m_{c(g)}$

The Fischer-Clifford matrix $M(g)$ satisfies the following properties:
(a) $a_{(1, g)}^{j}=1$ for all $j=\{1,2, . ., c(g)\}$.
(b) $|X(g)|=|R(g)|$.
(c) $\sum_{j=1}^{c(g)} m_{j} a_{\left(i, y_{k}\right)}^{j} \overline{a_{\left(i^{\prime}, y_{k}^{\prime}\right)}^{j}}=\delta_{\left(i, y_{k}\right),\left(i^{\prime}, y_{k}^{\prime}\right)} \frac{\left|C_{G}(g)\right|}{\left|C_{H_{i}}\left(y_{k}\right)\right|}|N|$.
(d) $\sum_{\left(i, y_{k}\right) \in R(g)} a_{\left(i, y_{k}\right)}^{j} \overline{a_{\left(i, y_{k}\right)}^{j^{\prime}}}\left|C_{H_{i}}\left(y_{k}\right)\right|=\delta_{j j^{\prime}}\left|C_{\bar{G}}\left(x_{j}\right)\right|$.
(e) $M(g)$ is square and nonsingular.

If N is elementary abelian, then we obtain the following additional properties of $M(g)$:
(f) $a_{\left(i, y_{k}\right)}^{1}=\frac{\left|C_{G}(g)\right|}{\left|C_{H_{i}}\left(y_{k}\right)\right|}$.
(g) $\left|a_{\left(i, y_{k}\right)}^{1}\right| \geq\left|a_{\left(i, y_{k}\right)}^{j}\right|$.
(h) $a_{\left(i, y_{k}\right)}^{j} \equiv a_{\left(i, y_{k}\right)}^{1}(\bmod p)$, if $|N|=p^{n}$, for p a prime and $n \in \mathbb{N}$.

The group $\bar{G}=2^{9}:\left(L_{3}(4): S_{3}\right)$ is a split extension with 2^{9} abelian and therefore by Mackey's theorem [13] each irreducible character of 2^{9} can be extended
to its inertia group in \bar{G}. Hence by the above theoretical outline we can fully determine the character table of \bar{G}.

3. The conjugacy classes of $2^{9}:\left(L_{3}(4): S_{3}\right)$

In this section, we apply the method of coset analysis, as discussed in [18], to determine the conjugacy classes of elements of $2^{9}:\left(L_{3}(4): S_{3}\right)$. Firstly, the group $\bar{G}=2^{9}:\left(L_{3}(4): S_{3}\right)$ is represented as a permutation group acting on 693 points inside $U=U_{6}(2): S_{3}$ using Wilson's online ATLAS of Group Representations [23]. Also, with the aid of MAGMA, we determined the specification $\bar{G}=$ $N_{U}\left(2^{9}\right)=N\left(2 A_{21} B_{210} C_{280}\right)$. Note that of the 511 cyclic subgroups of 2^{9} (neglecting the identity subgroup), 21 contain the class $2 A, 210$ contain the class $2 B$, and 280 contain the class $2 C$ of U.

Since $2^{9}:\left(L_{3}(4): S_{3}\right)$ is represented as a permutation group, the MAGMA commands "M:= GModule $\left(\bar{G}, 2^{9}\right)$ " and "M:Maximal" are used to represent $L_{3}(4): S_{3}$ as a matrix group of dimension 9 over the Galois field GF(2). The generators g_{1} and g_{2} of $L_{3}(4): S_{3}$, with respective orders of 4 and 6 , are as follows:

Throughout this paper, let $\bar{G}=2^{9}:\left(L_{3}(4): S_{3}\right)$ be the split extension of $N=$ 2^{9} by $G=L_{3}(4): S_{3}$. Having obtained G as a matrix group, we act G on the conjugacy classes of $N \cong V_{9}(2)$, where $V_{9}(2)$ is the vector space of dimension 9 over the Galois field $G F(2)$. As a result of this action, we obtain that the elements of N are partitioned into 4 orbits with respective lengths of 1, 21, 210 and 280. With the aid of MAGMA and the ATLAS, we are able to identify the structures of the stabilizers corresponding to the 4 orbits of elements of N. The point stabilizers, which are subgroups of G, are identified as $P_{1}=L_{3}(4): S_{3}$, $P_{2}=2^{4}:\left(3 \times A_{5}\right): 2, P_{3}=2^{4}:\left(S_{3} \times S_{3}\right)$ and $P_{4}=3^{2}: 2 S_{4}$, where P_{2} and P_{4} are maximal in P_{1}. We should note here that the group $L_{3}(4): S_{3}$ has two nonconjugate isomorphic maximal subgroups $L_{1}=P_{2}$ and L_{2}, having the same structure $2^{4}:\left(3 \times A_{5}\right): 2$. The stablizer P_{3} sits maximal in L_{2}.

Let $\chi\left(L_{3}(4): S_{3} \mid 2^{9}\right)$ be the permutation character of $L_{3}(4): S_{3}$ on the classes of 2^{9}. We obtain that $\chi\left(L_{3}(4): S_{3} \mid 2^{9}\right)=I_{P_{1}}^{P_{1}}+I_{P_{2}}^{P_{1}}+I_{P_{3}}^{P_{1}}+I_{P_{4}}^{P_{1}}=4 \times 1 a+4 \times$ $20 a+45 a+45 b+2 \times 64 a+2 \times 105 a$,
where $I_{P_{1}}^{P_{1}}, I_{P_{2}}^{P_{1}}, I_{P_{3}}^{P_{1}}$ and $I_{P_{4}}^{P_{1}}$ are the identity characters of the point stabilizers $P_{i}, i=1,2,3,4$, induced to G. Note that the identity characters $I_{P_{i}}^{P_{1}}$ are
identified with the permutation characters $\chi\left(L_{3}(4): S_{3} \mid P_{i}\right)$ of $L_{3}(4): S_{3}$ acting on the classes of the point stabilizers P_{i}. We found that $\chi\left(L_{3}(4): S_{3} \mid P_{1}\right)=1 a$, $\chi\left(L_{3}(4): S_{3} \mid P_{2}\right)=1 a+20 a, \chi\left(L_{3}(4): S_{3} \mid P_{3}\right)=1 a+2 \times 20 a+64 a+105 a$ and $\chi\left(L_{3}(4): S_{3} \mid P_{4}\right)=1 a+20 a+45 a+45 b+64 a+105 a$. The values of $\chi\left(L_{3}(4): S_{3} \mid 2^{9}\right)$ on the different classes of G determine the number k of fixed points of each $g \in G$ in 2^{9}. The values of k are found in the second column of Table 1. All the computations involved in obtaining $\chi\left(L_{3}(4): S_{3} \mid 2^{9}\right)$ were carried out in MAGMA.

The values of k enabled us to determine the number f_{j} of orbits Q_{i} 's, $1 \leq$ $i \leq k$ which have fused together under the action of $C_{G}(g)$, for each class representative $g \in G$, to form one orbit \triangle_{f}. Mpono in [18] used the technique of coset analysis to develop Programmes A and B (see [18]) in CAYLEY [6] for the computation of the conjucacy classes of a split extension $\bar{G}=N: G$, where N is an elementary abelian p-group, for a prime p, on which a linear group G acts. Ali in [1] adapted Programmes A and B for MAGMA and these computer programmes are used by the author to compute the conjugacy classes of \bar{G}. Programme A computes the values of the $f_{j}^{\prime} s$, whereas Programme B determines the order of the elements for each conjugacy class $[x]$ in \bar{G}. We obtain that \bar{G} has exactly 64 conjugacy classes. All the information involving the conjugacy classes of \bar{G} are listed in Table 1.

4. The inertia groups of $2^{9}:\left(L_{3}(4): S_{3}\right)$

Since G has four orbits on N, then by Brauer's Theorem [12] G acts on $\operatorname{Irr}(N)$ with the same number of orbits. The lengths of the 4 orbits will be 1 $, r, s$ and t where $r+s+t=511$, with corresponding point stabilizers H_{1}, H_{2}, H_{3} and H_{4} as subgroups of G such that $\left[G: H_{1}\right]=1,\left[G: H_{2}\right]=r,\left[G: H_{3}\right]=s$ and $\left[G: H_{4}\right]=t$. We generate G as a permutation group on a set of cardinality 693 within MAGMA. Then the maximal subgroups of G, as well as their maximal subgroups are computed. Now, considering the indices of these subgroups in G, the number of the classes of these subgroups, and also the fact that \bar{G} has 64 conjugacy classes, we deduce that the action of G on N has orbits of lengths $1, r=21, s=210$ and $t=280$ with respective point stabilizers $H_{1}=L_{3}(4): S_{3}$, $H_{2}=2^{4}:\left(3 \times A_{5}\right): 2, H_{3}=2^{4}:\left(S_{3} \times S_{3}\right)$ and $H_{4}=3^{2}: 2 S_{4}$. Thus we obtain four inertia groups $\bar{H}_{i}=2^{9 \cdot} H_{i}, i \in\{1,2,3,4\}$, in $2^{9}:\left(L_{3}(4): S_{3}\right)$. The structures of H_{2} and H_{4} have been identified by checking the indices of the maximal subgroups of $L_{3}(4): S_{3} \cong L_{3}(4) .3 .2_{2}$ in the ATLAS. The structure of H_{3} was determined by direct computations in MAGMA. The groups H_{2}, H_{3} and H_{4} are constructed from elements within G and the generators are as follows:

- $H_{2}=\left\langle\alpha_{1}, \alpha_{2}\right\rangle, \alpha_{1} \in 3 A, \alpha_{2} \in 6 B$ where

- $H_{3}=\left\langle\beta_{1}, \beta_{2}\right\rangle, \beta_{1} \in 2 B, \beta_{2} \in 6 B$ where
$\beta_{1}=\left(\begin{array}{lllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1\end{array}\right), \beta_{2}=\left(\begin{array}{lllllllll}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1\end{array}\right)$
- $H_{4}=\left\langle\gamma_{1}, \gamma_{2}\right\rangle, \gamma_{1} \in 3 B, \gamma_{2} \in 8 A$ where

Table 1. The conjugacy classes of elements of $2^{9}:\left(L_{3}(4): S_{3}\right)$

$[g]_{G}$	k	f_{j}	$[x]_{\bar{G}}$	$\left\|C_{\bar{G}}(x)\right\|$	$[g]_{G}$	k	f_{j}	$[x]_{\bar{G}}$	$\left\|C_{\bar{G}}(x)\right\|$
1 A	512	$f_{1}=1$	1 A	61931520	2 A	32	$f_{1}=1$	$2 D$	12288
		$f_{2}=21$	2 A	2949120			$f_{2}=1$	$2 E$	12288
		$f_{3}=210$	$2 B$	294912			$f_{3}=1$	4 A	12288
		$f_{4}=280$	$2 C$	221184			$f_{4}=1$	$4 B$	12288
							$f_{5}=8$	$4 C$	1536
							$f_{6}=8$	$4 D$	1536
							$f_{7}=12$	$4 E$	1024
$2 B$	64	$f_{1}=1$	$2 F$	21504	3 A	32	$f_{1}=1$	3 A	5760
		$f_{2}=7$	$2 G$	3072			$f_{2}=1$	6 A	5760
		$f_{3}=7$	$4 F$	3072			$f_{3}=5$	$6 B$	1152
		$f_{4}=21$	$4 G$	1024			$f_{4}=5$	$6 C$	1152
		$f_{5}=28$	$4 H$	768			$f_{5}=10$	6 D	576
							$f_{6}=10$	$6 E$	576
$3 B$	8	$f_{1}=1$	$3 B$	504	3 C	8	$f_{1}=1$	3 C	432
		$f_{2}=7$	$6 F$	72			$f_{2}=1$	$6 G$	432
							$f_{3}=3$	6 H	144
							$f_{4}=3$	$6 I$	144
4 A	8	$f_{1}=1$	4 I	256	$4 B$	8	$f_{1}=1$	$4 K$	128
		$f_{2}=1$	$4 J$	256			$f_{2}=1$	$4 L$	128
		$f_{3}=2$	8 A	128			$f_{3}=1$	$8 C$	128
		$f_{4}=4$	$8 B$	64			$f_{4}=1$	$8 D$	128
							$f_{5}=2$	$8 E$	64
							$f_{6}=2$	$8 F$	64
5 A	2	$f_{1}=1$	5 A	30	6 A	8	$f_{1}=1$	$6 J$	96
		$f_{2}=1$	10 A	30			$f_{2}=1$	12 A	96
							$f_{3}=1$	$12 B$	96
							$f_{4}=1$	$6 K$	96
							$f_{5}=2$	12 C	48
							$f_{6}=2$	12 D	48
$6 B$	4	$f_{1}=1$	$6 L$	24	7 A	1	$f_{1}=1$	7 A	42
		$f_{2}=1$	6 M	24					
		$f_{3}=1$	$12 E$	24					
		$f_{4}=1$	$12 F$	24					
$7 B$	1	$f_{1}=1$	$7 B$	42	8 A	4	$f_{1}=1$	$8 G$	32
							$f_{2}=1$	$8 H$	32
							$f_{3}=1$	16 A	32
							$f_{4}=1$	$16 B$	32
14 A	1	$f_{1}=1$	$14 A$	14	$14 B$		$f_{1}=1$	$14 B$	14
15 A	2	$f_{1}=1$	15 A	30	$15 B$	2	$f_{1}=1$	$15 B$	30
		$f_{2}=1$	30 A	30			$f_{2}=1$	$30 B$	30
21 A	1	$f_{1}=1$	$21 A$	21	$21 B$	1	$f_{1}=1$	$21 B$	21

$\gamma_{1}=\left(\begin{array}{lllllllll}1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0\end{array}\right), \gamma_{2}=\left(\begin{array}{lllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0\end{array}\right)$

We obtain the fusions of the inertia factors H_{2}, H_{3} and H_{4} into G by using direct matrix conjugation in G and their permutation characters in G of degrees 21, 210 and 280 , respectively. MAGMA was used for the various computations. The fusion maps of H_{2}, H_{3} and H_{4} into G are shown in Tables 2, 3 and 4.

Table 2. The fusion of H_{2} into $L_{3}(4): S_{3}$

$[h]_{H_{2}} \rightarrow$	$[g]_{L_{3}(4): S_{3}}$	$[h]_{H_{2}} \rightarrow$	$[g]_{L_{3}(4): S_{3}}$	$[h]_{H_{2}} \rightarrow$	$[g]_{L_{3}(4): S_{3}}$	$[h]_{H_{2}} \rightarrow$	$[g]_{L_{3}(4): S S_{3}}$
$1 A$	$1 A$	$3 B$	$3 A$	$5 A$	$5 A$	$15 A$	$15 B$
$2 A$	$2 A$	$3 C$	$3 C$	$6 A$	$6 A$	$15 B$	$15 A$
$2 B$	$2 A$	$4 A$	$4 A$	$6 B$	$6 A$		
$2 C$	$2 B$	$4 B$	$4 B$	$6 C$	$6 B$		
$3 A$	$3 A$	$4 C$	$4 B$	$8 A$	$8 A$		

Table 3. The fusion of H_{3} into $L_{3}(4): S_{3}$

$[h]_{H_{3}} \rightarrow$	$[g]_{L_{3}(4): S_{3}}$						
$1 A$	$1 A$	$2 D$	$2 A$	$3 C$	$3 C$	$4 D$	$4 B$
$2 A$	$2 A$	$2 E$	$2 B$	$4 A$	$4 A$	$6 A$	$6 A$
$2 B$	$2 A$	$3 A$	$3 A$	$4 B$	$4 B$	$6 B$	$6 B$
$2 C$	$2 B$	$3 B$	$3 A$	$4 C$	$4 B$	$6 C$	$6 A$

Table 4. The fusion of H_{4} into $L_{3}(4): S_{3}$

$[h]_{H_{4}} \rightarrow$	$[g]_{L_{3}(4): S S_{3}}$	$[h]_{H_{4}} \rightarrow$	$[g]_{L_{3}(4): S S_{3}}$	$[h]_{H_{4}} \rightarrow$	$[g]_{L_{3}(4): S S_{3}}$	$[h]_{H_{4}} \rightarrow$	$[g]_{L_{3}(4): S_{3}}$
$1 A$	$1 A$	$3 A$	$3 C$	$4 A$	$4 A$	$8 A$	$8 A$
$2 A$	$2 A$	$3 B$	$3 A$	$6 A$	$6 A$	$8 B$	$8 A$
$2 B$	$2 B$	$3 C$	$3 B$	$6 B$	$6 B$		

5. The Fischer-Clifford matrices of $2^{9}:\left(L_{3}(4): S_{3}\right)$

Having obtained the fusions of the inertia factors into $L_{3}(4): S_{3}$ and the conjugacy classes of $L_{3}(4): S_{3}$ displayed in the format of Table 1, we can proceed to use the theory and properties discussed in Section 2 to help us in the construction of the Fischer-Clifford Matrices of $2^{9}:\left(L_{3}(4): S_{3}\right)$. Note that all the relations hold since 2^{9} is an elementary abelian group.

For example, consider the conjugacy class $2 B$ of $L_{3}(4): S_{3}$. Then we obtain that $M(2 B)$ has the following form with corresponding weights attached to the rows and columns:
Prins
$\left.M(2 B)=\begin{array}{c}21504 \\ 336 \\ 48 \\ 48 \\ 16 \\ 12\end{array} \quad \begin{array}{cccccc}a & f & k & p & u \\ b & g & l & q & v \\ c & h & m & r & w \\ d & i & n & s & x \\ e & j & o & t & y \\ 8 & 56 & 56 & 168 & 224\end{array}\right)$.

By properties (a) and (f) of the Fischer-Clifford matrix $M(g)$ in Section 2, we have $a=f=k=p=u=1, b=c=7, d=21$ and $e=28$. Thus we get the following form
$\left.\begin{array}{c} \\ 336 \\ 48 \\ 48 \\ 16 \\ 12\end{array} \begin{array}{cccccc}21504 & 3072 & 3072 & 1024 & 768 \\ 1 & 1 & 1 & 1 & 1 \\ 7 & g & l & q & v \\ 7 & h & m & r & w \\ 21 & i & n & s & x \\ 28 & j & o & t & y \\ 8 & 56 & 56 & 168 & 224\end{array}\right)$.

By the orthogonality relations for columns and rows (properties (c) and (d) in Section 2) and the remaining properties discussed in Section 2, we obtain the desired Fischer-Clifford matrix $M(2 B)$ of \bar{G} as follows:

$$
M(2 B)=\left(\begin{array}{rrrrr}
1 & 1 & 1 & 1 & 1 \\
7 & -1 & -5 & 3 & -1 \\
7 & 7 & -1 & -1 & -1 \\
21 & -3 & 9 & 1 & -3 \\
28 & -4 & -4 & -4 & 4
\end{array}\right)
$$

For each class representative $g \in L_{3}(4): S_{3}$, we construct a Fischer-Clifford matrix $M(g)$ which are listed in Table 5 .

6. Character table of $2^{9}:\left(L_{3}(4): S_{3}\right)$

Having obtained the Fischer-Clifford matrices, the fusion maps of the H_{i} 's into $L_{3}(4): S_{3}$, and the character tables of the inertia factors H_{i}, we construct the character table of $2^{9}:\left(L_{3}(4): S_{3}\right)$ using the same procedure as explained in Section 2. The character tables of the inertia factors were obtained by direct computations in GAP.

The character table of \bar{G} will be partitioned row-wise into 4 blocks Δ_{1}, Δ_{2}, Δ_{3} and Δ_{4} where each block corresponds to an inertia group $\bar{H}_{i}=2^{9}: H_{i}$. Therefore $\operatorname{Irr}\left(2^{9}:\left(L_{3}(4): S_{3}\right)\right)=\bigcup_{i=1}^{4} \Delta_{i}$, where $\Delta_{1}=\left\{\chi_{j} \mid 1 \leq j \leq 20\right\}, \Delta_{2}=$ $\left\{\chi_{j} \mid 21 \leq j \leq 37\right\}, \Delta_{3}=\left\{\chi_{j} \mid 38 \leq j \leq 53\right\}$ and $\Delta_{4}=\left\{\chi_{j} \mid 54 \leq j \leq 64\right\}$. The character table of $2^{9}:\left(L_{3}(4): S_{3}\right)$ is shown in Table 6. The consistency and accuracy of the character table of $2^{9}:\left(L_{3}(4): S_{3}\right)$ have been tested by using the GAP codes labelled as Programme E in [22].

We can use GAP to compute possible power maps from the character table of \bar{G}. Programme E in [22] produces the unique p-power maps listed in Table 7 for our Table 6. Alternatively, the information about the conjugacy classes found in Table 1 can be used to compute the power maps for the elements of \bar{G}.

Table 5. The Fischer-Clifford matrices of $2^{9}:\left(L_{3}(4): S_{3}\right)$

$M(g)$	M (g)
$M(1 A)=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 21 & -11 & 5 & -3 \\ 210 & 50 & 2 & -6 \\ 280 & -40 & -8 & 8\end{array}\right)$	$M(2 A)=\left(\begin{array}{rrrrrrr}1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & 1 \\ 4 & -4 & 4 & -4 & -2 & 2 & 0 \\ 4 & -4 & 4 & -4 & 2 & -2 & 0 \\ 6 & 6 & 6 & 6 & 0 & 0 & -2 \\ 8 & 8 & -8 & -8 & 0 & 0 & 0 \\ 8 & -8 & -8 & 8 & 0 & 0 & 0\end{array}\right)$
$M(2 B)=\left(\begin{array}{rrrrr}1 & 1 & 1 & 1 & 1 \\ 7 & -1 & -5 & 3 & -1 \\ 7 & 7 & -1 & -1 & -1 \\ 21 & -3 & 9 & 1 & -3 \\ 28 & -4 & -4 & -4 & 4\end{array}\right)$	$M(3 A)=\left(\begin{array}{rrrrrr}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & -1 & 1 \\ 5 & 5 & -3 & -3 & 1 & 1 \\ 5 & -5 & -3 & 3 & -1 & 1 \\ 10 & 10 & 2 & 2 & -2 & -2 \\ 10 & -10 & 2 & -2 & 2 & -2\end{array}\right)$
$M(3 B)=\left(\begin{array}{rr}1 & 1 \\ 7 & -1\end{array}\right)$	$M(3 C)=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 3 & -3 & 1 & -1 \\ 3 & 3 & -1 & -1 \\ 1 & -1 & -1 & 1\end{array}\right)$
$M(4 A)=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & -1 \\ 2 & 2 & -2 & 0 \\ 4 & -4 & 0 & 0\end{array}\right)$	$M(4 B)=\left(\begin{array}{rrrrrr}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 & -1 & 1 \\ 2 & -2 & 2 & -2 & 0 & 0 \\ 1 & 1 & 1 & 1 & -1 & -1 \\ 1 & 1 & -1 & -1 & 1 & -1 \\ 2 & -2 & -2 & 2 & 0 & 0\end{array}\right)$
$M(5 A)=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$	$M(6 A)=\left(\begin{array}{rrrrrr}1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 & -1 & 1 \\ 2 & 2 & -2 & -2 & 0 & 0 \\ 2 & -2 & -2 & 2 & 0 & 0\end{array}\right)$
$M(6 B)=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1\end{array}\right)$	$M(7 A)=(1)$
$M(7 B)=\left(\begin{array}{l}1\end{array}\right)$	$M(8 A)=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & -1\end{array}\right)$
$M(14 A)=\left(\begin{array}{l}1\end{array}\right)$	$M(14 B)=\left(\begin{array}{l}1\end{array}\right)$
$M(15 A)=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$	$M(15 B)=\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)$
$M(21 A)=\left(\begin{array}{l}1\end{array}\right)$	$M(21 B)=\left(\begin{array}{l}1\end{array}\right)$

Table 6. The Character table of $2^{9}:\left(L_{3}(4): S_{3}\right)$

	1A				$2 A$							$2 B$				
	1 A	2 A	$2 B$	$2 C$	$2 D$	$2 E$	4 A	$4 B$	$4 C$	$4 D$	$4 E$	$2 F$	$2 G$	$4 F$	$4 G$	$4 H$
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1
χ_{3}	2	2	2	2	2	2	2	2	2	2	2	0	0	0	0	0
χ_{4}	20	20	20	20	4	4	4	4	4	4	4	-6	-6	-6	-6	-6
χ_{5}	20	20	20	20	4	4	4	4	4	4	4	6	6	6	6	6
χ_{6}	40	40	40	40	8	8	8	8	8	8	8	0	0	0	0	0
χ_{7}	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
χ_{8}	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3	-3
χ_{9}	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	3	3	3	3	3
χ_{10}	45	45	45	45	-3	-3	-3	-3	-3	-3	-3	3	3	3	3	3
χ_{11}	64	64	64	64	0	0	0	0	0	0	0	8	8	8	8	8
$\chi 12$	64	64	64	64	0	0	0	0	0	0	0	-8	-8	-8	-8	-8
χ_{13}	90	90	90	90	-6	-6	-6	-6	-6	-6	-6	0	0	0	0	0
χ_{14}	90	90	90	90	-6	-6	-6	-6	-6	-6	-6	0	0	0	0	0
χ_{15}	105	105	105	105	9	9	9	9	9	9	9	-7	-7	-7	-7	-7
χ_{16}	105	105	105	105	9	9	9	9	9	9	9	7	7	7	7	7
χ_{17}	126	126	126	126	-2	-2	-2	-2	-2	-2	-2	0	0	0	0	0
χ_{18}	126	126	126	126	-2	-2	-2	-2	-2	-2	-2	0	0	0	0	0
$\chi 19$	126	126	126	126	-2	-2	-2	-2	-2	-2	-2	0	0	0	0	0
χ_{20}	128	128	128	128	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 21$	21	-11	5	-3	5	-3	5	-3	-3	1	1	7	-1	-5	3	-1
$\chi 22$	21	-11	5	-3	5	-3	5	-3	-3	1	1	-7	1	5	-3	1
$\chi 23$	42	-22	10	-6	10	-6	10	-6	-6	2	2	0	0	0	0	0
$\chi 24$	84	-44	20	-12	4	4	4	4	-4	-4	4	-14	2	10	-6	2
χ_{25}	84	-44	20	-12	4	4	4	4	-4	-4	4	14	-2	-10	6	-2
χ_{26}	105	-55	25	-15	9	1	9	1	-7	-3	5	-7	1	5	-3	1
$\chi 27$	105	-55	25	-15	9	1	9	1	-7	-3	5	7	-1	-5	3	-1
$\chi 28$	126	-66	30	-18	-2	14	-2	14	-2	-10	6	0	0	0	0	0
$\chi 29$	126	-66	30	-18	-2	14	-2	14	-2	-10	6	0	0	0	0	0
$\chi 30$	126	-66	30	-18	-2	14	-2	14	-2	-10	6	0	0	0	0	0
χ_{31}	168	-88	40	-24	8	8	8	8	-8	-8	8	0	0	0	0	0
$\chi 32$	210	-110	50	-30	18	2	18	2	-14	-6	10	0	0	0	0	0
$\chi 33$	315	-165	75	-45	11	-13	11	-13	-5	7	-1	-21	3	15	-9	3
$\chi 34$	315	-165	75	-45	11	-13	11	-13	-5	7	-1	21	-3	-15	9	-3
$\chi 35$	630	-330	150	-90	22	-26	22	-26	-10	14	-2	0	0	0	0	0
χ_{36}	945	-495	225	-135	-15	9	-15	9	9	-3	-3	21	-3	-15	9	-3
$\chi 37$	945	-495	225	-135	-15	9	-15	9	9	-3	-3	-21	3	15	-9	3
$\chi 38$	210	50	2	-6	18	10	2	-6	2	-2	-2	28	4	8	0	-4
$\chi 39$	210	50	2	-6	18	10	2	-6	2	-2	-2	-28	-4	-8	0	4
χ_{40}	210	50	2	-6	2	-6	18	10	2	-2	-2	-14	10	-10	-2	2
χ_{41}	210	50	2	-6	2	-6	18	10	2	-2	-2	14	-10	10	2	-2
χ_{42}	420	100	4	-12	36	20	4	-12	4	-4	-4	0	0	0	0	0
χ_{43}	420	100	4	-12	4	-12	36	20	4	-4	-4	0	0	0	0	0
χ_{44}	420	100	4	-12	20	4	20	4	4	-4	-4	-14	-14	2	2	2
χ_{45}	420	100	4	-12	20	4	20	4	4	-4	-4	14	14	-2	-2	-2
χ_{46}	840	200	8	-24	40	8	40	8	8	-8	-8	0	0	0	0	0
χ_{47}	1260	300	12	-36	-4	-20	-4	-20	4	-4	4	-42	6	-18	-2	6
χ_{48}	1260	300	12	-36	-4	-20	-4	-20	4	-4	4	42	-6	18	2	-6
χ_{49}	1890	450	18	-54	18	42	-30	-6	-6	6	-2	-42	-18	-6	2	6
χ_{50}	1890	450	18	-54	-30	-6	18	42	-6	6	-2	0	24	-12	-4	0
χ_{51}	1890	450	18	-54	-30	-6	18	42	-6	6	-2	0	-24	12	4	0
χ_{52}	1890	450	18	-54	18	42	-30	-6	-6	6	-2	42	18	6	-2	-6
χ_{53}	2520	600	24	-72	-8	-40	-8	-40	8	-8	8	0	0	0	0	0
χ_{54}	280	-40	-8	8	8	-8	-8	8	0	0	0	28	-4	-4	-4	4
χ_{55}	280	-40	-8	8	8	-8	-8	8	0	0	0	-28	4	4	4	-4
χ_{56}	560	-80	-16	16	16	-16	-16	16	0	0	0	0	0	0	0	0
χ_{57}	560	-80	-16	16	-16	16	16	-16	0	0	0	0	0	0	0	0
χ_{58}	560	-80	-16	16	-16	16	16	-16	0	0	0	0	0	0	0	0
$\chi 59$	840	-120	-24	24	24	-24	-24	24	0	0	0	-28	4	4	4	-4
$\chi 60$	840	-120	-24	24	24	-24	-24	24	0	0	0	28	-4	-4	-4	4
χ_{61}	1120	-160	-32	32	-32	32	32	-32	0	0	0	0	0	0	0	0
χ_{62}	2240	-320	-64	64	0	0	0	0	0	0	0	-56	8	8	8	-8
χ_{63}	2240	-320	-64	64	0	0	0	0	0	0	0	56	-8	-8	-8	8
χ_{64}	4480	-640	-128	128	0	0	0	0	0	0	0	0	0	0	0	0

Table 6 (continued)

	3A						$3 B$		3C				4A			
	3 A	6 A	$6 B$	6 C	6 D	$6 E$	$3 B$	$6 F$	$3 C$	$6 G$	6 H	$6 I$	$4 I$	$4 J$	8 A	$8 B$
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{3}	-1	-1	-1	-1	-1	-1	-1	-1	2	2	2	2	2	2	2	2
χ_{4}	5	5	5	5	5	5	-1	-1	2	2	2	2	0	0	0	0
$\chi 5$	5	5	5	5	5	5	-1	-1	2	2	2	2	0	0	0	0
χ_{6}	-5	-5	-5	-5	-5	-5	1	1	4	4	4	4	0	0	0	0
χ_{7}	0	0	0	0	0	0	3	3	0	0	0	0	1	1	1	1
χ_{8}	0	0	0	0	0	0	3	3	0	0	0	0	1	1	1	1
χ_{9}	0	0	0	0	0	0	3	3	0	0	0	0	1	1	1	1
χ_{10}	0	0	0	0	0	0	3	3	0	0	0	0	1	1	1	1
χ_{11}	4	4	4	4	4	4	1	1	1	1	1	1	0	0	0	0
χ_{12}	4	4	4	4	4	4	1	1	1	1	1	1	0	0	0	0
χ_{13}	0	0	0	0	0	0	-3	-3	0	0	0	0	2	2	2	2
χ_{14}	0	0	0	0	0	0	-3	-3	0	0	0	0	2	2	2	2
χ_{15}	0	0	0	0	0	0	0	0	-3	-3	-3	-3	1	1	1	1
χ_{16}	0	0	0	0	0	0	0	0	-3	-3	-3	-3	1	1	1	1
χ_{17}	6	6	6	6	6	6	0	0	0	0	0	0	-2	-2	-2	-2
χ_{18}	-3	-3	-3	-3	-3	-3	0	0	0	0	0	0	-2	-2	-2	-2
$\chi 19$	-3	-3	-3	-3	-3	-3	0	0	0	0	0	0	-2	-2	-2	-2
χ_{20}	-4	-4	-4	-4	-4	-4	-1	-1	2	2	2	2	0	0	0	0
$\chi 21$	6	4	-2	-4	0	2	0	0	3	-3	1	-1	1	1	1	-1
$\chi 22$	6	4	-2	-4	0	2	0	0	3	-3	1	-1	1	1	1	-1
$\chi 23$	-6	-4	2	4	0	-2	0	0	6	-6	2	-2	2	2	2	-2
$\chi 24$	9	1	1	-7	-3	5	0	0	3	-3	1	-1	0	0	0	0
$\chi 25$	9	1	1	-7	-3	5	0	0	3	-3	1	-1	0	0	0	0
$\chi 26$	0	-10	8	-2	-6	4	0	0	-3	3	-1	1	1	1	1	-1
$\chi 27$	0	-10	8	-2	-6	4	0	0	-3	3	-1	1	1	1	1	-1
$\chi 28$	6	-6	6	-6	-6	6	0	0	0	0	0	0	-2	-2	-2	2
$\chi 29$	-3	3	-3	3	3	-3	0	0	0	0	0	0	-2	-2	-2	2
$\chi 30$	-3	3	-3	3	3	-3	0	0	0	0	0	0	-2	-2	-2	2
χ_{31}	-9	-1	-1	7	3	-5	0	0	6	-6	2	-2	0	0	0	0
$\chi^{2} 3$	0	10	-8	2	6	-4	0	0	-6	6	-2	2	2	2	2	-2
$\chi 33$	15	15	-9	-9	3	3	0	0	0	0	0	0	-1	-1	-1	1
χ^{24}	15	15	-9	-9	3	3	0	0	0	0	0	0	-1	-1	-1	1
χ_{35}	-15	-15	9	9	-3	-3	0	0	0	0	0	0	-2	-2	-2	2
$\chi 36$	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	-1
χ_{37}	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	-1
χ^{28}	15	5	-1	5	-3	-1	0	0	3	3	-1	-1	2	2	-2	0
$\chi 39$	15	5	-1	5	-3	-1	0	0	3	3	-1	-1	2	2	-2	0
χ_{40}	15	5	-1	5	-3	-1	0	0	3	3	-1	-1	-2	-2	2	0
χ_{41}	15	5	-1	5	-3	-1	0	0	3	3	-1	-1	-2	-2	2	0
χ_{42}	-15	-5	1	-5	3	1	0	0	6	6	-2	-2	4	4	-4	0
χ_{43}	-15	-5	1	-5	3	1	0	0	6	6	-2	-2	-4	-4	4	0
χ_{44}	15	25	7	1	-3	-5	0	0	-3	-3	1	1	0	0	0	0
χ_{45}	15	25	7	1	-3	-5	0	0	-3	-3	1	1	0	0	0	0
χ_{46}	-15	-25	-7	-1	3	5	0	0	-6	-6	2	2	0	0	0	0
χ_{47}	15	-15	-9	9	-3	3	0	0	0	0	0	0	0	0	0	0
χ_{48}	15	-15	-9	9	-3	3	0	0	0	0	0	0	0	0	0	0
χ_{49}	0	0	0	0	0	0	0	0	0	0	0	0	-2	-2	2	0
χ_{50}	0	0	0	0	0	0	0	0	0	0	0	0	2	2	-2	0
χ_{51}	0	0	0	0	0	0	0	0	0	0	0	0	2	2	-2	0
$\chi 52$	0	0	0	0	0	0	0	0	0	0	0	0	-2	-2	2	0
χ_{53}	-15	15	9	-9	3	-3	0	0	0	0	0	0	0	0	0	0
$\chi 54$	10	-10	2	-2	2	-2	7	-1	1	-1	-1	1	4	-4	0	0
$\chi 55$	10	-10	2	-2	2	-2	7	-1	1	-1	-1	1	4	-4	0	0
χ_{56}	-10	10	-2	2	-2	2	-7	1	2	-2	-2	2	8	-8	0	0
$\chi 57$	-10	10	-2	2	-2	2	-7	1	2	-2	-2	2	0	0	0	0
$\chi 58$	-10	10	-2	2	-2	2	-7	1	2	-2	-2	2	0	0	0	0
$\chi 59$	0	0	0	0	0	0	0	0	3	-3	-3	3	-4	4	0	0
$\chi 60$	0	0	0	0	0	0	0	0	3	-3	-3	3	-4	4	0	0
χ_{61}	10	-10	2	-2	2	-2	7	-1	4	-4	-4	4	0	0	0	0
$\chi 62$	20	-20	4	-4	4	-4	-7	1	-1	1	1	-1	0	0	0	0
$\chi 63$	20	-20	4	-4	4	-4	-7	1	-1	1	1	-1	0	0	0	0
χ_{64}	-20	20	-4	4	-4	4	7	-1	-2	2	2	-2	0	0	0	0

Table 6 (continued)

	4B						5 A		6 A					
	$4 K$	$4 L$	8 C	$8 D$	$8 E$	$8 F$	5 A	10 A	6 J	12 A	$12 B$	6 K	12 C	12 D
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1	1	1
$\chi{ }_{3}$	0	0	0	0	0	0	2	2	-1	-1	-1	-1	-1	-1
χ_{4}	-2	-2	-2	-2	-2	-2	0	0	1	1	1	1	1	1
χ_{5}	2	2	2	2	2	2	0	0	1	1	1	1	1	1
$\chi 6$	0	0	0	0	0	0	0	0	-1	-1	-1	-1	-1	-1
χ_{7}	1	1	1	1	1	1	0	0	0	0	0	0	0	0
χ_{8}	1	1	1	1	1	1	0	0	0	0	0	0	0	0
χ_{9}	-1	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0
χ_{10}	-1	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0
χ_{11}	0	0	0	0	0	0	-1	-1	0	0	0	0	0	0
$\chi 12$	0	0	0	0	0	0	-1	-1	0	0	0	0	0	0
χ_{13}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{14}	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{15}	1	1	1	1	1	1	0	0	0	0	0	0	0	0
χ_{16}	-1	-1	-1	-1	-1	-1	0	0	0	0	0	0	0	0
χ_{17}	0	0	0	0	0	0	1	1	-2	-2	-2	-2	-2	-2
χ_{18}	0	0	0	0	0	0	1	1	1	1	1	1	1	1
$\chi 19$	0	0	0	0	0	0	1	1	1	1	1	1	1	1
χ_{20}	0	0	0	0	0	0	-2	-2	0	0	0	0	0	0
χ_{21}	3	-1	1	-3	-1	1	1	-1	2	0	2	0	0	-2
$\chi 22$	-3	1	-1	3	1	-1	1	-1	2	0	2	0	0	-2
$\chi 23$	0	0	0	0	0	0	2	-2	-2	0	-2	0	0	2
χ_{24}	-2	-2	2	2	2	-2	-1	1	1	1	1	1	-1	-1
$\chi 25$	2	2	-2	-2	-2	2	-1	1	1	1	1	1	-1	-1
$\chi 26$	1	-3	3	-1	1	-1	0	0	0	-2	0	-2	2	0
$\chi 27$	-1	3	-3	1	-1	1	0	0	0	-2	0	-2	2	0
χ_{28}	0	0	0	0	0	0	1	-1	-2	2	-2	2	-2	2
$\chi 29$	0	0	0	0	0	0	1	-1	1	-1	1	-1	1	-1
$\chi 30$	0	0	0	0	0	0	1	-1	1	-1	1	-1	1	-1
χ_{31}	0	0	0	0	0	0	-2	2	-1	-1	-1	-1	1	1
$\chi 32$	0	0	0	0	0	0	0	0	0	2	0	2	-2	0
$\chi 33$	-1	3	-3	1	-1	1	0	0	-1	-1	-1	-1	1	1
$\chi 34$	1	-3	3	-1	1	-1	0	0	-1	-1	-1	-1	1	1
$\chi 35$	0	0	0	0	0	0	0	0	1	1	1	1	-1	-1
$\chi 36$	-3	1	-1	3	1	-1	0	0	0	0	0	0	0	0
χ_{37}	3	-1	1	-3	-1	1	0	0	0	0	0	0	0	0
$\chi 38$	4	0	-2	2	0	-2	0	0	3	-3	-1	1	-1	1
$\chi 39$	-4	0	2	-2	0	2	0	0	3	-3	-1	1	-1	1
χ_{40}	-2	2	0	-4	2	0	0	0	-1	1	3	-3	-1	1
χ_{41}	2	-2	0	4	-2	0	0	0	-1	1	3	-3	-1	1
χ_{42}	0	0	0	0	0	0	0	0	-3	3	1	-1	1	-1
$\chi 43$	0	0	0	0	0	0	0	0	1	-1	-3	3	1	-1
$\chi 44$	-2	-2	2	2	-2	2	0	0	-1	1	-1	1	1	-1
χ_{45}	2	2	-2	-2	2	-2	0	0	-1	1	-1	1	1	-1
χ_{46}	0	0	0	0	0	0	0	0	1	-1	1	-1	-1	1
χ_{47}	2	2	2	2	-2	-2	0	0	-1	1	-1	1	1	-1
χ_{48}	-2	-2	-2	-2	2	2	0	0	-1	1	-1	1	1	-1
$\chi 49$	2	-2	-4	0	2	0	0	0	0	0	0	0	0	0
χ_{50}	0	-4	-2	2	0	2	0	0	0	0	0	0	0	0
χ_{51}	0	4	2	-2	0	-2	0	0	0	0	0	0	0	0
χ_{52}	-2	2	4	0	-2	0	0	0	0	0	0	0	0	0
$\chi 53$	0	0	0	0	0	0	0	0	1	-1	1	-1	-1	1
$\chi 54$	0	0	0	0	0	0	0	0	2	2	-2	-2	0	0
χ_{55}	0	0	0	0	0	0	0	0	2	2	-2	-2	0	0
χ_{56}	0	0	0	0	0	0	0	0	-2	-2	2	2	0	0
χ_{57}	0	0	0	0	0	0	0	0	2	2	-2	-2	0	0
χ_{58}	0	0	0	0	0	0	0	0	2	2	-2	-2	0	0
$\chi 59$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 60$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 61$	0	0	0	0	0	0	0	0	-2	-2	2	2	0	0
$\chi 62$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 63$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 64$	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 6 (continued)

	6B				7A	7B			8A		14A	$14 B$		15A		15B	21A	21B
	$6 L$	6 M	12 E	12 F	7 A	7B	$8 G$	8 H	16 A	16 B	$14 A$	$14 B$	15A	$30 A$	$15 B$	$30 B$	$21 A$	$21 B$
χ_{1}	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	-1	-1	-1	-1	1	1	-1	-1	-1	-1	-1	-1	1	1	1	1	1	1
χ^{χ}	0	0	0	0	2	2	0	0	0	0	0	0	-1	-1	-1	-1	-1	-1
χ_{4}	0	0	0	0	-1	-1	0	0	0	0	1	1	0	0	0	0	-1	-1
χ^{χ}	0	0	0	0	-1	-1	0	0	0	0	-1	-1	0	0	0	0	-1	-1
$\chi^{\chi} 6$	0	0	0	0	-2	-2	0	0	0	0	0	0	0	0	0	0	1	1
χ_{7}	0	0	0	0	\underline{A}	\bar{A}	-1	-1	-1	-1	- -	- \bar{A}	0	0	0	0	A	\bar{A}
χ^{χ}	0	0	0	0	\bar{A}	\underline{A}	-1	-1	-1	-1	- \bar{A}	- - A	0	0	0	0	\bar{A}	A
$\chi 9$	0	0	0	0	\underline{A}	A	1	1	1	1	\underline{A}	A	0	0	0	0	\underline{A}	\bar{A}
$\chi 10$	0	0	0	0	\bar{A}	A	1	1	1	1	\bar{A}	A	0	0	0	0	\bar{A}	A
$\chi 11$	-1	-1	-1	-1	1	1	0	0	0	0	1	1	-1	-1	-1	-1	1	1
Х12	1	1	1	1	1	1	0	0	0	0	-1	-1	-1	-1	-1	-1	1	1
$\chi 13$	0	0	0	0	\underline{B}	\bar{B}	0	0	0	0	0	0	0	0	0	0	- $-\underline{A}$	- \bar{A}
$\chi 14$	0	0	0	0	\bar{B}	B	0	0	0	0	0	0	0	0	0	0	- \bar{A}	- A
$\chi 15$	-1	-1	-1	-1	0	0	1	1	1	1	0	0	0	0	0	0	0	0
$\chi 16$	1	1	1	1	0	0	-1	-1	-1	-1	0	0	0	0	0	0	0	0
$\chi 17$	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0
$\chi 18$	0	0	0	0	0	0	0	0	0	0	0	0	\underline{D}	\underline{D}	\bar{D}	\bar{D}	0	0
χ_{19}	0	0	0	0	0	0	0	0	0	0	0	0	\bar{D}	\bar{D}	D	D	0	0
$\times 20$	0	0	0	0	2	2	0	0	0	0	0	0	1	1	1	1	-1	-1
χ_{21}	1	-1	-1	1	0	0	1	1	-1	-1	0	0	1	-1	1	-1	0	0
$\chi 22$	-1	1	1	-1	0	0	-1	-1	1	1	0	0	1	-1	1	-1	0	0
$\chi 23$	0	0	0	0	0	0	0	0	0	0	0	0	-1	1	-1	1	0	0
$\chi 24$	1	-1	-1	1	0	0	0	0	0	0	0	0	-1	1	-1	1	0	0
$\chi^{\chi} 25$	-1	1	1	-1	0	0	0	0	0	0	0	0	-1	1	-1	1	0	0
$\chi 26$	-1	1	1	-1	0	0	1	1	-1	-1	0	0	0	0	0	0	0	0
$\chi 27$	1	-1	-1	1	0	0	-1	-1	1	1	0	0	0	0	0	0	0	0
$\chi 28$	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{D}$	$\frac{-1}{D}$	1	-1	0	0
$\chi 29$	0	0	0	0	0	0	0	0	0	0	0	0	$\frac{1}{D}$	- \bar{D}	D	- - D	0	0
$\chi 30$	0	0	0	0	0	0	0	0	0	0	0	0	D	-D	\bar{D}	- \bar{D}	0	0
$\chi 31$	0	0	0	0	0	0	0	0	0	0	0	0	1	-1	1	-1	0	0
$\chi 32$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 33$	0	0	0	0	0	0	1	1	-1	-1	0	0	0	0	0	0	0	0
$\times 34$	0	0	0	0	0	0	-1	-1	1	1	0	0	0	0	0	0	0	0
$\chi 35$	0	0	0	0	0	0	0	${ }^{0}$	0	0	0	0	0	0	0	0	0	0
$\chi 36$	0	0	0	0	0	0	1	1	-1	-1	0	,	0	0	0	0	0	0
- $\times 13$	0	0	0	0	0	0	-1	-1	1	1	0	0	0	0	0	0	0	0
$\chi 38$	1	1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	
$\chi 39$	-1	-1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{40}	1	1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{41}	-1	-1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{42}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi^{\chi 3}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{44}	1	1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi^{\chi} 45$	-1	-1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{46}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{47}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 48$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi^{\chi} 49$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 50$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{51}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 52$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{53}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
χ_{54}	1	-1	1	-1	0	0	${ }_{2}^{2}$	-2	0	0	0	0	0	${ }^{0}$	${ }^{0}$	0	0	0
$\chi 55$	-1	1	-1	1	0	0	-2	2	0	0	0	0	0	0	0	0	0	0
$\chi^{\chi} 5$	0	0	0	0	0	0	0	0	${ }_{0}^{0}$	0	0	0	0	0	0	0	0	0
$\chi 57$	0	0	0	0	0	0	0	0	${ }^{C}$	$-C$	0	0	0	0	0	0	0	0
$\chi{ }^{8}$	0	0	0	0	0	0	0	0	-C	C	0	0	0	0	0	0	0	0
$\chi 59$	-1	1	-1	1	0	0	2	-2	0	0	0	0	0	0	0	0	0	0
$\chi 60$	1	-1	,	-1	0	0	-2	${ }^{2}$	0	0	0	0	0	0	0	0	0	0
$\chi 61$	${ }_{1}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 62$	-1	-1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\chi 63$	-1	1	-1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\times 64$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

7. The fusion of $2^{9}:\left(L_{3}(4): S_{3}\right)$ into $U_{6}(2): S_{3}$
\bar{G} is a maximal subgroup of $U_{6}(2): S_{3}$ of index 891 . Hence the action of $U_{6}(2): S_{3}$ on the cosets of \bar{G} gives rise to a permutation character $\chi\left(U_{6}(2): S_{3} \mid \bar{G}\right)$

Table 7. The power maps of the elements of $2^{9}:\left(L_{3}(4): S_{3}\right)$

$[g]_{G}$	$[x]_{\bar{G}}$	2	3	5	7	$[g]_{G}$	$[x]_{\bar{G}}$	2	3	5	7
1 A	1 A					2 A	2 D	1 A			
	2 A	1 A					$2 E$	1 A			
	$2 B$	1 A					4 A	$2 A$			
	$2 C$	1 A					4B	2 A			
							$4 C$	$2 B$			
							$4 D$	$2 B$			
							$4 E$	$2 B$			
$2 B$	$2 F$	1 A				3 A	3 A		1A		
	$2 G$	1 A					6 A	3A	2 A		
	$4 F$	$2 B$					$6 B$	3 A	2 A		
	$4 G$	$2 B$					6 C	3 A	2B		
	$4 H$	$2 B$					6 D	3 A	2 C		
							$6 E$	3 A	2B		
$3 B$	$3 B$		1A			$3 C$	$3 C$		1A		
	$6 F$	$3 B$	2 C				6 G	$3 C$	2 C		
							6 H	$3 C$	2 A		
							6 I	$3 C$	2B		
4 A	4 I	2D				$4 B$	$4 K$	2 D			
	$4 J$	2 D					4L	2D			
	8 A	$4 B$					8 C	$4 E$			
	$8 B$	$4 E$					8D	4 E			
							8E	4 A			
							8F	$4 E$			
5 A	$\begin{gathered} \hline 5 A \\ 10 A \end{gathered}$			1A		6 A	6 J	3 A	2D		
		5 A		2 A			12 A	6B	4B		
							$12 B$	$6 B$	4A		
							6 K	3 A	2 E		
							$12 C$	$6 E$	4 C		
							12 D	$6 E$	4D		
$6 B$	$6 L$	3C	2 F			7 A	7 A				1A
	6 M	$3 C$	2G								
	12 E	$6 I$	4H								
	12 F	$6 I$	4 F								
$7 B$	$7 B$				1A	8 A	8G	4 I			
							8H	4 I			
							16 A	8 A			
							$16 B$	8 A			
14 A	14 A	7A			2F	$14 B$	$14 B$	7B			2F
15 A	15 A		5A	3A		$15 B$	$15 B$		5A	3A	
	30 A	15 A	10A	6 A			30B	15B	10A	6 A	
21 A	21 A		7B		3B	$21 B$	$21 B$		7A		3B

of degree 891. We deduce from the character table of $U_{6}(2): S_{3}$ found in GAP that $\chi\left(U_{6}(2): S_{3} \mid \bar{G}\right)=1 a+22 b+252 b+616 b$, where $1 a, 22 b, 252 b$ and $616 b$ are irreducible characters of $U_{6}(2): S_{3}$ of degrees $1,22,252$ and 616 , respectively.

The technique of set intersections for characters (see [14],[15] and [16]) was used to restrict the irreducible characters $22 a, 22 b, 44 a, 231 a, 231 b, 385 a, 385 b$ and $462 a$ of $U_{6}(2): S_{3}$ to \bar{G}. We obtain that $(22 a)_{\bar{G}}=\chi_{2}+\chi_{22},(22 b)_{\bar{G}}=$ $\chi_{1}+\chi_{21},(44 a)_{\bar{G}}=\chi_{3}+\chi_{23},(231 a)_{\bar{G}}=\chi_{22}+\chi_{40},(231 b)_{\bar{G}}=\chi_{21}+\chi_{41}$, $(385 a)_{\bar{G}}=\chi_{26}+\chi_{55},(385 b)_{\bar{G}}=\chi_{27}+\chi_{54}$ and $(462 a)_{\bar{G}}=\chi_{23}+\chi_{43}$.

Using the values of $\chi\left(U_{6}(2): S_{3} \mid \bar{G}\right)$ on the classes of \bar{G}, the power maps of the classes of $U_{6}(2): S_{3}$ and \bar{G}, and the technique of set intersections for characters to restrict the irreducible characters $22 a, 22 b, 44 a, 231 a, 231 b, 385 a, 385 b$ and $462 a$ of $U_{6}(2): S_{3}$ to \bar{G}, we are able to determine completely the fusion of classes of \bar{G} into $U_{6}(2): S_{3}$. The fusion of classes of \bar{G} into $U_{6}(2): S_{3}$ is given in Table 8.

TABLE 8. The fusion of $2^{9}:\left(L_{3}(4): S_{3}\right)$ into $U_{6}(2): S_{3}$

$[g]_{L_{3}(4): S_{3}}$	$[x]_{2}{ }^{9}:\left(L_{3}(4): S_{3}\right) \longrightarrow$	$[y]_{U_{6}(2): S_{3}}$	$[g]_{L_{3}(4): S_{3}}$	$[x]_{2}{ }^{9}:\left(L_{3}(4): S_{3}\right) \longrightarrow$	$[y]_{U_{6}(2): S_{3}}$
1 A	1 A	1 A	2 A	2 D	$2 B$
	2 A	2 A		$2 E$	$2 C$
	$2 B$	$2 B$		4 A	4 A
	$2 C$	$2 C$		$4 B$	$4 B$
				$4 C$	4 D
				$4 D$	$4 E$
				$4 E$	$4 C$
$2 B$	$2 F$	2 D	3 A	3 A	$3 E$
	$2 G$	$2 E$		6 A	$6 I$
	$4 F$	$4 F$		$6 B$	$6 K$
	$4 G$	$4 G$		$6 C$	$6 M$
	$4 H$	$4 H$		6 D	$6 P$
				$6 E$	6 N
$3 B$	$3 B$	$3 G$	$3 C$	$3 C$	$3 C$
	$6 F$	$6 R$		$6 G$	$6 G$
				6 H	$6 E$
				$6 I$	$6 F$
4 A	4 I	$4 C$	$4 B$	4 K	$4 G$
	$4 J$	$4 E$		$4 L$	4 H
	8 A	8 A		$8 C$	$8 E$
	$8 B$	$8 B$		8 D	$8 F$
				$8 E$	$8 C$
				8F	8 D
5 A	5 A	5 A	6 A	$6 J$	6 N
	10 A	10 A		12 A	12 J
				$12 B$	12 H
				6 K	6 P
				$12 C$	$12 L$
				12 D	12 N
$6 B$	$6 L$	6 V	7 A	7 A	7 A
	6 M	6 W			
	$12 E$	$12 S$			
	12 F	$12 R$			
$7 B$	$7 B$	7 A	8 A	8G	8D
				8H	8E
				16 A	16 A
				$16 B$	$16 B$
14 A	14 A	$14 A$	$14 B$	$14 B$	14 A
15 A	15 A	$15 B$	$15 B$	$15 B$	$15 B$
	30 A	30 A		30B	30A
21 A	$21 A$	21 A	$21 B$	$21 B$	21 A

Acknowledgements

The financial support from the Department of Defence (Republic of South Africa) made it possible for the author to present this paper at the short communications of the 2014 International Congress of Mathematicians in Seoul (South Korea). I am most greatful to my Lord Jesus Christ.

References

[1] F. Ali, Fischer-Clifford Theory for Split and Non-Split Group Extensions, PhD Thesis, University of Natal, 2001.
[2] F. Ali and J. Moori, The Fischer-Clifford matrices of a maximal subgroup of $F i_{24}^{\prime}$, Represent. Theory 7 (2003) 300-321.
[3] F. Ali and J. Moori, The Fischer-Clifford matrices and character table of a maximal subgroup of $F i_{24}$, Algebra Colloq. 17 (2010), no. 3, 389-414.
[4] F. Ali and J. Moori, Fischer-Clifford matrices and character table of the split extension $2^{6}: S_{8}$, Hacet. J. Math. Stat. 43 (2014), no. 2, 153-171
[5] W. Bosma and J. J. Canon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, 1994.
[6] J. J. Cannon, An introduction to the group theory language, Cayley.Computational group theory (Durham, 1982), 145-183, Academic Press, London, 1984.
[7] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Eynsham, 1985.
[8] B. Fischer, Clifford-matrices, Representation theory of finite groups and finitedimensional algebras (Bielefeld, 1991), 1-16, Progr. Math., 95, Birkhäuser, Basel, 1991.
[9] R. L. Fray and A. L. Prins, The Fischer-Clifford matrices of the inertia group $2^{7}: O^{-}(6,2)$ of a maximal subgroup $2^{7}: S P(6,2)$ in $S p_{8}(2)$, Int. J. Group Theory 2 (2013), no. 3, 1938.
[10] R. L. Fray and A. L. Prins, The Fischer-Clifford matrices of an extension group of the form $2^{7}:\left(2^{5}: S_{6}\right)$, Int. J. Group Theory 3 (2014), no. 2, 21-39.
[11] R. L. Fray and A. L. Prins, On the inertia groups of the maximal subgroup $2^{7}: S P(6,2)$ in $\operatorname{Aut}\left(F i_{22}\right)$, Quaest. Math. 38 (2015), no. 1, 83-102.
[12] D. Gorenstein, Finite Groups, Harper and Row Publishers, New York, 1968.
[13] G. Karpilovsky, Group Representations: Introduction to Group Representations and Characters, North-Holland Publishing Co., Amsterdam, 1992.
[14] J. Moori, On the Groups G^{+}and \bar{G} of the Forms $2^{10}: M_{22}$ and $2^{10}: \bar{M}_{22}$, PhD Thesis, University of Birmingham, 1975.
[15] J. Moori, On certain groups associated with the smallest Fischer group, J. Lond. Math. Soc. (2) 23 (1981), no. 1, 61-67.
[16] J. Moori and Z. E. Mpono, The Fischer-Clifford matrices of the group $2^{6}: S P_{6}(2)$, Quaest. Math. 22 (1999), no. 2, 257-298.
[17] J. Moori and Z. E. Mpono, Fischer-Clifford matrices and the character table of a maximal subgroup of \bar{F}_{22}, Int. J. Math. Game Theory and Algebra 10 (2000), no. 1, 1-12.
[18] Z. Mpono, Fischer-Clifford Theory and Character Tables of Group Extensions, PhD Thesis, University of Natal, 1998.
[19] H. Pahlings, The character table of $2^{1+22 \cdot C o 2, ~ J . ~ A l g e b r a ~} 315$ (2007), no. 1, 301-325.
[20] A. L. Prins, Fischer-Clifford Matrices and Character Tables of Inertia Groups of Maximal Subgroups of Finite Simple Groups of Extension Type, PhD Thesis, University of the Western Cape, 2011.
[21] The GAP Group, GAP --Groups, Algorithms, and Programming, Version 4.6.3; 2013. (http://www.gap-system.org).
[22] T. T. Seretlo, Fischer Clifford Matrices and Character Tables of Certain Groups Associated with Simple Groups $O_{10}^{+}(2), H S$ and $L y, \mathrm{PhD}$ Thesis, University of KwaZulu Natal, 2011.
[23] R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray and R. Abbot, ATLAS of Finite Group Representations, http://brauer.maths.qmul.ac.uk/Atlas/v3/.
(Abraham Love Prins) Department of Mathematics, Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha, 7395, South Africa.

E-mail address: abraham.prins@ma2.sun.ac.za

[^0]: Article electronically published on October 31, 2016.
 Received: 18 March 2015, Accepted: 30 July 2015.

