Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 5, pp. 1197-1206

Title:
Some commutativity theorems for $*$-prime rings with (σ, τ)-derivation
Author(s):
M. Ashraf and N. Parveen

Published by Iranian Mathematical Society
http://bims.ims.ir

SOME COMMUTATIVITY THEOREMS FOR *-PRIME RINGS WITH (σ, τ)-DERIVATION

M. ASHRAF* AND N. PARVEEN

(Communicated by Omid Ali S. Karamzadeh)

Abstract

Let R be a $*$-prime ring with center $Z(R), d$ a non-zero (σ, τ) derivation of R with associated automorphisms σ and τ of R, such that σ, τ and d commute with ${ }^{\prime} *^{\prime}$. Suppose that U is an ideal of R such that $U^{*}=U$, and $C_{\sigma, \tau}=\{c \in R \mid c \sigma(x)=\tau(x) c$ for all $x \in R\}$. In the present paper, it is shown that if characteristic of R is different from two and $[d(U), d(U)]_{\sigma, \tau}=\{0\}$, then R is commutative. Commutativity of R has also been established in case if $[d(R), d(R)]_{\sigma, \tau} \subseteq C_{\sigma, \tau}$. Keywords: Prime-rings, derivations, ideal, involution map. MSC(2012): Primary: 16W10; Secondary: 16N60, 16U80.

1. Introduction

Throughout, R will denote an associative ring with center $Z(R)$. An additive mapping $d: R \rightarrow R$ is said to be a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $I_{a}: R \rightarrow R$ given by $I_{a}(x)=[a, x]$ is a derivation which is said to be an inner derivation. Recall that R is said to be prime if $a R b=\{0\}$ implies $a=0$ or $b=0$. A ring R is said to be 2-torsion free, if $2 x=0$ implies $x=0$.

For any two endomorphisms σ and τ of R, we call an additive mapping $d: R \rightarrow R$ a (σ, τ)-derivation if $d(x y)=d(x) \sigma(y)+\tau(x) d(y)$ for all $x, y \in R$. Of course, a $(1,1)$-derivation is a derivation on R, where 1 is the identity mapping on R. It is also to remark that there exist (σ, τ)-derivations which are not derivations. For example, let $R=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z}\right\}$ be the ring of all 2×2 matrices over \mathbb{Z}, the ring of integers. Define $d, \sigma, \tau: R \rightarrow R$ such that $d\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)=\left(\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right), \sigma\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)=\left(\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right)$ and $\tau\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right)=$

[^0]$\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)$. It can be easily seen that σ and τ are automorphisms of R, and d is a (σ, τ)-derivation which is not a derivation of R. We set $C_{\sigma, \tau}=\{x \in$ $R \mid x \sigma(y)=\tau(y) x$ for all $y \in R\}$ and $[x, y]_{\sigma, \tau}=x \sigma(y)-\tau(y) x$. In particular $C_{1,1}=Z(R)$, is the center of R, and $[x, y]_{1,1}=[x, y]=x y-y x$, is the usual Lie product.

An additive mapping $x \mapsto x^{*}$ on a ring R is called an involution if $\left(x^{*}\right)^{*}=x$ and $(x y)^{*}=y^{*} x^{*}$ hold for all $x, y \in R$. A ring equipped with an involution is called a ring with involution or $*$-ring. A ring R equipped with an involution ' $*^{\prime}$ is said to be $*$-prime if $a R b=a R b^{*}=\{0\}$ (or, equivalently $a R b=a^{*} R b=\{0\}$) implies $a=0$ or $b=0$. It is important to note that, a prime ring is $*$-prime, but the converse is in general not true. An example due to Shulaing [8] justifies this fact. If R° denotes the opposite ring of a prime ring R, then $S=R \times R^{\circ}$ equipped with the exchange involution $*_{e x}$ defined by $*_{e x}(x, y)=(y, x)$ is $*_{e x}-$ prime, but not a prime ring because of the fact that $(1,0) S(0,1)=0$. In all that follows, $S a_{*}(R)$ will denote the set of symmetric and skew symmetric elements of R, i.e., $S a_{*}(R)=\left\{x \in R \mid x^{*}= \pm x\right\}$. An ideal U of R is said to be a $*$-ideal of R if $U^{*}=U$. It can also be noted that an ideal of a ring R may not be $*$-ideal of R. As an example, let $R=\mathbb{Z} \times \mathbb{Z}$, and consider the involution ' ${ }^{\prime}$ ' on R such that $(a, b)^{*}=(b, a)$ for all $(a, b) \in R$. The subset $U=\mathbb{Z} \times\{0\}$ of R is an ideal of R but it is not a $*$-ideal of R, because $U^{*}=\{0\} \times \mathbb{Z} \neq U$.

Recently many authors have studied commutativity of prime and semiprime rings with involution admitting suitably constrained derivations. A lot of work have been done by L. Okhtite and co-authors on rings with involution (see for reference $[11,12,13]$, where further references can be found).

In [10], Lee and Lee proved that if a prime ring of characteristic different from 2 admits a derivation d such that $[d(R)$,
$d(R)] \subseteq Z(R)$, then R is commutative. On the other hand in [7] for $a \in R$, Herstein proved that if $[a, d(R)]=\{0\}$, then $a \in Z(R)$. Further in the year 1992, Aydin together with Kaya [4] extended the theorems mentioned above by replacing derivation by (σ, τ)-derivation and in some of those, R by a nonzero ideal of R. In this note, we investigate the commutativity of $*$-prime ring R equipped with an involution ' $*^{\prime}$ admitting a (σ, τ)-derivation d satisfying $[d(U), d(U)]_{\sigma, \tau}=\{0\}$ and $[d(R), d(R)]_{\sigma, \tau} \subseteq C_{\sigma, \tau}$, where U is a nonzero $*$-ideal of R.

2. The results

In the remaining part of the paper, R will represent a $*$-prime ring which admits a nonzero (σ, τ)-derivation d with automorphisms σ and τ such that ' $*$ ' commutes with d, σ and τ. We shall use the following relations frequently without specific mention:

$$
[x y, z]_{\sigma, \tau}=x[y, z]_{\sigma, \tau}+[x, \tau(z)] y=x[y, \sigma(z)]+[x, z]_{\sigma, \tau} y,
$$

$$
[x, y z]_{\sigma, \tau}=\tau(y)[x, z]_{\sigma, \tau}+[x, y]_{\sigma, \tau} \sigma(z)
$$

and

$$
[x,[y, z]]_{\sigma, \tau}+\left[[x, z]_{\sigma, \tau}, y\right]_{\sigma, \tau}-\left[[x, y]_{\sigma, \tau}, z\right]_{\sigma, \tau}=0 .
$$

Remark 2.1. We find that if R is a $*$-prime ring of characteristic different from 2 , then R is 2 -torsion free. In fact, if $2 x=0$ for all $x \in R$, then $x r(2 s)=0$ for all $r, s \in R$. But since char $R \neq 2$, there exists a nonzero $l \in R$ such that $2 l \neq 0$ and hence by the above $x R(2 l)=\{0\}$. This also gives that $x R(2 l)^{*}=\{0\}$ and $*$-primeness of R yields that $x=0$, i.e., R is 2 -torsion free.
The main result of the present paper states as follows:
Theorem 2.2. Let R be $a *$ - prime ring with characteristic different from two and σ, τ be automorphisms of R, and U a *-ideal of R. If R admits a nonzero (σ, τ)-derivation $d: R \rightarrow R$ such that $[d(U), d(U)]_{\sigma, \tau}=\{0\}$, then R is commutative.

We facilitate our discussion with the following lemmas which are required for developing the proof of our main result.

Since every $*$-prime ring is semiprime and every $*$-right ideal is right ideal, hence Lemmas 1.1.4 and 1.1.5 of [5] can be rewritten in case of $*$-prime ring as follows:
Lemma 2.3. Suppose that R is $a *$-prime ring and that $a \in R$ is such that $a(a x-x a)=0$ for all $x \in R$. Then $a \in Z(R)$.
Lemma 2.4. Let R be a *-prime ring and U a non-zero $*$-right ideal of R. Then $Z(U) \subseteq Z(R)$.
Corollary 2.5. Let R be $a *$-prime ring and U a non-zero $*$-right ideal of R. If U is commutative then R is commutative.

Proof. Since U is commutative, by the Lemma 2.4, we have $U=Z(U) \subseteq Z(R)$. If for any $x, y \in R, a \in U$ we have $a x \in U$ then $a x \in Z(R)$, and hence $(a x) y=y(a x)=a y x$. This further yields $U(x y-y x)=\{0\}$. Since U is a non-zero $*$-right ideal of R, we have $U R(x y-y x)=\{0\}=U^{*} R(x y-y x)$. Also, since $U \neq\{0\}$ is a right ideal, $*$-primeness of R gives $x y-y x=0$, for all $x, y \in R$. Hence R is commutative.

Lemma 2.6. Let R be a*-prime ring and U a non-zero $*$-right ideal of R. Suppose that $a \in R$ centralizes U. Then $a \in Z(R)$.

Proof. Since a centralizes U, for all $u \in U$ and $x \in R$, aux $=u x a$. But $a u=u a$, therefore $u a x=u x a$, i.e., $u[a, x]=0$. On replacing u by $u y$ for any $y \in R$, we get $u R[a, x]=\{0\}$ for all $u \in U, x \in R$. Also, since U is $*$-right ideal, we get $u^{*} R[a, x]=\{0\}$. Again since $U \neq\{0\}, *$-primeness of R yields that $[a, x]=0$ for all $x \in R$. Therefore, $a \in Z(R)$.

Lemma 2.7. Let R be $a *$ - prime ring with characteristic different from two and suppose that $a \in R$ commutes with all its commutators ax $-x a$ for all $x \in R$. Then $a \in Z(R)$.

Proof. Define $d: R \rightarrow R$ by $d(x)=a x-x a$ for all $x \in R$. By hypothesis we arrive at

$$
\begin{equation*}
d^{2}(x)=0 \text { for all } x \in R \tag{2.1}
\end{equation*}
$$

Also; $d^{2}(x y)=d^{2}(x) y+2 d(x) d(y)+x d^{2}(y)$. By (2.1) and using torsion restriction on R, we get $d(x) d(y)=0$ for all $x, y \in R$. On replacing y by $y z$ for any $z \in R$, we obtain $d(x) R d(y)=\{0\}$, also $d(x)^{*} R d(y)=\{0\}$ for all $x, y \in R$. Using $*$-primeness of R yields that $d(x)=0$ for all $x \in R$. Recalling that $d(x)=a x-x a$, we obtain $a \in Z(R)$.

Lemma 2.8. Let R be $a *$-prime ring. Suppose that $a b, a^{*} b, b \in C_{\sigma, \tau}$ for all $a, b \in R$. Then either $a \in Z(R)$ or $b=0$.

Proof. Since $a b \in C_{\sigma, \tau}, a b \sigma(x)=\tau(x) a b$ for all $x \in R$. Also since $b \in C_{\sigma, \tau}$, i.e., $b \sigma(x)=\tau(x) b$ for all $x \in R$, we have $a(b \sigma(x))=\tau(x) a b$, or $a(\tau(x) b)=(\tau(x) a) b$, i.e., $[a, \tau(x)] b=0$. On replacing x by $x y$ for any $y \in R$, we get

$$
[a, \tau(x)] R b=\{0\} \text { for all } x \in R
$$

Similarly, since $a^{*} b \in C_{\sigma, \tau}$ we have

$$
\left[a^{*}, \tau(x)\right] R b=\{0\} \text { for all } x \in R
$$

On replacing x by x^{*} in the above relation, we find that

$$
[a, \tau(x)]^{*} R b=\{0\} \text { for all } x \in R
$$

Therefore, on using *-primeness of R, we find that either $[a, \tau(x)]=0$ or $b=0$ for all $x \in R$. Hence, we conclude that $a \in Z(R)$ or $b=0$.
Corollary 2.9. Let R be $a *$-prime ring. Suppose that $a b=0=a^{*} b$, $b \in C_{\sigma, \tau}$ for all $a, b \in R$. Then either $a=0$ or $b=0$.
Proof. Since $b \in C_{\sigma, \tau}, b \sigma(x)=\tau(x) b$. Left multiplying by a and a^{*} and on using $a b=0$ and $a^{*} b=0$, we obtain $a b \sigma(x)=a \tau(x) b=0$, for all $x \in R$, i.e., $a R b=\{0\}$ and $a^{*} b \sigma(x)=a^{*} \tau(x) b=0$, for all $x \in R$, i.e., $a^{*} R b=\{0\}$ respectively. Hence, $*$-primeness of R yields either $a=0$ or $b=0$.

Lemma 2.10. Let R be $a *$-prime ring and U a*-right ideal of R. If $d(U)=$ $\{0\}$, then $d=0$.
Proof. For all $u \in U$ and $x \in R, 0=d(u x)=d(u) \sigma(x)+\tau(u) d(x)=\tau(u) d(x)$. On replacing x by $x y$ for any $y \in R$, we get $\tau(u) d(x) \sigma(y)+\tau(u) \tau(x) d(y)=0$, or, $\tau(u) \tau(x) d(y)=0$, i.e., $\tau(u) R d(y)=\{0\}$ for all $u \in U$ and $y \in R$. Also since U is a $*$-right ideal, we get $\tau(u)^{*} R d(y)=\{0\}$. Also, $*$-primeness of R yields that $\tau(u)=0$ for all $u \in U$ or $d=0$. Since $U \neq\{0\}$ we get $d=0$.

Lemma 2.11. Let R be a *-prime ring, U a non-zero $*$-ideal of R and $a \in R$. If $a d(U)=\{0\} \quad$ (or, $d(U) a=\{0\}$), then $a=0$ or $d=0$.

Proof. For $u \in U, x \in R, 0=a d(u x)=a d(u) \sigma(x)+a \tau(u) d(x)$. By assumption, we have $a \tau(u) d(x)=0$, for all $x \in R$. On replacing u by $u y$ for any $y \in R$, we obtain $a \tau(u) R d(x)=\{0\}$ for all $u \in U, x \in R$. Also, $a \tau(u) R d(x)^{*}=\{0\}$. Since R is $*$-prime, we find that either $a \tau(u)=0$ or $d(x)=0$. If $a \tau(u)=0$ for all $u \in U$ or $\tau^{-1}(a) u=0$, or $\tau^{-1}(a) U=\{0\}$. Now since U is $*$-ideal, we can write $\tau^{-1}(a) U^{*}=\{0\}$. This implies that $\tau^{-1}(a) R U=\{0\}=\tau^{-1}(a) R U^{*}$. By the $*$-primeness of R, we obtain $\tau^{-1}(a)=0$, since $U \neq\{0\}$. In conclusion, we get either $a=0$ or $d=0$. Similarly, $d(U) a=\{0\}$ implies $a=0$ or $d=0$.

Lemma 2.12. Let d be a non-zero (σ, τ)-derivation of $*$-prime ring R and U $a *$-right ideal of R. If $d(U) \subseteq Z(R)$, then R is commutative.

Proof. Since $d(U) \subseteq Z(R)$, we have $[d(U), R]=\{0\}$. For $u, v \in U$ and $x \in R$,
(2.2) $[x, d(u v)]=[x, d(u) \sigma(v)+\tau(u) d(v)]=d(u)[x, \sigma(v)]+d(v)[x, \tau(u)]=0$.

Replacing x by $x \sigma(v), v \in U$ in (2.2), we have

$$
\begin{aligned}
0 & =d(u)[x \sigma(v), \sigma(v)]+d(v)[x \sigma(v), \tau(u)] \\
& =d(u)[x, \sigma(v)] \sigma(v)+d(v)(x[\sigma(v), \tau(u)]+[x, \tau(u)] \sigma(v))
\end{aligned}
$$

By using (2.2), we get

$$
\begin{equation*}
d(v) R[\sigma(v), \tau(u)]=\{0\}, \text { for all } u, v \in U \tag{2.3}
\end{equation*}
$$

Let $v \in U \cap S a_{*}(R)$. From (2.3), it follows that

$$
\begin{equation*}
d(v)^{*} R[\sigma(v), \tau(u)]=\{0\}, \text { for all } u \in U \tag{2.4}
\end{equation*}
$$

By (2.3) and (2.4), the $*$-primeness of R yields that $d(v)=0$ or $[\sigma(v), \tau(u)]=0$ for any $v \in U \cap S a_{*}(R)$ and for all $u \in U$. Let $w \in U$, since $w-w^{*} \in U \cap S a_{*}(R)$, then

$$
d\left(w-w^{*}\right)=0 \text { or }\left[\sigma\left(w-w^{*}\right), \tau(u)\right]=0
$$

Assume that $d\left(w-w^{*}\right)=0$. Then $d(w)=d\left(w^{*}\right)$. Replacing v by w^{*} in (2.3) and since U is $*$-right ideal, we get $d\left(w^{*}\right) R\left[\sigma\left(w^{*}\right), \tau(u)\right]=\{0\}$ for all $u \in U$. Consequently,

$$
\begin{equation*}
d(w) R[\sigma(w), \tau(u)]^{*}=\{0\}, \text { for all } u, w \in U \tag{2.5}
\end{equation*}
$$

Also by (2.3), we get $d(w) R[\sigma(w), \tau(u)]=\{0\}$, the $*$-primeness of R together with (2.5) assures that $d(w)=0$ or $[\sigma(w), \tau(u)]=0$, for all $u \in U$. Now suppose that $[\sigma(v), \tau(u)]=0$, for all $v \in U \cap S a_{*}(R)$ and $u \in U$. We have $\left[\sigma\left(w-w^{*}\right), \tau(u)\right]=0$, for all $u \in U$, or $[\sigma(w), \tau(u)]=\left[\sigma\left(w^{*}\right), \tau(u)\right]$. Replacing v by w^{*} in (2.3), we get $d\left(w^{*}\right) R\left[\sigma\left(w^{*}\right), \tau(u)\right]=\{0\}$ for all $u \in U$. Consequently,

$$
\begin{equation*}
d\left(w^{*}\right) R[\sigma(w), \tau(u)]^{*}=\{0\}, \text { for all } u \in U \tag{2.6}
\end{equation*}
$$

Since $d(w) R[\sigma(w), \tau(u)]=\{0\}$, by (2.3), the $*$-primeness of R together with (2.6) assures that $d(w)=0$ or $[\sigma(w), \tau(u)]=0$, for all $u \in U$. In conclusion, for all $u \in U$ we have

$$
\text { either } d(w)=0 \text { or }[\sigma(w), \tau(u)]=0
$$

Now, define

$$
K=\{w \in U \mid d(w)=0\} \text { and } L=\{w \in U \mid[\sigma(w), \tau(u)]=0 \text { for all } u \in U\}
$$

Then $U=K \cup L$. Since $d \neq 0$, we have $d(U) \neq\{0\}$ by Lemma 2.10, therefore, $U \neq K$. By Brauer's trick, we have

$$
\begin{equation*}
[\sigma(w), \tau(u)]=0 \text { for all } u, w \in U \tag{2.7}
\end{equation*}
$$

Replacing w by $w \sigma^{-1}(\tau(v)), u \in U$, in (2.7) and using (2.7), we get $\sigma(w) \tau([v, u])=0$, for all $u, v, w \in U$. On replacing w by $w x$ for any $x \in R$, we get $\sigma(w) R \tau([v, u])=\{0\}$, for all $u, v, w \in U$. Also, since U is $*$-right ideal, we get $\sigma(w)^{*} R \tau([v, u])=\{0\}$, for all $u, v, w \in U$. Since R is $*$-prime, we find that $\sigma(w)=0$ or $\tau[v, u]=0$ for all $u, v, w \in U$. Since $U \neq\{0\}$, we have U is commutative. In view of Corollary 2.5, we obtain the commutativity of R.

Using the same technique as in Lemma 4 of [4], we get the following lemma.
Lemma 2.13. Let R be $a *$ - prime ring with characteristic different from two, $d_{1}: R \rightarrow R$ be a (σ, τ)-derivation and $d_{2}: R \rightarrow R$ be a derivation. If $d_{1} d_{2}(R)=\{0\}$, then $d_{1}=0$ or $d_{2}=0$.
Proof. Let us assume that $d_{1} \neq 0$. Then for all $x, y \in R$,

$$
0=d_{1} d_{2}(x y)=d_{1}\left(d_{2}(x) y+x d_{2}(y)\right)=\tau\left(d_{2}(x)\right) d_{1}(y)+d_{1}(x) \sigma\left(d_{2}(y)\right)
$$

That is,

$$
\begin{equation*}
\tau\left(d_{2}(x)\right) d_{1}(y)=-d_{1}(x) \sigma\left(d_{2}(y)\right) \text { for all } x, y \in R \tag{2.8}
\end{equation*}
$$

If we replace x by $d_{2}(x)$ in (2.8), we have $\tau\left(d_{2}^{2}(x)\right) d_{1}(y)=0$. This further reduces to $\tau\left(d_{2}^{2}(x)\right)=0$ for all $x \in R$, in view of Lemma 2.11. Therefore

$$
\begin{equation*}
d_{2}^{2}(x)=0 \text { for all } x \in R \tag{2.9}
\end{equation*}
$$

Replacing x by $x d_{2}(z), z \in R$, in (2.8) and using (2.8) and (2.9), we get

$$
\begin{aligned}
0 & =\tau\left(d_{2}\left(x d_{2}(z)\right)\right) d_{1}(y)+d_{1}\left(x d_{2}(z)\right) \sigma\left(d_{2}(y)\right) \\
& =\tau\left(d_{2}(x)\right) \tau\left(d_{2}(z)\right) d_{1}(y)+d_{1}(x) \sigma\left(d_{2}(z)\right) \sigma\left(d_{2}(y)\right) \\
& =-\tau\left(d_{2}(x)\right) d_{1}(z) \sigma\left(d_{2}(y)\right)+d_{1}(x) \sigma\left(d_{2}(z)\right) \sigma\left(d_{2}(y)\right) \\
& =d_{1}(x) \sigma\left(d_{2}(z)\right) \sigma\left(d_{2}(y)\right)+d_{1}(x) \sigma\left(d_{2}(z)\right) \sigma\left(d_{2}(y)\right) .
\end{aligned}
$$

So we obtain,

$$
2 d_{1}(x) \sigma\left(d_{2}(z)\right) \sigma\left(d_{2}(y)\right)=0 \text { for all } x, y, z \in R
$$

Since characteristic of R is different from 2. Then by Lemma 2.11, we have

$$
\begin{equation*}
d_{2}(z) d_{2}(y)=0 \text { for all } x, y \in R . \tag{2.10}
\end{equation*}
$$

Again applying Lemma 2.11 to (2.10), we get $d_{2}=0$.
We are now well equipped to prove our main theorem:
Proof of Theorem 2.2. First we will show that if any $a \in S a_{*}(R)$ satisfies $[d(U), a]_{\sigma, \tau}=\{0\}$, then $a \in Z(R)$.

$$
\begin{aligned}
0 & =[d(u v), a]_{\sigma, \tau} \\
& =[d(u) \sigma(v)+\tau(u) d(v), a]_{\sigma, \tau} \\
& =d(u) \sigma(v) \sigma(a)+\tau(u) d(v) \sigma(a)-\tau(a) d(u) \sigma(v)-\tau(a) \tau(u) d(a)
\end{aligned}
$$

By hypothesis, $d(u) \sigma(a)=\tau(a) d(u)$ for all $u \in U$. We have

$$
\begin{equation*}
d(u) \sigma([v, a])+\tau([u, a]) d(v)=0 \text { for all } u, v \in U \tag{2.11}
\end{equation*}
$$

Replace v by $v a$ in (2.11) and use (2.11) to get

$$
\begin{aligned}
0 & =d(u) \sigma([v, a]) \sigma(a)+\tau([u, a])(d(v) \sigma(a)+\tau(v) d(a)) \\
& =\{d(u) \sigma([v, a])+\tau([u, a]) d(v)\} \sigma(a)+\tau([u, a]) \tau(v) d(a) .
\end{aligned}
$$

We have $\tau([u, a]) \tau(v) d(a)=0$, for all $u, v \in U$. Replacing v by $v x$ for any $x \in R$, we find that $\tau([u, a]) \tau(v) R d(a)=\{0\}$, for all $u, v \in U$. Since
$a \in S a_{*}(R)$, the above expression can be rewritten as $\tau([u, a]) \tau(v) R d(a)^{*}=$ $\{0\}$, for all $u, v \in U$. On using $*$-primeness of R, we obtain for all $u, v \in U$

$$
\begin{equation*}
\tau([u, a]) \tau(v)=0 \text { or } d(a)=0 \tag{2.12}
\end{equation*}
$$

Let us suppose that $d(a)=0$, then for all $u \in U, d([u, a])=[d(u), a]_{\sigma, \tau}-$ $[d(a), u]_{\sigma, \tau}=0$. That is

$$
\begin{equation*}
d([U, a])=\{0\} \tag{2.13}
\end{equation*}
$$

On replacing v by $v w, w \in U$, in (2.11), we get

$$
\begin{aligned}
0= & d(u) \sigma([v w, a])+\tau([u, a]) d(v w) \\
= & d(u) \sigma(v) \sigma([w, a])+d(u) \sigma([v, a]) \sigma(w)+\tau([u, a]) d(v) \sigma(w) \\
& +\tau([u, a]) \tau(v) d(w) \\
= & d(u) \sigma(v) \sigma([w, a])+\tau([u, a]) \tau(v) d(w) \\
& +\{d(u) \sigma([v, a])+\tau([u, a]) d(v)\} \sigma(w)
\end{aligned}
$$

By using (2.11), we have

$$
\begin{equation*}
d(u) \sigma(v) \sigma([w, a])+\tau([u, a]) \tau(v) d(w)=0 \text { for all } u, v, w \in U \tag{2.14}
\end{equation*}
$$

Replacing w by $[w, a]$ in (2.14) and using (2.13), we get

$$
d(u) \sigma(v) \sigma([[w, a], a])=0 \text { for all } u, v, w \in U
$$

Replacing v by $x v$ for any $x \in R$ in the above relation, we find that $d(u) R \sigma(v) \sigma([[w, a], a])=\{0\}$ for all $u, v, w \in U$. Also since U is $*$-ideal, we may
obtain $d(u)^{*} R \sigma(v) \sigma([[w, a], a])=\{0\}$ for all $u, v, w \in U$. Using $*$-primeness of R, we get

$$
d(U)=\{0\} \text { or } \sigma(v) \sigma([[w, a], a])=0 \text { for all } u, v, w \in U .
$$

But $d(U) \neq\{0\}$, therefore, $\sigma(v) \sigma([[w, a], a])=0$ for all $u, v, w \in U$. Replacing v by $v x$, and using U is $*$-ideal, we obtain

$$
\sigma(U) R \sigma([[w, a], a])=\{0\} \text { and } \sigma(U)^{*} R \sigma([[w, a], a])=\{0\} \text { for all } w \in U
$$

Since R is $*$-prime and $\sigma(U) \neq\{0\}$ is $*$-ideal of R,

$$
\sigma([[U, a], a])=\{0\}
$$

In other words, if we define $I_{a}(x)=[x, a]$ an inner derivation determined by a then we have $I_{a}^{2}(U)=\{0\}$. By Lemma 2.13, $I_{a}=\{0\}$, i.e., $[a, U]=\{0\}$, and so by Lemma 2.6, $a \in Z(R)$. In view of (2.12) let us now suppose that $\tau([u, a]) \tau(v)=0$ for all $u, v \in U$. On replacing v by $x v$ for any $x \in R$, the above equation reduces to $\tau([u, a]) R \tau(v)=\{0\}$, for all $u, v \in U$. Also, U being a $*$-ideal, we get $\tau([u, a]) R \tau(v)^{*}=\{0\}$. Using the $*$-primeness of R yields either $\tau([U, a])=\{0\}$ or $\tau(U)=\{0\}$. Since $\tau(U)=\{0\}$ is not possible, it reduces to $\tau([U, a])=\{0\}$ and so $[U, a]=\{0\}$. In view of Lemma 2.6, we find that $a \in Z(R)$. Hence by our hypothesis we obtain that $d(U) \subseteq Z(R)$. So by Lemma 2.12, R is commutative.

Theorem 2.14. Let R be $a *-$ prime ring with characteristic different from two and σ, τ be automorphisms of R. If R admits a non-zero (σ, τ)-derivation $d: R \rightarrow R$ such that $[d(R), d(R)]_{\sigma, \tau} \subseteq C_{\sigma, \tau}$, then R is commutative.

Proof. First we will show that for any $a \in S a_{*}(R)$ satisfying $[d(R), a]_{\sigma, \tau} \subseteq C_{\sigma, \tau}$, we have $a \in Z(R)$. Suppose on contrary that $a \notin Z(R)$. Using the hypothesis we have $\left[d\left(a^{2}\right), a\right]_{\sigma, \tau} \in C_{\sigma, \tau}$

$$
\begin{aligned}
{\left[d\left(a^{2}\right), a\right]_{\sigma, \tau} } & =[d(a) \sigma(a)+\tau(a) d(a), a]_{\sigma, \tau} \\
& =d(a) \sigma(a) \sigma(a)-\tau(a) \tau(a) d(a) \\
& =\left[d(a), a^{2}\right]_{\sigma, \tau}=\tau(a)[d(a), a]_{\sigma, \tau}+[d(a), a]_{\sigma, \tau} \sigma(a) \\
& =2 \tau(a)[d(a), a]_{\sigma, \tau} .
\end{aligned}
$$

Since char $R \neq 2$, we have $\tau(a)[d(a), a]_{\sigma, \tau} \in C_{\sigma, \tau}$. Since $a \in S a_{*}(R)$, we also have $\tau(a)^{*}[d(a), a]_{\sigma, \tau} \in C_{\sigma, \tau}$. In view of the hypothesis and Lemma 2.8, we get either $\tau(a) \in Z(R)$ or $[d(a), a]_{\sigma, \tau}=0$. Since by our assumption $a \notin Z(R)$, we have

$$
\begin{equation*}
[d(a), a]_{\sigma, \tau}=0 \tag{2.15}
\end{equation*}
$$

On the other hand, since $[d(R), a]_{\sigma, \tau} \subseteq C_{\sigma, \tau}$, for any $x \in R$, $[d([a, x]), a]_{\sigma, \tau} \in C_{\sigma, \tau}$. Therefore

$$
[d([a, x]), a]_{\sigma, \tau}=\left[[d(a), x]_{\sigma, \tau}, a\right]_{\sigma, \tau}-\left[[d(x), a]_{\sigma, \tau}, a\right]_{\sigma, \tau}
$$

We obtain

$$
\begin{equation*}
\left[[d(a), x]_{\sigma, \tau}, a\right]_{\sigma, \tau} \in C_{\sigma, \tau} \text { for all } x \in R . \tag{2.16}
\end{equation*}
$$

Replacing x by $a x$ in (2.16)

$$
\begin{aligned}
{\left[[d(a), a x]_{\sigma, \tau}, a\right]_{\sigma, \tau} } & =\left[\tau(a)[d(a), x]_{\sigma, \tau}+[d(a), a]_{\sigma, \tau} \sigma(x), a\right]_{\sigma, \tau} \\
& =\left[\tau(a)[d(a), x]_{\sigma, \tau}, a\right]_{\sigma, \tau} \\
& \left.=\tau(a)[d(a), x]_{\sigma, \tau}, a\right]_{\sigma, \tau}+[\tau(a), \tau(a)][d(a), x]_{\sigma, \tau} .
\end{aligned}
$$

We get $\tau(a)\left[[d(a), x]_{\sigma, \tau}, a\right]_{\sigma, \tau} \in C_{\sigma, \tau}$ for all $x \in R$. Since $a \in S a_{*}(R)$, we have $\tau(a)^{*}\left[[d(a), x]_{\sigma, \tau}, a\right]_{\sigma, \tau} \in C_{\sigma, \tau}$ for all $x \in R$. In view of (2.16), together with above two relations and Lemma 2.8, we obtain $\tau(a) \in Z(R)$ or $\left[[d(a), x]_{\sigma, \tau}, a\right]_{\sigma, \tau}=$ 0 . Since $a \notin Z(R)$, we have

$$
\begin{equation*}
\left[[d(a), x]_{\sigma, \tau}, a\right]_{\sigma, \tau}=0 \text { for all } x \in R . \tag{2.17}
\end{equation*}
$$

Now, applying the relation

$$
[x,[y, z]]_{\sigma, \tau}+\left[[x, z]_{\sigma, \tau}, y\right]_{\sigma, \tau}-\left[[x, y]_{\sigma, \tau}, z\right]_{\sigma, \tau}=0
$$

to (2.17) and using (2.15), we obtain

$$
\begin{equation*}
[d(a),[a, x]]_{\sigma, \tau}=0 \text { for all } x \in R . \tag{2.18}
\end{equation*}
$$

In other words, if we define $I_{a}(x)=[a, x]$ an inner derivation determined by a and $I_{d(a)}(x)=[d(a), x]_{\sigma, \tau}$, a (σ, τ)-derivation determined by $d(a)$, in view of (2.18), we find that $I_{d(a)} I_{a}(x)=0$, for all $x \in R$. By Lemma 2.13, either $I_{d(a)}=0$ or $I_{a}=0$. That is, $d(a) \in C_{\sigma, \tau}$ or $a \in Z(R)$. Since $a \notin Z(R)$, this gives us

$$
d(a) \in C_{\sigma, \tau} .
$$

On the other hand, since $[d(R), a]_{\sigma, \tau} \subseteq C_{\sigma, \tau}$. For $x \in R,[d(a x), a]_{\sigma, \tau} \in C_{\sigma, \tau}$. Then

$$
\begin{aligned}
{[d(a x), a]_{\sigma, \tau}=} & {[d(a) \sigma(x)+\tau(a) d(x), a]_{\sigma, \tau} } \\
= & d(a) \sigma(x) \sigma(a)+\tau(a) d(x) \sigma(a)-\tau(a) d(a) \sigma(x) \\
& -\tau(a) \tau(a) d(x) .
\end{aligned}
$$

Now since we have $d(a) \in C_{\sigma, \tau}$, the above equation reduces to

$$
[d(a x), a]_{\sigma, \tau}=d(a) \sigma(a x)+\tau(a) d(x) \sigma(a)-d(a) \sigma(a x)-\tau(a) \tau(a) d(x),
$$

or,

$$
\begin{equation*}
d(a) \sigma([x, a])+\tau(a)[d(x), a]_{\sigma, \tau} \in C_{\sigma, \tau} \text { for all } x \in R . \tag{2.19}
\end{equation*}
$$

Commuting (2.19) with a and using $d(a),[d(x), a]_{\sigma, \tau} \in C_{\sigma, \tau}$, we get

$$
\begin{aligned}
0= & {\left[d(a) \sigma([x, a])+\tau(a)[d(x), a]_{\sigma, \tau}, a\right]_{\sigma, \tau} } \\
= & d(a) \sigma([x, a]) \sigma(a)+\tau(a)[d(x), a]_{\sigma, \tau} \sigma(a)-\tau(a) d(a) \sigma([x, a]) \\
& -\tau(a) \tau(a)[d(x), a]_{\sigma, \tau} \\
= & d(a) \sigma([x, a] a)+\tau(a)[d(x), a]_{\sigma, \tau} \sigma(a)-d(a) \sigma(a[x, a]) \\
& -\tau(a)[d(x), a]_{\sigma, \tau} \sigma(a) \\
= & d(a) \sigma([[x, a], a]) .
\end{aligned}
$$

Also since $a \in S a_{*}(R)$, we have $d(a) \sigma([[x, a], a])^{*}=0$. Therefore, by Corollary $2.9, d(a)=0$ or $[a,[a, x]]=0$ for all $x \in R$. If $[a,[a, x]]=0$, for all $x \in R$, we have by Lemma 2.7, $a \in Z(R)$, a contradiction. Therefore, $d(a)=0$. Now (2.19) can be rewritten as $\tau(a)[d(x), a]_{\sigma, \tau} \in C_{\sigma, \tau}$, for all $x \in R$. Also $\tau(a)^{*}[d(x), a]_{\sigma, \tau} \in$ $C_{\sigma, \tau}$, for all $x \in R$. But $[d(x), a]_{\sigma, \tau} \in C_{\sigma, \tau}$ yields by Lemma 2.8 either $\tau(a) \in$ $Z(R)$ or $[d(x), a]_{\sigma, \tau}=0$ for all $x \in R$. Now in application of Theorem 2.2, we obtain $a \in Z(R)$. This contradicts our assumption. Hence, $a \in Z(R)$. By our hypothesis we have $d(R) \subseteq Z(R)$, and hence R is commutative by Lemma 2.12.

Acknowledgements

The authors are thankful to the referee for the careful reading of the paper and valuable suggestions.

References

[1] M. Ashraf and A. Khan, Commutativity of *-prime rings with generalized derivations, Rend. Semin. Mat. Univ. Padova 125 (2011) 75-79.
[2] M. Ashraf and N. Rehman, On derivation and commutativity in prime rings, East-West J. Math. 3 (2001), no. 1, 87-91.
[3] M. Ashraf and N. Rehman, On commutativity of rings with derivation, Results Math. 42 (2002), no. 1-2, 3-8.
[4] N. Aydin and K. Kaya, Some generalizations in prime rings with (σ, τ)-derivation, Doğa Mat. 16 (1992), no. 3, 169-176.
[5] I. N. Herstein, Rings with Involution, University of Chicago press, Chicago, 1976.
[6] I. N. Herstein, A note on derivations, Canad. Math. Bull. 21 (1978), no. 3, 369-370.
[7] I. N. Herstein, A note on derivations II, Canad. Math. Bull. 22 (1979), no. 4, 509-511.
[8] S. Huang, Some generalizations in certain classes of rings with involution, Bol. Soc. Paran. Mat. (3) 29 (2011), no. 1, 9-16.
[9] K. Kaya, On (σ, τ)-derivations of prime rings, (Turkish) Doğa Mat. 12 (1988), no. 2, 42-45.
[10] P. H. Lee and T. K. Lee, On derivations of prime rings, Chin. J. Math. 9 (1981), no. 2, 107-110.
[11] L. Okhtite, On derivations in σ-prime rings, Int. J. Algebra 1 (2007), no. 5-8, 241-246.
[12] L. Okhtite, Some properties of derivations on rings with involution, Int. J. Mod. Math. 4 (2009), no. 3, 309-315.
[13] L. Okhtite, Commutativity conditions on derivations and Lie ideals in σ-prime rings, Beitr. Algebra Geom. 51 (2010), no. 1, 275-282.
(Mohammad Ashraf) Department of Mathematics, Aligarh Muslim University, Aligarh, 202002, India.

E-mail address: mashraf80@hotmail.com
(Nazia Parveen) Department of Mathematics, Aligarh Muslim University, AliGARH, 202002, IndiA.

E-mail address: naziamath@gmail.com

[^0]: Article electronically published on October 31, 2016.
 Received: 25 September 2014, Accepted: 1 August 2015.

 * Corresponding author.

