ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 5, pp. 1197-1206

Title:

Some commutativity theorems for *-prime rings with (σ, τ) -derivation

Author(s):

M. Ashraf and N. Parveen

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 42 (2016), No. 5, pp. 1197–1206 Online ISSN: 1735-8515

SOME COMMUTATIVITY THEOREMS FOR *-PRIME RINGS WITH (σ, τ) -DERIVATION

M. ASHRAF* AND N. PARVEEN

(Communicated by Omid Ali S. Karamzadeh)

ABSTRACT. Let R be a *-prime ring with center Z(R), d a non-zero (σ, τ) derivation of R with associated automorphisms σ and τ of R, such that σ, τ and d commute with '*'. Suppose that U is an ideal of R such that $U^* = U$, and $C_{\sigma,\tau} = \{c \in R \mid c\sigma(x) = \tau(x)c \text{ for all } x \in R\}$. In the present paper, it is shown that if characteristic of R is different from two and $[d(U), d(U)]_{\sigma,\tau} = \{0\}$, then R is commutative. Commutativity of Rhas also been established in case if $[d(R), d(R)]_{\sigma,\tau} \subseteq C_{\sigma,\tau}$. **Keywords:** Prime-rings, derivations, ideal, involution map. **MSC(2012):** Primary: 16W10; Secondary: 16N60, 16U80.

1. Introduction

Throughout, R will denote an associative ring with center Z(R). An additive mapping $d: R \to R$ is said to be a derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $I_a: R \to R$ given by $I_a(x) = [a, x]$ is a derivation which is said to be an inner derivation. Recall that R is said to be prime if $aRb = \{0\}$ implies a = 0 or b = 0. A ring R is said to be 2-torsion free, if 2x = 0 implies x = 0.

For any two endomorphisms σ and τ of R, we call an additive mapping $d: R \to R$ a (σ, τ) -derivation if $d(xy) = d(x)\sigma(y) + \tau(x)d(y)$ for all $x, y \in R$. Of course, a (1,1)-derivation is a derivation on R, where 1 is the identity mapping on R. It is also to remark that there exist (σ, τ) -derivations which are not derivations. For example, let $R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \middle| a, b, c \in \mathbb{Z} \right\}$ be the ring of all 2×2 matrices over \mathbb{Z} , the ring of integers. Define $d, \sigma, \tau : R \to R$ such that $d\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}, \sigma\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$ and $\tau\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} =$

C2016 Iranian Mathematical Society

1197

Article electronically published on October 31, 2016.

Received: 25 September 2014, Accepted: 1 August 2015.

^{*}Corresponding author.

 $\begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$. It can be easily seen that σ and τ are automorphisms of R, and d is a (σ, τ) -derivation which is not a derivation of R. We set $C_{\sigma,\tau} = \{x \in R \mid x\sigma(y) = \tau(y)x \text{ for all } y \in R\}$ and $[x, y]_{\sigma,\tau} = x\sigma(y) - \tau(y)x$. In particular $C_{1,1} = Z(R)$, is the center of R, and $[x, y]_{1,1} = [x, y] = xy - yx$, is the usual Lie product.

An additive mapping $x \mapsto x^*$ on a ring R is called an involution if $(x^*)^* = x$ and $(xy)^* = y^*x^*$ hold for all $x, y \in R$. A ring equipped with an involution is called a ring with involution or *-ring. A ring R equipped with an involution '*' is said to be *-prime if $aRb = aRb^* = \{0\}$ (or, equivalently $aRb = a^*Rb = \{0\}$) implies a = 0 or b = 0. It is important to note that, a prime ring is *-prime, but the converse is in general not true. An example due to Shulaing [8] justifies this fact. If R° denotes the opposite ring of a prime ring R, then $S = R \times R^\circ$ equipped with the exchange involution $*_{ex}$ defined by $*_{ex}(x, y) = (y, x)$ is $*_{ex}$ prime, but not a prime ring because of the fact that (1, 0)S(0, 1) = 0. In all that follows, $Sa_*(R)$ will denote the set of symmetric and skew symmetric elements of R, i.e., $Sa_*(R) = \{x \in R | x^* = \pm x\}$. An ideal U of R is said to be a *-ideal of R if $U^* = U$. It can also be noted that an ideal of a ring R may not be *-ideal of R. As an example, let $R = \mathbb{Z} \times \mathbb{Z}$, and consider the involution '*' on R such that $(a, b)^* = (b, a)$ for all $(a, b) \in R$. The subset $U = \mathbb{Z} \times \{0\}$ of R is an ideal of R but it is not a *-ideal of R, because $U^* = \{0\} \times \mathbb{Z} \neq U$.

Recently many authors have studied commutativity of prime and semiprime rings with involution admitting suitably constrained derivations. A lot of work have been done by L. Okhtite and co-authors on rings with involution (see for reference [11, 12, 13], where further references can be found).

In [10], Lee and Lee proved that if a prime ring of characteristic different from 2 admits a derivation d such that $[d(R), d(R)] \subseteq Z(R)$, then R is commutative. On the other hand in [7] for $a \in R$, Herstein proved that if $[a, d(R)] = \{0\}$, then $a \in Z(R)$. Further in the year

1992, Aydin together with Kaya [4] extended the theorems mentioned above by replacing derivation by (σ, τ) -derivation and in some of those, R by a nonzero ideal of R. In this note, we investigate the commutativity of *-prime ring R equipped with an involution '*' admitting a (σ, τ) -derivation d satisfying $[d(U), d(U)]_{\sigma,\tau} = \{0\}$ and $[d(R), d(R)]_{\sigma,\tau} \subseteq C_{\sigma,\tau}$, where U is a nonzero *-ideal of R.

2. The results

In the remaining part of the paper, R will represent a *-prime ring which admits a nonzero (σ, τ) -derivation d with automorphisms σ and τ such that '*' commutes with d, σ and τ . We shall use the following relations frequently without specific mention:

$$[xy, z]_{\sigma,\tau} = x[y, z]_{\sigma,\tau} + [x, \tau(z)]y = x[y, \sigma(z)] + [x, z]_{\sigma,\tau}y,$$

Ashraf and Parveen

and

$$[x,[y,z]]_{\sigma,\tau}+[[x,z]_{\sigma,\tau},y]_{\sigma,\tau}-[[x,y]_{\sigma,\tau},z]_{\sigma,\tau}=0$$

 $[x, yz]_{\sigma,\tau} = \tau(y)[x, z]_{\sigma,\tau} + [x, y]_{\sigma,\tau}\sigma(z),$

Remark 2.1. We find that if R is a *-prime ring of characteristic different from 2, then R is 2-torsion free. In fact, if 2x = 0 for all $x \in R$, then xr(2s) = 0 for all $r, s \in R$. But since char $R \neq 2$, there exists a nonzero $l \in R$ such that $2l \neq 0$ and hence by the above $xR(2l) = \{0\}$. This also gives that $xR(2l)^* = \{0\}$ and *-primeness of R yields that x = 0, i.e., R is 2-torsion free.

The main result of the present paper states as follows:

Theorem 2.2. Let R be a *- prime ring with characteristic different from two and σ, τ be automorphisms of R, and U a *-ideal of R. If R admits a nonzero (σ, τ) -derivation $d : R \to R$ such that $[d(U), d(U)]_{\sigma, \tau} = \{0\}$, then R is commutative.

We facilitate our discussion with the following lemmas which are required for developing the proof of our main result.

Since every *-prime ring is semiprime and every *-right ideal is right ideal, hence Lemmas 1.1.4 and 1.1.5 of [5] can be rewritten in case of *-prime ring as follows:

Lemma 2.3. Suppose that R is a *-prime ring and that $a \in R$ is such that a(ax - xa) = 0 for all $x \in R$. Then $a \in Z(R)$.

Lemma 2.4. Let R be a *-prime ring and U a non-zero *-right ideal of R. Then $Z(U) \subseteq Z(R)$.

Corollary 2.5. Let R be a *-prime ring and U a non-zero *-right ideal of R. If U is commutative then R is commutative.

Proof. Since U is commutative, by the Lemma 2.4, we have $U = Z(U) \subseteq Z(R)$. If for any $x, y \in R$, $a \in U$ we have $ax \in U$ then $ax \in Z(R)$, and hence (ax)y = y(ax) = ayx. This further yields $U(xy - yx) = \{0\}$. Since U is a non-zero *-right ideal of R, we have $UR(xy - yx) = \{0\} = U^*R(xy - yx)$. Also, since $U \neq \{0\}$ is a right ideal, *-primeness of R gives xy - yx = 0, for all $x, y \in R$. Hence R is commutative.

Lemma 2.6. Let R be a *-prime ring and U a non-zero *-right ideal of R. Suppose that $a \in R$ centralizes U. Then $a \in Z(R)$.

Proof. Since a centralizes U, for all $u \in U$ and $x \in R$, aux = uxa. But au = ua, therefore uax = uxa, i.e., u[a, x] = 0. On replacing u by uy for any $y \in R$, we get $uR[a, x] = \{0\}$ for all $u \in U$, $x \in R$. Also, since U is *-right ideal, we get $u^*R[a, x] = \{0\}$. Again since $U \neq \{0\}$, *-primeness of R yields that [a, x] = 0 for all $x \in R$. Therefore, $a \in Z(R)$.

1199

Lemma 2.7. Let R be a *- prime ring with characteristic different from two and suppose that $a \in R$ commutes with all its commutators ax - xa for all $x \in R$. Then $a \in Z(R)$.

Proof. Define $d: R \to R$ by d(x) = ax - xa for all $x \in R$. By hypothesis we arrive at

(2.1)
$$d^2(x) = 0 \text{ for all } x \in R.$$

Also; $d^2(xy) = d^2(x)y + 2d(x)d(y) + xd^2(y)$. By (2.1) and using torsion restriction on R, we get d(x)d(y) = 0 for all $x, y \in R$. On replacing y by yz for any $z \in R$, we obtain $d(x)Rd(y) = \{0\}$, also $d(x)^*Rd(y) = \{0\}$ for all $x, y \in R$. Using *-primeness of R yields that d(x) = 0 for all $x \in R$. Recalling that d(x) = ax - xa, we obtain $a \in Z(R)$.

Lemma 2.8. Let R be a *-prime ring. Suppose that $ab, a^*b, b \in C_{\sigma,\tau}$ for all $a, b \in R$. Then either $a \in Z(R)$ or b = 0.

Proof. Since $ab \in C_{\sigma,\tau}$, $ab\sigma(x) = \tau(x)ab$ for all $x \in R$. Also since $b \in C_{\sigma,\tau}$, i.e., $b\sigma(x) = \tau(x)b$ for all $x \in R$, we have $a(b\sigma(x)) = \tau(x)ab$, or $a(\tau(x)b) = (\tau(x)a)b$, i.e., $[a, \tau(x)]b = 0$. On replacing x by xy for any $y \in R$, we get

$$[a, \tau(x)]Rb = \{0\}$$
 for all $x \in R$.

Similarly, since $a^*b \in C_{\sigma,\tau}$ we have

$$[a^*, \tau(x)]Rb = \{0\}$$
 for all $x \in R$.

On replacing x by x^* in the above relation, we find that

 $[a, \tau(x)]^* Rb = \{0\}$ for all $x \in R$.

Therefore, on using *-primeness of R, we find that either $[a, \tau(x)] = 0$ or b = 0 for all $x \in R$. Hence, we conclude that $a \in Z(R)$ or b = 0.

Corollary 2.9. Let R be a *-prime ring. Suppose that $ab = 0 = a^*b$, $b \in C_{\sigma,\tau}$ for all $a, b \in R$. Then either a = 0 or b = 0.

Proof. Since $b \in C_{\sigma,\tau}$, $b\sigma(x) = \tau(x)b$. Left multiplying by a and a^* and on using ab = 0 and $a^*b = 0$, we obtain $ab\sigma(x) = a\tau(x)b = 0$, for all $x \in R$, i.e., $aRb = \{0\}$ and $a^*b\sigma(x) = a^*\tau(x)b = 0$, for all $x \in R$, i.e., $a^*Rb = \{0\}$ respectively. Hence, *-primeness of R yields either a = 0 or b = 0.

Lemma 2.10. Let R be a *-prime ring and U a *-right ideal of R. If $d(U) = \{0\}$, then d = 0.

Proof. For all $u \in U$ and $x \in R$, $0 = d(ux) = d(u)\sigma(x) + \tau(u)d(x) = \tau(u)d(x)$. On replacing x by xy for any $y \in R$, we get $\tau(u)d(x)\sigma(y) + \tau(u)\tau(x)d(y) = 0$, or, $\tau(u)\tau(x)d(y) = 0$, i.e., $\tau(u)Rd(y) = \{0\}$ for all $u \in U$ and $y \in R$. Also since U is a *-right ideal, we get $\tau(u)^*Rd(y) = \{0\}$. Also, *-primeness of R yields that $\tau(u) = 0$ for all $u \in U$ or d = 0. Since $U \neq \{0\}$ we get d = 0. **Lemma 2.11.** Let R be a *-prime ring, U a non-zero *-ideal of R and $a \in R$. If $ad(U) = \{0\}$ (or, $d(U)a = \{0\}$), then a = 0 or d = 0.

Proof. For $u \in U$, $x \in R$, $0 = ad(ux) = ad(u)\sigma(x) + a\tau(u)d(x)$. By assumption, we have $a\tau(u)d(x) = 0$, for all $x \in R$. On replacing u by uy for any $y \in R$, we obtain $a\tau(u)Rd(x) = \{0\}$ for all $u \in U$, $x \in R$. Also, $a\tau(u)Rd(x)^* = \{0\}$. Since R is *-prime, we find that either $a\tau(u) = 0$ or d(x) = 0. If $a\tau(u) = 0$ for all $u \in U$ or $\tau^{-1}(a)u = 0$, or $\tau^{-1}(a)U = \{0\}$. Now since U is *-ideal, we can write $\tau^{-1}(a)U^* = \{0\}$. This implies that $\tau^{-1}(a)RU = \{0\} = \tau^{-1}(a)RU^*$. By the *-primeness of R, we obtain $\tau^{-1}(a) = 0$, since $U \neq \{0\}$. In conclusion, we get either a = 0 or d = 0. Similarly, $d(U)a = \{0\}$ implies a = 0 or d = 0.

Lemma 2.12. Let d be a non-zero (σ, τ) -derivation of *-prime ring R and U a *-right ideal of R. If $d(U) \subseteq Z(R)$, then R is commutative.

Proof. Since $d(U) \subseteq Z(R)$, we have $[d(U), R] = \{0\}$. For $u, v \in U$ and $x \in R$, (2.2) $[x, d(uv)] = [x, d(u)\sigma(v) + \tau(u)d(v)] = d(u)[x, \sigma(v)] + d(v)[x, \tau(u)] = 0$.

Replacing x by $x\sigma(v)$, $v \in U$ in (2.2), we have

$$\begin{array}{rcl} 0 & = & d(u)[x\sigma(v),\sigma(v)] + d(v)[x\sigma(v),\tau(u)] \\ & = & d(u)[x,\sigma(v)]\sigma(v) + d(v)(x[\sigma(v),\tau(u)] + [x,\tau(u)]\sigma(v)). \end{array}$$

By using (2.2), we get

(2.3)
$$d(v)R[\sigma(v), \tau(u)] = \{0\}, \text{ for all } u, v \in U.$$

Let $v \in U \cap Sa_*(R)$. From (2.3), it follows that

(2.4)
$$d(v)^* R[\sigma(v), \tau(u)] = \{0\}, \text{ for all } u \in U.$$

By (2.3) and (2.4), the *-primeness of R yields that d(v) = 0 or $[\sigma(v), \tau(u)] = 0$ for any $v \in U \cap Sa_*(R)$ and for all $u \in U$. Let $w \in U$, since $w - w^* \in U \cap Sa_*(R)$, then

$$d(w - w^*) = 0$$
 or $[\sigma(w - w^*), \tau(u)] = 0.$

Assume that $d(w - w^*) = 0$. Then $d(w) = d(w^*)$. Replacing v by w^* in (2.3) and since U is *-right ideal, we get $d(w^*)R[\sigma(w^*), \tau(u)] = \{0\}$ for all $u \in U$. Consequently,

(2.5)
$$d(w)R[\sigma(w), \tau(u)]^* = \{0\}, \text{ for all } u, w \in U.$$

Also by (2.3), we get $d(w)R[\sigma(w), \tau(u)] = \{0\}$, the *-primeness of R together with (2.5) assures that d(w) = 0 or $[\sigma(w), \tau(u)] = 0$, for all $u \in U$. Now suppose that $[\sigma(v), \tau(u)] = 0$, for all $v \in U \cap Sa_*(R)$ and $u \in U$. We have $[\sigma(w-w^*), \tau(u)] = 0$, for all $u \in U$, or $[\sigma(w), \tau(u)] = [\sigma(w^*), \tau(u)]$. Replacing vby w^* in (2.3), we get $d(w^*)R[\sigma(w^*), \tau(u)] = \{0\}$ for all $u \in U$. Consequently,

(2.6)
$$d(w^*)R[\sigma(w), \tau(u)]^* = \{0\}, \text{ for all } u \in U$$

Since $d(w)R[\sigma(w), \tau(u)] = \{0\}$, by (2.3), the *-primeness of R together with (2.6) assures that d(w) = 0 or $[\sigma(w), \tau(u)] = 0$, for all $u \in U$. In conclusion, for all $u \in U$ we have

either
$$d(w) = 0$$
 or $[\sigma(w), \tau(u)] = 0$.

Now, define

 $K = \{ w \in U \mid d(w) = 0 \}$ and $L = \{ w \in U \mid [\sigma(w), \tau(u)] = 0 \text{ for all } u \in U \}.$

Then $U = K \cup L$. Since $d \neq 0$, we have $d(U) \neq \{0\}$ by Lemma 2.10, therefore, $U \neq K$. By Brauer's trick, we have

(2.7)
$$[\sigma(w), \tau(u)] = 0 \text{ for all } u, w \in U.$$

Replacing w by $w\sigma^{-1}(\tau(v))$, $u \in U$, in (2.7) and using (2.7), we get $\sigma(w)\tau([v, u]) = 0$, for all $u, v, w \in U$. On replacing w by wx for any $x \in R$, we get $\sigma(w)R\tau([v, u]) = \{0\}$, for all $u, v, w \in U$. Also, since U is *-right ideal, we get $\sigma(w)^*R\tau([v, u]) = \{0\}$, for all $u, v, w \in U$. Since R is *-prime, we find that $\sigma(w) = 0$ or $\tau[v, u] = 0$ for all $u, v, w \in U$. Since $U \neq \{0\}$, we have U is commutative. In view of Corollary 2.5, we obtain the commutativity of R. \Box

Using the same technique as in Lemma 4 of [4], we get the following lemma.

Lemma 2.13. Let R be a *- prime ring with characteristic different from two, $d_1 : R \to R$ be a (σ, τ) -derivation and $d_2 : R \to R$ be a derivation. If $d_1d_2(R) = \{0\}$, then $d_1 = 0$ or $d_2 = 0$.

Proof. Let us assume that $d_1 \neq 0$. Then for all $x, y \in R$,

$$0 = d_1 d_2(xy) = d_1 (d_2(x)y + x d_2(y)) = \tau (d_2(x)) d_1(y) + d_1(x) \sigma (d_2(y)).$$

That is,

(2.8)
$$\tau(d_2(x))d_1(y) = -d_1(x)\sigma(d_2(y))$$
 for all $x, y \in R$.

If we replace x by $d_2(x)$ in (2.8), we have $\tau(d_2^2(x))d_1(y) = 0$. This further reduces to $\tau(d_2^2(x)) = 0$ for all $x \in R$, in view of Lemma 2.11. Therefore

(2.9)
$$d_2^2(x) = 0 \text{ for all } x \in R$$

Replacing x by $xd_2(z)$, $z \in R$, in (2.8) and using (2.8) and (2.9), we get

So we obtain,

$$2d_1(x)\sigma(d_2(z))\sigma(d_2(y)) = 0$$
 for all $x, y, z \in R$.

Since characteristic of R is different from 2. Then by Lemma 2.11, we have

(2.10)
$$d_2(z)d_2(y) = 0 \text{ for all } x, y \in R.$$

Again applying Lemma 2.11 to (2.10), we get $d_2 = 0$.

We are now well equipped to prove our main theorem:

Proof of Theorem 2.2. First we will show that if any $a \in Sa_*(R)$ satisfies $[d(U), a]_{\sigma,\tau} = \{0\}$, then $a \in Z(R)$.

$$0 = [d(uv), a]_{\sigma,\tau}$$

= $[d(u)\sigma(v) + \tau(u)d(v), a]_{\sigma,\tau}$
= $d(u)\sigma(v)\sigma(a) + \tau(u)d(v)\sigma(a) - \tau(a)d(u)\sigma(v) - \tau(a)\tau(u)d(a).$

By hypothesis, $d(u)\sigma(a) = \tau(a)d(u)$ for all $u \in U$. We have

(2.11)
$$d(u)\sigma([v,a]) + \tau([u,a])d(v) = 0 \text{ for all } u, v \in U.$$

Replace v by va in (2.11) and use (2.11) to get

$$\begin{array}{lll} 0 &=& d(u)\sigma([v,a])\sigma(a) + \tau([u,a])(d(v)\sigma(a) + \tau(v)d(a)) \\ &=& \{d(u)\sigma([v,a]) + \tau([u,a])d(v)\}\sigma(a) + \tau([u,a])\tau(v)d(a). \end{array}$$

We have $\tau([u, a])\tau(v)d(a) = 0$, for all $u, v \in U$. Replacing v by vx for any $x \in R$, we find that $\tau([u, a])\tau(v)Rd(a) = \{0\}$, for all $u, v \in U$. Since $a \in Sa_*(R)$, the above expression can be rewritten as $\tau([u, a])\tau(v)Rd(a)^* = \{0\}$, for all $u, v \in U$. On using *-primeness of R, we obtain for all $u, v \in U$

(2.12)
$$\tau([u, a])\tau(v) = 0 \text{ or } d(a) = 0$$

Let us suppose that d(a) = 0, then for all $u \in U$, $d([u, a]) = [d(u), a]_{\sigma, \tau} - [d(a), u]_{\sigma, \tau} = 0$. That is

(2.13)
$$d([U, a]) = \{0\}.$$

On replacing v by $vw, w \in U$, in (2.11), we get

$$\begin{array}{rcl} 0 &=& d(u)\sigma([vw,a]) + \tau([u,a])d(vw) \\ &=& d(u)\sigma(v)\sigma([w,a]) + d(u)\sigma([v,a])\sigma(w) + \tau([u,a])d(v)\sigma(w) \\ &\quad + \tau([u,a])\tau(v)d(w) \\ &=& d(u)\sigma(v)\sigma([w,a]) + \tau([u,a])\tau(v)d(w) \\ &\quad + \{d(u)\sigma([v,a]) + \tau([u,a])d(v)\}\sigma(w). \end{array}$$

By using (2.11), we have

$$(2.14) d(u)\sigma(v)\sigma([w,a]) + \tau([u,a])\tau(v)d(w) = 0 \text{ for all } u, v, w \in U.$$

Replacing w by [w, a] in (2.14) and using (2.13), we get

$$d(u)\sigma(v)\sigma([[w, a], a]) = 0 \text{ for all } u, v, w \in U.$$

Replacing v by xv for any $x \in R$ in the above relation, we find that $d(u)R\sigma(v)\sigma([[w, a], a]) = \{0\}$ for all $u, v, w \in U$. Also since U is *-ideal, we may

obtain $d(u)^* R\sigma(v)\sigma([[w, a], a]) = \{0\}$ for all $u, v, w \in U$. Using *-primeness of R, we get

$$d(U) = \{0\} \text{ or } \sigma(v)\sigma([[w,a],a]) = 0 \text{ for all } u, v, w \in U.$$

But $d(U) \neq \{0\}$, therefore, $\sigma(v)\sigma([[w, a], a]) = 0$ for all $u, v, w \in U$. Replacing v by vx, and using U is *-ideal, we obtain

 $\sigma(U)R\sigma([[w, a], a]) = \{0\} \text{ and } \sigma(U)^*R\sigma([[w, a], a]) = \{0\} \text{ for all } w \in U.$

Since R is *-prime and $\sigma(U) \neq \{0\}$ is *-ideal of R,

$$\sigma([[U, a], a]) = \{0\}.$$

In other words, if we define $I_a(x) = [x, a]$ an inner derivation determined by a then we have $I_a^2(U) = \{0\}$. By Lemma 2.13, $I_a = \{0\}$, i.e., $[a, U] = \{0\}$, and so by Lemma 2.6, $a \in Z(R)$. In view of (2.12) let us now suppose that $\tau([u, a])\tau(v) = 0$ for all $u, v \in U$. On replacing v by xv for any $x \in R$, the above equation reduces to $\tau([u, a])R\tau(v) = \{0\}$, for all $u, v \in U$. Also, U being a *-ideal, we get $\tau([u, a])R\tau(v)^* = \{0\}$. Using the *-primeness of R yields either $\tau([U, a]) = \{0\}$ or $\tau(U) = \{0\}$. Since $\tau(U) = \{0\}$ is not possible, it reduces to $\tau([U, a]) = \{0\}$ and so $[U, a] = \{0\}$. In view of Lemma 2.6, we find that $a \in Z(R)$. Hence by our hypothesis we obtain that $d(U) \subseteq Z(R)$. So by Lemma 2.12, R is commutative.

Theorem 2.14. Let R be a *- prime ring with characteristic different from two and σ, τ be automorphisms of R. If R admits a non-zero (σ, τ) -derivation $d: R \to R$ such that $[d(R), d(R)]_{\sigma,\tau} \subseteq C_{\sigma,\tau}$, then R is commutative.

Proof. First we will show that for any $a \in Sa_*(R)$ satisfying $[d(R), a]_{\sigma,\tau} \subseteq C_{\sigma,\tau}$, we have $a \in Z(R)$. Suppose on contrary that $a \notin Z(R)$. Using the hypothesis we have $[d(a^2), a]_{\sigma,\tau} \in C_{\sigma,\tau}$

$$\begin{aligned} [d(a^2), a]_{\sigma,\tau} &= [d(a)\sigma(a) + \tau(a)d(a), a]_{\sigma,\tau} \\ &= d(a)\sigma(a)\sigma(a) - \tau(a)\tau(a)d(a) \\ &= [d(a), a^2]_{\sigma,\tau} = \tau(a)[d(a), a]_{\sigma,\tau} + [d(a), a]_{\sigma,\tau}\sigma(a) \\ &= 2\tau(a)[d(a), a]_{\sigma,\tau}. \end{aligned}$$

Since char $R \neq 2$, we have $\tau(a)[d(a), a]_{\sigma,\tau} \in C_{\sigma,\tau}$. Since $a \in Sa_*(R)$, we also have $\tau(a)^*[d(a), a]_{\sigma,\tau} \in C_{\sigma,\tau}$. In view of the hypothesis and Lemma 2.8, we get either $\tau(a) \in Z(R)$ or $[d(a), a]_{\sigma,\tau} = 0$. Since by our assumption $a \notin Z(R)$, we have

(2.15)
$$[d(a), a]_{\sigma, \tau} = 0.$$

On the other hand, since $[d(R), a]_{\sigma,\tau} \subseteq C_{\sigma,\tau}$, for any $x \in R$, $[d([a, x]), a]_{\sigma,\tau} \in C_{\sigma,\tau}$. Therefore

$$[d([a,x]),a]_{\sigma,\tau} = [[d(a),x]_{\sigma,\tau},a]_{\sigma,\tau} - [[d(x),a]_{\sigma,\tau},a]_{\sigma,\tau},a]_{\sigma,\tau}$$

Ashraf and Parveen

We obtain

(2.16)
$$[[d(a), x]_{\sigma,\tau}, a]_{\sigma,\tau} \in C_{\sigma,\tau} \text{ for all } x \in R.$$

Replacing x by ax in (2.16)

$$\begin{aligned} [[d(a), ax]_{\sigma,\tau}, a]_{\sigma,\tau} &= [\tau(a)[d(a), x]_{\sigma,\tau} + [d(a), a]_{\sigma,\tau}\sigma(x), a]_{\sigma,\tau} \\ &= [\tau(a)[d(a), x]_{\sigma,\tau}, a]_{\sigma,\tau} \\ &= \tau(a)[[d(a), x]_{\sigma,\tau}, a]_{\sigma,\tau} + [\tau(a), \tau(a)][d(a), x]_{\sigma,\tau} \end{aligned}$$

We get $\tau(a)[[d(a), x]_{\sigma,\tau}, a]_{\sigma,\tau} \in C_{\sigma,\tau}$ for all $x \in R$. Since $a \in Sa_*(R)$, we have $\tau(a)^*[[d(a), x]_{\sigma,\tau}, a]_{\sigma,\tau} \in C_{\sigma,\tau}$ for all $x \in R$. In view of (2.16), together with above two relations and Lemma 2.8, we obtain $\tau(a) \in Z(R)$ or $[[d(a), x]_{\sigma,\tau}, a]_{\sigma,\tau} = 0$. Since $a \notin Z(R)$, we have

(2.17)
$$[[d(a), x]_{\sigma,\tau}, a]_{\sigma,\tau} = 0 \text{ for all } x \in R.$$

Now, applying the relation

$$[x, [y, z]]_{\sigma, \tau} + [[x, z]_{\sigma, \tau}, y]_{\sigma, \tau} - [[x, y]_{\sigma, \tau}, z]_{\sigma, \tau} = 0$$

to (2.17) and using (2.15), we obtain

$$[d(a), [a, x]]_{\sigma, \tau} = 0 \text{ for all } x \in R.$$

In other words, if we define $I_a(x) = [a, x]$ an inner derivation determined by a and $I_{d(a)}(x) = [d(a), x]_{\sigma,\tau}$, a (σ, τ) -derivation determined by d(a), in view of (2.18), we find that $I_{d(a)}I_a(x) = 0$, for all $x \in R$. By Lemma 2.13, either $I_{d(a)} = 0$ or $I_a = 0$. That is, $d(a) \in C_{\sigma,\tau}$ or $a \in Z(R)$. Since $a \notin Z(R)$, this gives us

$$d(a) \in C_{\sigma,\tau}.$$

On the other hand, since $[d(R), a]_{\sigma,\tau} \subseteq C_{\sigma,\tau}$. For $x \in R$, $[d(ax), a]_{\sigma,\tau} \in C_{\sigma,\tau}$. Then

$$\begin{aligned} [d(ax), a]_{\sigma,\tau} &= [d(a)\sigma(x) + \tau(a)d(x), a]_{\sigma,\tau} \\ &= d(a)\sigma(x)\sigma(a) + \tau(a)d(x)\sigma(a) - \tau(a)d(a)\sigma(x) \\ &-\tau(a)\tau(a)d(x). \end{aligned}$$

Now since we have $d(a) \in C_{\sigma,\tau}$, the above equation reduces to

$$[d(ax),a]_{\sigma,\tau} = d(a)\sigma(ax) + \tau(a)d(x)\sigma(a) - d(a)\sigma(ax) - \tau(a)\tau(a)d(x),$$

or,

(2.19)
$$d(a)\sigma([x,a]) + \tau(a)[d(x),a]_{\sigma,\tau} \in C_{\sigma,\tau} \text{ for all } x \in R.$$

1205

Commuting (2.19) with a and using d(a), $[d(x), a]_{\sigma,\tau} \in C_{\sigma,\tau}$, we get

Also since $a \in Sa_*(R)$, we have $d(a)\sigma([[x, a], a])^* = 0$. Therefore, by Corollary 2.9, d(a) = 0 or [a, [a, x]] = 0 for all $x \in R$. If [a, [a, x]] = 0, for all $x \in R$, we have by Lemma 2.7, $a \in Z(R)$, a contradiction. Therefore, d(a) = 0. Now (2.19) can be rewritten as $\tau(a)[d(x), a]_{\sigma,\tau} \in C_{\sigma,\tau}$, for all $x \in R$. Also $\tau(a)^*[d(x), a]_{\sigma,\tau} \in C_{\sigma,\tau}$, for all $x \in R$. But $[d(x), a]_{\sigma,\tau} \in C_{\sigma,\tau}$ yields by Lemma 2.8 either $\tau(a) \in Z(R)$ or $[d(x), a]_{\sigma,\tau} = 0$ for all $x \in R$. Now in application of Theorem 2.2, we obtain $a \in Z(R)$. This contradicts our assumption. Hence, $a \in Z(R)$. By our hypothesis we have $d(R) \subseteq Z(R)$, and hence R is commutative by Lemma 2.12.

Acknowledgements

The authors are thankful to the referee for the careful reading of the paper and valuable suggestions.

References

- M. Ashraf and A. Khan, Commutativity of *-prime rings with generalized derivations, Rend. Semin. Mat. Univ. Padova 125 (2011) 75–79.
- [2] M. Ashraf and N. Rehman, On derivation and commutativity in prime rings, *East-West J. Math.* 3 (2001), no. 1, 87–91.
- [3] M. Ashraf and N. Rehman, On commutativity of rings with derivation, *Results Math.* 42 (2002), no. 1-2, 3–8.
- [4] N. Aydin and K. Kaya, Some generalizations in prime rings with (σ, τ)-derivation, Doğa Mat. 16 (1992), no. 3, 169–176.
- [5] I. N. Herstein, Rings with Involution, University of Chicago press, Chicago, 1976.
- [6] I. N. Herstein, A note on derivations, Canad. Math. Bull. 21 (1978), no. 3, 369–370.
- [7] I. N. Herstein, A note on derivations II, Canad. Math. Bull. 22 (1979), no. 4, 509–511.
- [8] S. Huang, Some generalizations in certain classes of rings with involution, Bol. Soc. Paran. Mat. (3) 29 (2011), no. 1, 9–16.
- [9] K. Kaya, On (σ , τ)-derivations of prime rings, (Turkish) Doğa Mat. **12** (1988), no. 2, 42–45.
- [10] P. H. Lee and T. K. Lee, On derivations of prime rings, Chin. J. Math. 9 (1981), no. 2, 107–110.
- [11] L. Okhtite, On derivations in σ -prime rings, Int. J. Algebra 1 (2007), no. 5-8, 241–246.
- [12] L. Okhtite, Some properties of derivations on rings with involution, Int. J. Mod. Math.
 - **4** (2009), no. 3, 309–315.
- [13] L. Okhtite, Commutativity conditions on derivations and Lie ideals in σ-prime rings, Beitr. Algebra Geom. 51 (2010), no. 1, 275–282.

(Mohammad Ashraf) DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY, ALI-GARH, 202002, INDIA.

E-mail address: mashraf80@hotmail.com

(Nazia Parveen) DEPARTMENT OF MATHEMATICS, ALIGARH MUSLIM UNIVERSITY, ALI-GARH, 202002, INDIA.

E-mail address: naziamath@gmail.com