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Abstract. Let R be a ∗-prime ring with center Z(R), d a non-zero (σ, τ)-

derivation of R with associated automorphisms σ and τ of R, such that
σ, τ and d commute with ′∗′. Suppose that U is an ideal of R such that
U∗ = U , and Cσ,τ = {c ∈ R | cσ(x) = τ(x)c for all x ∈ R}. In the
present paper, it is shown that if characteristic of R is different from two

and [d(U), d(U)]σ,τ = {0}, then R is commutative. Commutativity of R
has also been established in case if [d(R), d(R)]σ,τ ⊆ Cσ,τ .
Keywords: Prime-rings, derivations, ideal, involution map.
MSC(2012): Primary: 16W10; Secondary: 16N60, 16U80.

1. Introduction

Throughout, R will denote an associative ring with center Z(R). An additive
mapping d : R → R is said to be a derivation if d(xy) = d(x)y+xd(y) holds for
all x, y ∈ R. For a fixed a ∈ R, the mapping Ia : R → R given by Ia(x) = [a, x]
is a derivation which is said to be an inner derivation. Recall that R is said to
be prime if aRb = {0} implies a = 0 or b = 0. A ring R is said to be 2-torsion
free, if 2x = 0 implies x = 0.

For any two endomorphisms σ and τ of R, we call an additive mapping
d : R → R a (σ, τ)-derivation if d(xy) = d(x)σ(y) + τ(x)d(y) for all x, y ∈ R.
Of course, a (1, 1)-derivation is a derivation on R, where 1 is the identity
mapping on R. It is also to remark that there exist (σ, τ)-derivations which

are not derivations. For example, let R =

{(
a b
0 c

)
a, b, c ∈ Z

}
be the ring

of all 2 × 2 matrices over Z, the ring of integers. Define d, σ, τ : R → R such

that d

(
a b
0 c

)
=

(
a 0
0 0

)
, σ

(
a b
0 c

)
=

(
a 0
0 0

)
and τ

(
a b
0 c

)
=
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0 b
0 0

)
. It can be easily seen that σ and τ are automorphisms of R, and

d is a (σ, τ)-derivation which is not a derivation of R. We set Cσ,τ = {x ∈
R | xσ(y) = τ(y)x for all y ∈ R} and [x, y]σ,τ = xσ(y) − τ(y)x. In particular
C1,1 = Z(R), is the center of R, and [x, y]1,1 = [x, y] = xy − yx, is the usual
Lie product.

An additive mapping x 7→ x∗ on a ring R is called an involution if (x∗)∗ = x
and (xy)∗ = y∗x∗ hold for all x, y ∈ R. A ring equipped with an involution is
called a ring with involution or ∗-ring. A ring R equipped with an involution ′∗′
is said to be ∗-prime if aRb = aRb∗ = {0} (or, equivalently aRb = a∗Rb = {0})
implies a = 0 or b = 0. It is important to note that, a prime ring is ∗-prime,
but the converse is in general not true. An example due to Shulaing [8] justifies
this fact. If R◦ denotes the opposite ring of a prime ring R, then S = R ×R◦

equipped with the exchange involution ∗ex defined by ∗ex(x, y) = (y, x) is ∗ex-
prime, but not a prime ring because of the fact that (1, 0)S(0, 1) = 0. In all that
follows, Sa∗(R) will denote the set of symmetric and skew symmetric elements
of R, i.e., Sa∗(R) = {x ∈ R|x∗ = ±x}. An ideal U of R is said to be a ∗-ideal of
R if U∗ = U. It can also be noted that an ideal of a ring R may not be ∗-ideal
of R. As an example, let R = Z×Z, and consider the involution ′∗′ on R such
that (a, b)∗ = (b, a) for all (a, b) ∈ R. The subset U = Z× {0} of R is an ideal
of R but it is not a ∗-ideal of R, because U∗ = {0} × Z ̸= U.

Recently many authors have studied commutativity of prime and semiprime
rings with involution admitting suitably constrained derivations. A lot of work
have been done by L. Okhtite and co-authors on rings with involution (see for
reference [11, 12, 13], where further references can be found).

In [10], Lee and Lee proved that if a prime ring of characteristic different
from 2 admits a derivation d such that [d(R),
d(R)] ⊆ Z(R), then R is commutative. On the other hand in [7] for a ∈ R,
Herstein proved that if [a, d(R)] = {0}, then a ∈ Z(R). Further in the year
1992, Aydin together with Kaya [4] extended the theorems mentioned above
by replacing derivation by (σ, τ)-derivation and in some of those, R by a non-
zero ideal of R. In this note, we investigate the commutativity of ∗-prime ring
R equipped with an involution ′∗′ admitting a (σ, τ)-derivation d satisfying
[d(U), d(U)]σ,τ = {0} and [d(R), d(R)]σ,τ ⊆ Cσ,τ , where U is a nonzero ∗-ideal
of R.

2. The results

In the remaining part of the paper, R will represent a ∗-prime ring which
admits a nonzero (σ, τ)-derivation d with automorphisms σ and τ such that
′∗′ commutes with d, σ and τ . We shall use the following relations frequently
without specific mention:

[xy, z]σ,τ = x[y, z]σ,τ + [x, τ(z)]y = x[y, σ(z)] + [x, z]σ,τy,
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[x, yz]σ,τ = τ(y)[x, z]σ,τ + [x, y]σ,τσ(z),

and
[x, [y, z]]σ,τ + [[x, z]σ,τ , y]σ,τ − [[x, y]σ,τ , z]σ,τ = 0.

Remark 2.1. We find that if R is a ∗-prime ring of characteristic different from
2, then R is 2-torsion free. In fact, if 2x = 0 for all x ∈ R, then xr(2s) = 0 for
all r, s ∈ R. But since char R ̸= 2, there exists a nonzero l ∈ R such that 2l ̸= 0
and hence by the above xR(2l) = {0}. This also gives that xR(2l)∗ = {0} and
∗-primeness of R yields that x = 0, i.e., R is 2-torsion free.

The main result of the present paper states as follows:

Theorem 2.2. Let R be a ∗- prime ring with characteristic different from two
and σ, τ be automorphisms of R, and U a ∗-ideal of R. If R admits a non-
zero (σ, τ)-derivation d : R → R such that [d(U), d(U)]σ,τ = {0}, then R is
commutative.

We facilitate our discussion with the following lemmas which are required
for developing the proof of our main result.

Since every ∗-prime ring is semiprime and every ∗-right ideal is right ideal,
hence Lemmas 1.1.4 and 1.1.5 of [5] can be rewritten in case of ∗-prime ring as
follows:

Lemma 2.3. Suppose that R is a ∗-prime ring and that a ∈ R is such that
a(ax− xa) = 0 for all x ∈ R. Then a ∈ Z(R).

Lemma 2.4. Let R be a ∗-prime ring and U a non-zero ∗-right ideal of R.
Then Z(U) ⊆ Z(R).

Corollary 2.5. Let R be a ∗-prime ring and U a non-zero ∗-right ideal of R.
If U is commutative then R is commutative.

Proof. Since U is commutative, by the Lemma 2.4, we have U = Z(U) ⊆ Z(R).
If for any x, y ∈ R, a ∈ U we have ax ∈ U then ax ∈ Z(R), and hence
(ax)y = y(ax) = ayx. This further yields U(xy − yx) = {0}. Since U is a
non-zero ∗-right ideal of R, we have UR(xy − yx) = {0} = U∗R(xy − yx).
Also, since U ̸= {0} is a right ideal, ∗-primeness of R gives xy− yx = 0, for all
x, y ∈ R. Hence R is commutative. □
Lemma 2.6. Let R be a ∗-prime ring and U a non-zero ∗-right ideal of R.
Suppose that a ∈ R centralizes U . Then a ∈ Z(R).

Proof. Since a centralizes U , for all u ∈ U and x ∈ R, aux = uxa. But au = ua,
therefore uax = uxa, i.e., u[a, x] = 0. On replacing u by uy for any y ∈ R, we
get uR[a, x] = {0} for all u ∈ U , x ∈ R. Also, since U is ∗-right ideal, we get
u∗R[a, x] = {0}. Again since U ̸= {0}, ∗-primeness of R yields that [a, x] = 0
for all x ∈ R. Therefore, a ∈ Z(R). □
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Lemma 2.7. Let R be a ∗- prime ring with characteristic different from two
and suppose that a ∈ R commutes with all its commutators ax − xa for all
x ∈ R. Then a ∈ Z(R).

Proof. Define d : R → R by d(x) = ax − xa for all x ∈ R. By hypothesis we
arrive at

(2.1) d2(x) = 0 for all x ∈ R.

Also; d2(xy) = d2(x)y+2d(x)d(y)+xd2(y). By (2.1) and using torsion restric-
tion on R, we get d(x)d(y) = 0 for all x, y ∈ R. On replacing y by yz for any
z ∈ R, we obtain d(x)Rd(y) = {0}, also d(x)∗Rd(y) = {0} for all x, y ∈ R.
Using ∗-primeness of R yields that d(x) = 0 for all x ∈ R. Recalling that
d(x) = ax− xa, we obtain a ∈ Z(R). □
Lemma 2.8. Let R be a ∗-prime ring. Suppose that ab, a∗b, b ∈ Cσ,τ for all
a, b ∈ R. Then either a ∈ Z(R) or b = 0.

Proof. Since ab ∈ Cσ,τ , abσ(x) = τ(x)ab for all x ∈ R. Also since b ∈ Cσ,τ , i.e.,
bσ(x) = τ(x)b for all x ∈ R, we have a(bσ(x)) = τ(x)ab, or a(τ(x)b) = (τ(x)a)b,
i.e., [a, τ(x)]b = 0. On replacing x by xy for any y ∈ R, we get

[a, τ(x)]Rb = {0} for all x ∈ R.

Similarly, since a∗b ∈ Cσ,τ we have

[a∗, τ(x)]Rb = {0} for all x ∈ R.

On replacing x by x∗ in the above relation, we find that

[a, τ(x)]∗Rb = {0} for all x ∈ R.

Therefore, on using ∗-primeness of R, we find that either [a, τ(x)] = 0 or
b = 0 for all x ∈ R. Hence, we conclude that a ∈ Z(R) or b = 0. □
Corollary 2.9. Let R be a ∗-prime ring. Suppose that ab = 0 = a∗b,
b ∈ Cσ,τ for all a, b ∈ R. Then either a = 0 or b = 0.

Proof. Since b ∈ Cσ,τ , bσ(x) = τ(x)b. Left multiplying by a and a∗ and on
using ab = 0 and a∗b = 0, we obtain abσ(x) = aτ(x)b = 0, for all x ∈ R,
i.e., aRb = {0} and a∗bσ(x) = a∗τ(x)b = 0, for all x ∈ R, i.e., a∗Rb = {0}
respectively. Hence, ∗-primeness of R yields either a = 0 or b = 0. □
Lemma 2.10. Let R be a ∗-prime ring and U a ∗-right ideal of R. If d(U) =
{0}, then d = 0.

Proof. For all u ∈ U and x ∈ R, 0 = d(ux) = d(u)σ(x) + τ(u)d(x) = τ(u)d(x).
On replacing x by xy for any y ∈ R, we get τ(u)d(x)σ(y) + τ(u)τ(x)d(y) = 0,
or, τ(u)τ(x)d(y) = 0, i.e., τ(u)Rd(y) = {0} for all u ∈ U and y ∈ R. Also since
U is a ∗-right ideal, we get τ(u)∗Rd(y) = {0}. Also, ∗-primeness of R yields
that τ(u) = 0 for all u ∈ U or d = 0. Since U ̸= {0} we get d = 0. □
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Lemma 2.11. Let R be a ∗-prime ring, U a non-zero ∗-ideal of R and a ∈ R.
If ad(U) = {0} (or, d(U)a = {0}), then a = 0 or d = 0.

Proof. For u ∈ U, x ∈ R, 0 = ad(ux) = ad(u)σ(x)+aτ(u)d(x). By assumption,
we have aτ(u)d(x) = 0, for all x ∈ R. On replacing u by uy for any y ∈ R,
we obtain aτ(u)Rd(x) = {0} for all u ∈ U , x ∈ R. Also, aτ(u)Rd(x)∗ = {0}.
Since R is ∗-prime, we find that either aτ(u) = 0 or d(x) = 0. If aτ(u) = 0 for
all u ∈ U or τ−1(a)u = 0, or τ−1(a)U = {0}. Now since U is ∗-ideal, we can
write τ−1(a)U∗ = {0}. This implies that τ−1(a)RU = {0} = τ−1(a)RU∗. By
the ∗-primeness of R, we obtain τ−1(a) = 0, since U ̸= {0}. In conclusion, we
get either a = 0 or d = 0. Similarly, d(U)a = {0} implies a = 0 or d = 0. □

Lemma 2.12. Let d be a non-zero (σ, τ)-derivation of ∗-prime ring R and U
a ∗-right ideal of R. If d(U) ⊆ Z(R), then R is commutative.

Proof. Since d(U) ⊆ Z(R), we have [d(U), R] = {0}. For u, v ∈ U and x ∈ R,

(2.2) [x, d(uv)] = [x, d(u)σ(v) + τ(u)d(v)] = d(u)[x, σ(v)] + d(v)[x, τ(u)] = 0.

Replacing x by xσ(v), v ∈ U in (2.2), we have

0 = d(u)[xσ(v), σ(v)] + d(v)[xσ(v), τ(u)]
= d(u)[x, σ(v)]σ(v) + d(v)(x[σ(v), τ(u)] + [x, τ(u)]σ(v)).

By using (2.2), we get

(2.3) d(v)R[σ(v), τ(u)] = {0}, for all u, v ∈ U.

Let v ∈ U ∩ Sa∗(R). From (2.3), it follows that

(2.4) d(v)∗R[σ(v), τ(u)] = {0}, for all u ∈ U.

By (2.3) and (2.4), the ∗-primeness of R yields that d(v) = 0 or [σ(v), τ(u)] = 0
for any v ∈ U∩Sa∗(R) and for all u ∈ U. Let w ∈ U, since w−w∗ ∈ U∩Sa∗(R),
then

d(w − w∗) = 0 or [σ(w − w∗), τ(u)] = 0.

Assume that d(w − w∗) = 0. Then d(w) = d(w∗). Replacing v by w∗ in (2.3)
and since U is ∗-right ideal, we get d(w∗)R[σ(w∗), τ(u)] = {0} for all u ∈ U.
Consequently,

(2.5) d(w)R[σ(w), τ(u)]∗ = {0}, for all u,w ∈ U.

Also by (2.3), we get d(w)R[σ(w), τ(u)] = {0}, the ∗-primeness of R together
with (2.5) assures that d(w) = 0 or [σ(w), τ(u)] = 0, for all u ∈ U. Now
suppose that [σ(v), τ(u)] = 0, for all v ∈ U ∩ Sa∗(R) and u ∈ U. We have
[σ(w−w∗), τ(u)] = 0, for all u ∈ U, or [σ(w), τ(u)] = [σ(w∗), τ(u)]. Replacing v
by w∗ in (2.3), we get d(w∗)R[σ(w∗), τ(u)] = {0} for all u ∈ U. Consequently,
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(2.6) d(w∗)R[σ(w), τ(u)]∗ = {0}, for all u ∈ U.

Since d(w)R[σ(w), τ(u)] = {0}, by (2.3), the ∗-primeness of R together with
(2.6) assures that d(w) = 0 or [σ(w), τ(u)] = 0, for all u ∈ U. In conclusion, for
all u ∈ U we have

either d(w) = 0 or [σ(w), τ(u)] = 0.

Now, define

K = {w ∈ U | d(w) = 0} and L = {w ∈ U | [σ(w), τ(u)] = 0 for all u ∈ U}.
Then U = K ∪ L. Since d ̸= 0, we have d(U) ̸= {0} by Lemma 2.10, therefore,
U ̸= K. By Brauer’s trick, we have

(2.7) [σ(w), τ(u)] = 0 for all u,w ∈ U.

Replacing w by wσ−1(τ(v)), u ∈ U, in (2.7) and using (2.7), we get
σ(w)τ([v, u]) = 0, for all u, v, w ∈ U. On replacing w by wx for any x ∈ R,
we get σ(w)Rτ([v, u]) = {0}, for all u, v, w ∈ U. Also, since U is ∗-right ideal,
we get σ(w)∗Rτ([v, u]) = {0}, for all u, v, w ∈ U. Since R is ∗-prime, we find
that σ(w) = 0 or τ [v, u] = 0 for all u, v, w ∈ U. Since U ̸= {0}, we have U is
commutative. In view of Corollary 2.5, we obtain the commutativity of R. □

Using the same technique as in Lemma 4 of [4], we get the following lemma.

Lemma 2.13. Let R be a ∗- prime ring with characteristic different from
two, d1 : R → R be a (σ, τ)-derivation and d2 : R → R be a derivation. If
d1d2(R) = {0}, then d1 = 0 or d2 = 0.

Proof. Let us assume that d1 ̸= 0. Then for all x, y ∈ R,

0 = d1d2(xy) = d1(d2(x)y + xd2(y)) = τ(d2(x))d1(y) + d1(x)σ(d2(y)).

That is,

(2.8) τ(d2(x))d1(y) = −d1(x)σ(d2(y)) for all x, y ∈ R.

If we replace x by d2(x) in (2.8), we have τ(d22(x))d1(y) = 0. This further
reduces to τ(d22(x)) = 0 for all x ∈ R, in view of Lemma 2.11. Therefore

(2.9) d22(x) = 0 for all x ∈ R.

Replacing x by xd2(z), z ∈ R, in (2.8) and using (2.8) and (2.9), we get

0 = τ(d2(xd2(z)))d1(y) + d1(xd2(z))σ(d2(y))
= τ(d2(x))τ(d2(z))d1(y) + d1(x)σ(d2(z))σ(d2(y))
= −τ(d2(x))d1(z)σ(d2(y)) + d1(x)σ(d2(z))σ(d2(y))
= d1(x)σ(d2(z))σ(d2(y)) + d1(x)σ(d2(z))σ(d2(y)).

So we obtain,

2d1(x)σ(d2(z))σ(d2(y)) = 0 for all x, y, z ∈ R.
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Since characteristic of R is different from 2. Then by Lemma 2.11, we have

(2.10) d2(z)d2(y) = 0 for all x, y ∈ R.

Again applying Lemma 2.11 to (2.10), we get d2 = 0. □

We are now well equipped to prove our main theorem:

Proof of Theorem 2.2. First we will show that if any a ∈ Sa∗(R) satisfies
[d(U), a]σ,τ = {0}, then a ∈ Z(R).

0 = [d(uv), a]σ,τ
= [d(u)σ(v) + τ(u)d(v), a]σ,τ
= d(u)σ(v)σ(a) + τ(u)d(v)σ(a)− τ(a)d(u)σ(v)− τ(a)τ(u)d(a).

By hypothesis, d(u)σ(a) = τ(a)d(u) for all u ∈ U. We have

(2.11) d(u)σ([v, a]) + τ([u, a])d(v) = 0 for all u, v ∈ U.

Replace v by va in (2.11) and use (2.11) to get

0 = d(u)σ([v, a])σ(a) + τ([u, a])(d(v)σ(a) + τ(v)d(a))
= {d(u)σ([v, a]) + τ([u, a])d(v)}σ(a) + τ([u, a])τ(v)d(a).

We have τ([u, a])τ(v)d(a) = 0, for all u, v ∈ U. Replacing v by vx for any x ∈ R,
we find that τ([u, a])τ(v)Rd(a) = {0}, for all u, v ∈ U. Since
a ∈ Sa∗(R), the above expression can be rewritten as τ([u, a])τ(v)Rd(a)∗ =
{0}, for all u, v ∈ U. On using ∗-primeness of R, we obtain for all u, v ∈ U

(2.12) τ([u, a])τ(v) = 0 or d(a) = 0.

Let us suppose that d(a) = 0, then for all u ∈ U, d([u, a]) = [d(u), a]σ,τ −
[d(a), u]σ,τ = 0. That is

(2.13) d([U, a]) = {0}.
On replacing v by vw, w ∈ U, in (2.11), we get

0 = d(u)σ([vw, a]) + τ([u, a])d(vw)
= d(u)σ(v)σ([w, a]) + d(u)σ([v, a])σ(w) + τ([u, a])d(v)σ(w)

+τ([u, a])τ(v)d(w)
= d(u)σ(v)σ([w, a]) + τ([u, a])τ(v)d(w)

+{d(u)σ([v, a]) + τ([u, a])d(v)}σ(w).
By using (2.11), we have

(2.14) d(u)σ(v)σ([w, a]) + τ([u, a])τ(v)d(w) = 0 for all u, v, w ∈ U.

Replacing w by [w, a] in (2.14) and using (2.13), we get

d(u)σ(v)σ([[w, a], a]) = 0 for all u, v, w ∈ U.

Replacing v by xv for any x ∈ R in the above relation, we find that
d(u)Rσ(v)σ([[w, a], a]) = {0} for all u, v, w ∈ U. Also since U is ∗-ideal, we may
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obtain d(u)∗Rσ(v)σ([[w, a], a]) = {0} for all u, v, w ∈ U. Using ∗-primeness of
R, we get

d(U) = {0} or σ(v)σ([[w, a], a]) = 0 for all u, v, w ∈ U.

But d(U) ̸= {0}, therefore, σ(v)σ([[w, a], a]) = 0 for all u, v, w ∈ U. Replacing
v by vx, and using U is ∗-ideal, we obtain

σ(U)Rσ([[w, a], a]) = {0} and σ(U)∗Rσ([[w, a], a]) = {0} for all w ∈ U.

Since R is ∗-prime and σ(U) ̸= {0} is ∗-ideal of R,

σ([[U, a], a]) = {0}.

In other words, if we define Ia(x) = [x, a] an inner derivation determined by
a then we have I2a(U) = {0}. By Lemma 2.13, Ia = {0}, i.e., [a, U ] = {0},
and so by Lemma 2.6, a ∈ Z(R). In view of (2.12) let us now suppose that
τ([u, a])τ(v) = 0 for all u, v ∈ U. On replacing v by xv for any x ∈ R, the
above equation reduces to τ([u, a])Rτ(v) = {0}, for all u, v ∈ U. Also, U being
a ∗-ideal, we get τ([u, a])Rτ(v)∗ = {0}. Using the ∗-primeness of R yields
either τ([U, a]) = {0} or τ(U) = {0}. Since τ(U) = {0} is not possible, it
reduces to τ([U, a]) = {0} and so [U, a] = {0}. In view of Lemma 2.6, we find
that a ∈ Z(R). Hence by our hypothesis we obtain that d(U) ⊆ Z(R). So by
Lemma 2.12, R is commutative. □

Theorem 2.14. Let R be a ∗- prime ring with characteristic different from
two and σ, τ be automorphisms of R. If R admits a non-zero (σ, τ)-derivation
d : R → R such that [d(R), d(R)]σ,τ ⊆ Cσ,τ , then R is commutative.

Proof. First we will show that for any a ∈ Sa∗(R) satisfying [d(R), a]σ,τ ⊆ Cσ,τ ,
we have a ∈ Z(R). Suppose on contrary that a ̸∈ Z(R). Using the hypothesis
we have [d(a2), a]σ,τ ∈ Cσ,τ

[d(a2), a]σ,τ = [d(a)σ(a) + τ(a)d(a), a]σ,τ
= d(a)σ(a)σ(a)− τ(a)τ(a)d(a)
= [d(a), a2]σ,τ = τ(a)[d(a), a]σ,τ + [d(a), a]σ,τσ(a)
= 2τ(a)[d(a), a]σ,τ .

Since char R ̸= 2, we have τ(a)[d(a), a]σ,τ ∈ Cσ,τ . Since a ∈ Sa∗(R), we also
have τ(a)∗[d(a), a]σ,τ ∈ Cσ,τ . In view of the hypothesis and Lemma 2.8, we get
either τ(a) ∈ Z(R) or [d(a), a]σ,τ = 0. Since by our assumption a ̸∈ Z(R), we
have

(2.15) [d(a), a]σ,τ = 0.

On the other hand, since [d(R), a]σ,τ ⊆ Cσ,τ , for any x ∈ R,
[d([a, x]), a]σ,τ ∈ Cσ,τ . Therefore

[d([a, x]), a]σ,τ = [[d(a), x]σ,τ , a]σ,τ − [[d(x), a]σ,τ , a]σ,τ .
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We obtain

(2.16) [[d(a), x]σ,τ , a]σ,τ ∈ Cσ,τ for all x ∈ R.

Replacing x by ax in (2.16)

[[d(a), ax]σ,τ , a]σ,τ = [τ(a)[d(a), x]σ,τ + [d(a), a]σ,τσ(x), a]σ,τ
= [τ(a)[d(a), x]σ,τ , a]σ,τ
= τ(a)[[d(a), x]σ,τ , a]σ,τ + [τ(a), τ(a)][d(a), x]σ,τ .

We get τ(a)[[d(a), x]σ,τ , a]σ,τ ∈ Cσ,τ for all x ∈ R. Since a ∈ Sa∗(R), we have
τ(a)∗[[d(a), x]σ,τ , a]σ,τ ∈ Cσ,τ for all x ∈ R. In view of (2.16), together with
above two relations and Lemma 2.8, we obtain τ(a) ∈ Z(R) or [[d(a), x]σ,τ , a]σ,τ =
0. Since a ̸∈ Z(R), we have

(2.17) [[d(a), x]σ,τ , a]σ,τ = 0 for all x ∈ R.

Now, applying the relation

[x, [y, z]]σ,τ + [[x, z]σ,τ , y]σ,τ − [[x, y]σ,τ , z]σ,τ = 0

to (2.17) and using (2.15), we obtain

(2.18) [d(a), [a, x]]σ,τ = 0 for all x ∈ R.

In other words, if we define Ia(x) = [a, x] an inner derivation determined by
a and Id(a)(x) = [d(a), x]σ,τ , a (σ, τ)-derivation determined by d(a), in view
of (2.18), we find that Id(a)Ia(x) = 0, for all x ∈ R. By Lemma 2.13, either
Id(a) = 0 or Ia = 0. That is, d(a) ∈ Cσ,τ or a ∈ Z(R). Since a ̸∈ Z(R), this
gives us

d(a) ∈ Cσ,τ .

On the other hand, since [d(R), a]σ,τ ⊆ Cσ,τ . For x ∈ R, [d(ax), a]σ,τ ∈ Cσ,τ .
Then

[d(ax), a]σ,τ = [d(a)σ(x) + τ(a)d(x), a]σ,τ
= d(a)σ(x)σ(a) + τ(a)d(x)σ(a)− τ(a)d(a)σ(x)

−τ(a)τ(a)d(x).

Now since we have d(a) ∈ Cσ,τ , the above equation reduces to

[d(ax), a]σ,τ = d(a)σ(ax) + τ(a)d(x)σ(a)− d(a)σ(ax)− τ(a)τ(a)d(x),

or,

(2.19) d(a)σ([x, a]) + τ(a)[d(x), a]σ,τ ∈ Cσ,τ for all x ∈ R.
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Commuting (2.19) with a and using d(a), [d(x), a]σ,τ ∈ Cσ,τ , we get

0 = [d(a)σ([x, a]) + τ(a)[d(x), a]σ,τ , a]σ,τ
= d(a)σ([x, a])σ(a) + τ(a)[d(x), a]σ,τσ(a)− τ(a)d(a)σ([x, a])

−τ(a)τ(a)[d(x), a]σ,τ
= d(a)σ([x, a]a) + τ(a)[d(x), a]σ,τσ(a)− d(a)σ(a[x, a])

−τ(a)[d(x), a]σ,τσ(a)
= d(a)σ([[x, a], a]).

Also since a ∈ Sa∗(R), we have d(a)σ([[x, a], a])∗ = 0. Therefore, by Corollary
2.9, d(a) = 0 or [a, [a, x]] = 0 for all x ∈ R. If [a, [a, x]] = 0, for all x ∈ R, we
have by Lemma 2.7, a ∈ Z(R), a contradiction. Therefore, d(a) = 0. Now (2.19)
can be rewritten as τ(a)[d(x), a]σ,τ ∈ Cσ,τ , for all x ∈ R.Also τ(a)∗[d(x), a]σ,τ ∈
Cσ,τ , for all x ∈ R. But [d(x), a]σ,τ ∈ Cσ,τ yields by Lemma 2.8 either τ(a) ∈
Z(R) or [d(x), a]σ,τ = 0 for all x ∈ R. Now in application of Theorem 2.2,
we obtain a ∈ Z(R). This contradicts our assumption. Hence, a ∈ Z(R). By
our hypothesis we have d(R) ⊆ Z(R), and hence R is commutative by Lemma
2.12. □
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