Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 5, pp. 1207-1219

Title:

Common solutions to pseudomonotone equilibrium problems
Author(s):
D. V. Hieu

Published by Iranian Mathematical Society

COMMON SOLUTIONS TO PSEUDOMONOTONE EQUILIBRIUM PROBLEMS

D. V. HIEU

(Communicated by Maziar Salahi)

Abstract

In this paper, we propose two iterative methods for finding a common solution of a finite family of equilibrium problems for pseudomonotone bifunctions. The first is a parallel hybrid extragradientcutting algorithm which is extended from the previously known one for variational inequalities to equilibrium problems. The second is a new cyclic hybrid extragradient-cutting algorithm. In the cyclic algorithm, using the known techniques, we can perform and develop practical numerical experiments. Keywords: Hybrid method, parallel algorithm, cyclic algorithm, extragradient method, equilibrium problem. MSC(2010): Primary: 90C33; Secondary: 68W10, 65K10.

1. Introduction

Let C be a nonempty closed and convex subset of a real Hilbert space H and f be a bifunction from $H \times H$ to the set of real numbers \mathbb{R}. The equilibrium problem (EP) for the bifunction f on C is to find $x^{*} \in C$ such that

$$
\begin{equation*}
f\left(x^{*}, y\right) \geq 0, \forall y \in C \tag{1.1}
\end{equation*}
$$

The solution set of the EP (1.1) is denoted by $E P(f)$. The EP is a generalization of many mathematical problems [9, 19]. In recent years, many algorithms have been proposed for solving the EP, see $[1,9,14,18,19,21,25]$ and the references therein. When the bifunction f is monotone, the most of existing algorithms for solving the EP involve the regularization equilibrium problem (REP), i.e., at the $n^{t h}$ iteration step, known x_{n}, determine the next approximation x_{n+1} as the solution of the problem:

$$
\begin{equation*}
\text { Find } x \in C \text { such that: } f(x, y)+\frac{1}{r_{n}}\left\langle y-x, x-x_{n}\right\rangle \geq 0, \forall y \in C \tag{1.2}
\end{equation*}
$$

[^0]where $r_{n} \geq d>0$. Note that the problem (1.2) is strongly monotone when the bifunction f is monotone. Thus, its solution exists and is unique under certain assumption of the continuty of the bifunction f. Unforturnately, in general, for instance when f is pseudomonotone, the problem (1.2) is not strongly monotone and so the unique solvability of (1.2) is not guaranteed even its solution set can not be convex. In this case, the authors in [1, 21] replaced the REP (1.2) by two strongly convex programs
\[

\left\{$$
\begin{array}{l}
y_{n}=\arg \min \left\{\rho f\left(x_{n}, y\right)+\frac{1}{2}\left\|x_{n}-y\right\|^{2}: y \in C\right\}, \\
x_{n+1}=\arg \min \left\{\rho f\left(y_{n}, y\right)+\frac{1}{2}\left\|x_{n}-y\right\|^{2}: y \in C\right\},
\end{array}
$$\right.
\]

where $\rho>0$ satisfies some suitable conditions.
Now let $K_{i}, i=1, \ldots, N$ be a finite family of closed and convex subsets of H such that $K=\cap_{i=1}^{N} K_{i} \neq \emptyset$ and $f_{i}: H \times H \rightarrow \mathbb{R}, i=1, \ldots, N$ be pseudomonotone bifunctions. The problem, so called the common solutions to equilibrium problems (CSEP), for the bifunctions f_{i} is stated as follows: Find $x^{*} \in K$ such that

$$
\begin{equation*}
f_{i}\left(x^{*}, y\right) \geq 0, \forall y \in K_{i}, i=1, \ldots, N \tag{1.3}
\end{equation*}
$$

Clearly, the CSEP with $N=1$ is the EP. The motivation and inspiration for researching the CSEP with $N>1$ are originated from some simple observations that if $f_{i}(x, y)=0$ for all $x, y \in H$ then all inequalities in (1.3) are automatically satisfied. Thus, the CSEP reduces to the following convex feasibility problem (CFP)

$$
\begin{equation*}
\text { Find } x^{*} \in K:=\cap_{i=1}^{N} K_{i} \neq \varnothing \tag{1.4}
\end{equation*}
$$

which is to find an element in the intersection of a family of convex sets $\left\{K_{i}\right\}_{i=1}^{N}$ in a Hilbert space H. The CFP has received great attention due to broad applicability in many areas of applied mathematics, most notably, as image recovery from projections, computerized tomography, and radiation therapy treatment planing, see for instance [6,12]. Besides, if K_{i} is the fixed point set of the mapping $S_{i}: H \rightarrow H$, then the CFP (1.4) is the common fixed point problem (CFPP), i.e.,

$$
\begin{equation*}
\text { Find } x^{*} \in F:=\cap_{i=1}^{N} F\left(S_{i}\right) \neq \varnothing \tag{1.5}
\end{equation*}
$$

where $F\left(S_{i}\right)$ is the fixed point set of $S_{i}, i=1, \ldots, N$. Also, if $K_{i}=H$ and $f_{i}(x, y)=\left\langle x-S_{i} x, y-x\right\rangle$ then it is easy to show that x^{*} is a fixed point of S_{i} if and only if it is a solution of the EP for the bifunction f_{i} on K_{i} [9]. Thus, the CSEP also becomes the CFPP (1.5). Some parallel algorithms for solving the CFPP can be found in $[4,5,15]$.
If $f_{i}(x, y)=\left\langle A_{i}(x), y-x\right\rangle$, where $A_{i}: H \rightarrow H$ are nonlinear operators, then the CSEP becomes the following common solutions of variational inequalities problem (CSVIP): Find $x^{*} \in K:=\cap_{i=1}^{N} K_{i}$ such that

$$
\begin{equation*}
\left\langle A_{i}\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \forall y \in K_{i}, i=1, \ldots, N \tag{1.6}
\end{equation*}
$$

which was announced in [11]. Moreover, there are many other mathematical models which are special cases of the CSEP such as: common minimizer problems, common saddle point problems, variational inequalities over the intersection of closed convex subsets, common solutions of operator equations, see $[3,4,5,9,11,15]$ and the references therein. These problems have been widely studied over the past decades because of their practical applications to image reconstruction, signal processing, biomedical engineering, communication, etc $[6,10,12,24]$.

In this paper, we propose two parallel and cyclic extragradient - cutting algorithms for solving the CSEP for pseudomonotone bifunctions. The former is extended from a previously known algorithm for variational inequalities [11] to equilibrium problems. The authors in [11] studied the CSVIP for Lipschitz continuous and monotone operators. They used the extragradient (or double projection) method which was introduced by Korpelevich [16] in Euclidean space, and by Nadezhkina and Takahashi [20] in Hilbert space to construct iteration sequences. Our first algorithm reduces to the CSVIP under a weaker hypothesis that operators need only the pseudomonotonicity. The latter is a sequential algorithm which seems to be performed more easily than the first and can delvelop practical numerical experiments by using the known techniques of Solodov and Svaiter [23] when the number of subproblems N is large. The cyclic algorithm can be considered as an improvement of the iterative method in [11] and others when the CSEP is reduced to the CSVIP.

The paper is organized as follows: In Section 2, we collect some definitions and primary results for using in the next section. Section 3 deals with our proposed algorithms and proving the convergence theorems.

2. Preliminaries

In this section, we recall some definitions and results for further researches. For solving the CSEP (1.3), we assume that each bifunction f_{i} satisfies the following conditions:
(A1) f_{i} is pseudomonotone on H, i.e., for all $x, y \in H$,

$$
f_{i}(x, y) \geq 0 \Rightarrow f_{i}(y, x) \leq 0
$$

(A2) f_{i} is Lipschitz-type continuous, i.e., there exist two positive constants c_{1}, c_{2} such that

$$
f_{i}(x, y)+f_{i}(y, z) \geq f_{i}(x, z)-c_{1}\|x-y\|^{2}-c_{2}\|y-z\|^{2}, \quad \forall x, y, z \in H
$$

(A3) f_{i} is weakly continuous on $H \times H$;
(A4) $f_{i}(x,$.$) is convex and subdifferentiable on H$ for every fixed $x \in H$.
Note that the condition (A2) is fulfilled for the bifunction

$$
f(x, y)=\langle A(x), y-x\rangle,
$$

where A is a Lipschitz continuous operator (proved in Corollary 3.7 below). We have the following result.
Lemma 2.1. [8, Proposition 4.1] If the bifunction f satisfies the conditions (A1) - (A4), then the solution set $E P(f)$ is closed and convex.

The metric projection $P_{C}: H \rightarrow C$ is defined by

$$
P_{C} x=\arg \min \{\|y-x\|: y \in C\}
$$

Since C is nonempty, closed and convex, $P_{C} x$ exists and is unique. It is also known that P_{C} has the following characteristic properties

Lemma 2.2. Let $P_{C}: H \rightarrow C$ be the metric projection from H onto C. Then
(i) P_{C} is firmly nonexpansive, i.e.,

$$
\left\langle P_{C} x-P_{C} y, x-y\right\rangle \geq\left\|P_{C} x-P_{C} y\right\|^{2}, \forall x, y \in H
$$

(ii) For all $x \in C, y \in H$,

$$
\begin{equation*}
\left\|x-P_{C} y\right\|^{2}+\left\|P_{C} y-y\right\|^{2} \leq\|x-y\|^{2} . \tag{2.1}
\end{equation*}
$$

(iii) $z=P_{C} x$ if and only if

$$
\begin{equation*}
\langle x-z, z-y\rangle \geq 0, \quad \forall y \in C \tag{2.2}
\end{equation*}
$$

The normal cone N_{C} to C at a point $x \in C$ is defined by

$$
N_{C}(x)=\{w \in H:\langle w, x-y\rangle \geq 0, \forall y \in C\}
$$

The proof of the following lemma is similar to the proof of Theorem 27.4 in [22] (also see Theorem 3.1 in [13]) which uses Moreau-Rockafellar Theorem in [17] to find the subdifferential of a sum of convex function g and indicator function δ_{C} to C in a real Hilbert space H.

Lemma 2.3. [22, Theorem 27.4] Let C be a convex subset of a real Hilbert space H and $g: C \rightarrow \mathbb{R}$ be a convex and subdifferentiable function on C. Then, x^{*} is a solution to the following convex problem

$$
\min \{g(x): x \in C\}
$$

if and only if $0 \in \partial g\left(x^{*}\right)+N_{C}\left(x^{*}\right)$, where $\partial g($.$) denotes the subdifferential of$ g and $N_{C}\left(x^{*}\right)$ is the normal cone of C at x^{*}.

3. Main results

In this section, we propose two algorithms for solving the CSEP (1.3) and analyse the convergence of the iteration sequences generated by the algorithms. In the sequel, without loss of generality, we assume that the bifunctions $f_{i}, i=$ $1, \ldots, N$ are Lipschitz-type continuous with the same positive constants c_{1} and c_{2}, i.e.,

$$
f_{i}(x, y)+f_{i}(y, z) \geq f_{i}(x, z)-c_{1}\|x-y\|^{2}-c_{2}\|y-z\|^{2}
$$

for all $x, y, z \in H$. Moreover, the solution set $F=\cap_{i=1}^{N} E P\left(f_{i}\right)$ is nonempty.

Algorithm 3.1. (The parallel hybrid extragradient-cutting algorithm)
Initialize. $x_{0} \in H, n:=0,0<\lambda \leq \lambda_{k}^{i} \leq \mu<\min \left\{\frac{1}{2 c_{1}}, \frac{1}{2 c_{2}}\right\}, \gamma_{k}^{i} \in\left[\epsilon, \frac{1}{2}\right]$ for some $\epsilon \in\left(0, \frac{1}{2}\right], k=1,2, \ldots$ and $i=1, \ldots, N$.
Step 1. Solve N strongly convex problems in parallel, $i=1, \ldots, N$

$$
y_{n}^{i}=\arg \min \left\{\lambda_{n}^{i} f_{i}\left(x_{n}, y\right)+\frac{1}{2}\left\|x_{n}-y\right\|^{2}: y \in K_{i}\right\} .
$$

Step 2. Solve N strongly convex problems in parallel, $i=1, \ldots, N$

$$
z_{n}^{i}=\arg \min \left\{\lambda_{n}^{i} f_{i}\left(y_{n}^{i}, y\right)+\frac{1}{2}\left\|x_{n}-y\right\|^{2}: y \in K_{i}\right\} .
$$

Step 3. Determine the next approximation x_{n+1} as the projection of x_{0} onto the intersection $H_{n} \cap W_{n}$

$$
x_{n+1}=P_{H_{n} \cap W_{n}}\left(x_{0}\right),
$$

where $H_{n}=\cap_{i=1}^{N} H_{n}^{i}$ and

$$
\begin{aligned}
& H_{n}^{i}=\left\{z \in H:\left\langle x_{n}-z_{n}^{i}, z-x_{n}-\gamma_{n}^{i}\left(z_{n}^{i}-x_{n}\right)\right\rangle \leq 0\right\} \\
& W_{n}=\left\{z \in H:\left\langle x_{0}-x_{n}, x_{n}-z\right\rangle \geq 0\right\}
\end{aligned}
$$

Step 4. If $x_{n+1}=x_{n}$ then stop. Otherwise, set $n:=n+1$ and go back Step 1.

In order to prove the convergence of Algorithm 3.1, we need the following lemmas.

Lemma 3.2. [2, Lemma 3.1] (cf. [21, Theorem 3.2]) Assume that $x^{*} \in F$. Let $\left\{y_{n}^{i}\right\},\left\{z_{n}^{i}\right\}$ be the sequences determined as in Steps 1 and 2 of Algorithm 3.1. Then, there holds the relation
$\left\|z_{n}^{i}-x^{*}\right\|^{2} \leq\left\|x_{n}-x^{*}\right\|^{2}-\left(1-2 \lambda_{n}^{i} c_{1}\right)\left\|y_{n}^{i}-x_{n}\right\|^{2}-\left(1-2 \lambda_{n}^{i} c_{2}\right)\left\|z_{n}^{i}-y_{n}^{i}\right\|^{2}$.
Lemma 3.3. If Algorithm 3.1 reaches to the iteration step n, then $F \subset H_{n} \cap W_{n}$ and x_{n+1} is well-defined.

Proof. By Lemma 2.1, the solution set F is closed and convex. From the definitions of $H_{n}^{i}, W_{n}, i=1, \ldots, N$, we see that these sets are closed and convex. Thus, H_{n} is also closed and convex. We now show that $F \subset H_{n} \cap W_{n}$ for all $n \geq 0$. For each $i=1, \ldots, N$, we put

$$
C_{n}^{i}=\left\{z \in H:\left\|z-z_{n}^{i}\right\| \leq\left\|z-x_{n}\right\|\right\}
$$

A straightforward calculation leads to

$$
C_{n}^{i}=\left\{z \in H:\left\langle x_{n}-z_{n}^{i}, z-x_{n}-\frac{1}{2}\left(z_{n}^{i}-x_{n}\right)\right\rangle \leq 0\right\}
$$

By $\gamma_{n}^{i} \in\left[\epsilon, \frac{1}{2}\right], C_{n}^{i} \subset H_{n}^{i}$ for all $i=1, \ldots, N$. So, $C_{n}:=\cap_{i=1}^{N} C_{n}^{i} \subset H_{n}$. From Lemma 3.2 and $0<\lambda \leq \lambda_{n}^{i} \leq \mu<\min \left\{\frac{1}{2 c_{1}}, \frac{1}{2 c_{2}}\right\}$, we obtain $\left\|z_{n}^{i}-x^{*}\right\| \leq$
$\left\|x_{n}-x^{*}\right\|$ for all $x^{*} \in F$ and $i=1, \ldots, N$. This implies that $F \subset C_{n}^{i}$. Therefore, $F \subset C_{n}$ for all $n \geq 0$. Next, we show that $F \subset C_{n} \cap W_{n}$ for all $n \geq 0$ by the induction. Indeed, we have $F \subset C_{0} \cap W_{0}$. Assume that $F \subset C_{n} \cap W_{n}$ for some $n \geq 0$. From $x_{n+1}=P_{H_{n} \cap W_{n}}\left(x_{0}\right)$ and (2.2), we obtain

$$
\left\langle x_{0}-x_{n+1}, x_{n+1}-z\right\rangle \geq 0, \forall z \in H_{n} \cap W_{n}
$$

Since $F \subset C_{n} \cap W_{n} \subset H_{n} \cap W_{n}$,

$$
\left\langle x_{0}-x_{n+1}, x_{n+1}-z\right\rangle \geq 0, \forall z \in F
$$

This together with the definition of W_{n+1} implies that $F \subset W_{n+1}$, and so $F \subset C_{n+1} \cap W_{n+1}$. Thus, by the induction we obtain $F \subset C_{n} \cap W_{n}$ for all $n \geq 0$. By $C_{n} \subset H_{n}$, we get $F \subset H_{n} \cap W_{n}$ for all $n \geq 0$. Since F is nonempty, $H_{n} \cap W_{n}$ is also nonempty. Therefore, x_{n+1} is well-defined.

Lemma 3.4. If Algorithm 3.1 finishes at the iteration step $n<\infty$, then $x_{n} \in$ F.

Proof. Assume that $x_{n+1}=x_{n}$. Since $x_{n+1}=P_{H_{n} \cap W_{n}}\left(x_{0}\right), x_{n}=x_{n+1} \in H_{n}$. This together with the definition of H_{n} implies that $\gamma_{n}^{i}\left\|x_{n}-z_{n}^{i}\right\| \leq 0$. From the last inequality and $\gamma_{n}^{i} \geq \epsilon>0$, one gets $x_{n}=z_{n}^{i}$. By Lemma 3.2 and the hypothesis of λ_{n}^{i}, we obtain $y_{n}^{i}=x_{n}$. Thus

$$
x_{n}=\arg \min \left\{\lambda_{n}^{i} f_{i}\left(x_{n}, y\right)+\frac{1}{2}\left\|x_{n}-y\right\|^{2}: y \in K_{i}\right\} .
$$

Thus, from [18, Proposition 2.1], one has $x_{n} \in E P\left(f_{i}\right)$ for all $i=1, \ldots, N$, or $x_{n} \in F$. The proof of Lemma 3.4 is complete.

Lemma 3.5. Let $\left\{x_{n}\right\},\left\{y_{n}^{i}\right\},\left\{z_{n}^{i}\right\}$ be the sequences generated by Algorithm 3.1. Then, there hold the following relations for all $i=1, \ldots, N$

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}^{i}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|z_{n}^{i}-x_{n}\right\|=0
$$

Proof. From the definition of W_{n} and the relation (2.2), we have $x_{n}=P_{W_{n}}\left(x_{0}\right)$. For each $u \in F \subset W_{n}$, from (2.1), one obtains

$$
\begin{equation*}
\left\|x_{n}-x_{0}\right\| \leq\left\|u-x_{0}\right\| \tag{3.1}
\end{equation*}
$$

Thus, the sequence $\left\{\left\|x_{n}-x_{0}\right\|\right\}$ is bounded, and so, from Lemma 3.2 the sequences $\left\{x_{n}\right\}$ and $\left\{z_{n}^{i}\right\}$ are also bounded. Moreover, the projection $x_{n+1}=$ $P_{H_{n} \cap W_{n}}\left(x_{0}\right)$ implies $x_{n+1} \in W_{n}$. Thus, from $x_{n}=P_{W_{n}} x_{0}$ and (2.1), we also see that

$$
\left\|x_{n}-x_{0}\right\| \leq\left\|x_{n+1}-x_{0}\right\| .
$$

So, the sequence $\left\{\left\|x_{n}-x_{0}\right\|\right\}$ is non-decreasing. Hence, there exists the limit of the sequence $\left\{\left\|x_{n}-x_{0}\right\|\right\}$. By $x_{n+1} \in W_{n}, x_{n}=P_{W_{n}}\left(x_{0}\right)$ and the relation (2.1), we also have

$$
\begin{equation*}
\left\|x_{n+1}-x_{n}\right\|^{2} \leq\left\|x_{n+1}-x_{0}\right\|^{2}-\left\|x_{n}-x_{0}\right\|^{2} \tag{3.2}
\end{equation*}
$$

Passing to the limit in the inequality (3.2) as $n \rightarrow \infty$, one gets

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0 \tag{3.3}
\end{equation*}
$$

Since $x_{n+1} \in H_{n}, x_{n+1} \in H_{n}^{i}$ for all $i=1, \ldots, N$. From the definition of H_{n}^{i}, we have

$$
\gamma_{n}^{i}\left\|z_{n}^{i}-x_{n}\right\|^{2} \leq\left\langle x_{n}-z_{n}^{i}, x_{n}-x_{n+1}\right\rangle
$$

This together with the inequality $|\langle x, y\rangle| \leq\|x| |\||y| \mid$ implies that $\gamma_{n}^{i}\left\|z_{n}^{i}-x_{n}\right\| \leq$ $\left\|x_{n}-x_{n+1}\right\|$. From $\gamma_{n}^{i} \geq \epsilon>0$ and (3.3), one has

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|z_{n}^{i}-x_{n}\right\|=0, i=1, \ldots, N \tag{3.4}
\end{equation*}
$$

From Lemma 3.2 and the triangle inequality, we have

$$
\begin{aligned}
\left(1-2 \lambda_{n}^{i} c_{1}\right)\left\|y_{n}^{i}-x_{n}\right\|^{2} & \leq\left\|x_{n}-x^{*}\right\|^{2}-\left\|z_{n}^{i}-x^{*}\right\|^{2} \\
& \leq\left(\left\|x_{n}-x^{*}\right\|+\left\|z_{n}^{i}-x^{*}\right\|\right)\left(\left\|x_{n}-x^{*}\right\|-\left\|z_{n}^{i}-x^{*}\right\|\right) \\
& \leq\left(\left\|x_{n}-x^{*}\right\|+\left\|z_{n}^{i}-x^{*}\right\|\right)\left\|x_{n}-z_{n}^{i}\right\| .
\end{aligned}
$$

The last inequality together with (3.4), the hypothesis of λ_{n}^{i} and the boundedness of $\left\{x_{n}\right\},\left\{z_{n}^{i}\right\}$ imply that

$$
\lim _{n \rightarrow \infty}\left\|y_{n}^{i}-x_{n}\right\|=0, i=1, \ldots, N
$$

The proof Lemma 3.4 is complete.
Theorem 3.6. Assume that the bifunctions $f_{i}, i=1, \ldots, N$ satisfy all conditions (A1) - (A4). In addition the solution set F is nonempty. Then, the sequences $\left\{x_{n}\right\},\left\{y_{n}^{i}\right\},\left\{z_{n}^{i}\right\}$ generated by Algorithm 3.1 converge strongly to $P_{F}\left(x_{0}\right)$.

Proof. By Lemmas 2.1 and 3.3, we see that the sets F, H_{n}, W_{n} are closed and convex for all $n \geq 0$. Besides, by Lemma 3.5 the sequence $\left\{x_{n}\right\}$ is bounded. Assume that p is any weak cluster point of the sequence $\left\{x_{n}\right\}$. Then, there exists a subsequence of $\left\{x_{n}\right\}$ converging weakly to p. For the sake of simplicity, we denote this subsequence again by $\left\{x_{n}\right\}$ and $x_{n} \rightharpoonup p$ as $n \rightarrow \infty$. We now show that $p \in F$. Indeed, from the relation

$$
\begin{equation*}
y_{n}^{i}=\operatorname{argmin}\left\{\lambda_{n}^{i} f_{i}\left(x_{n}, y\right)+\frac{1}{2}\left\|x_{n}-y\right\|^{2}: y \in K_{i}\right\} \tag{3.5}
\end{equation*}
$$

and Lemma 2.3, one gets

$$
\begin{equation*}
0 \in \partial_{2}\left\{\lambda_{n}^{i} f_{i}\left(x_{n}, y\right)+\frac{1}{2}\left\|x_{n}-y\right\|^{2}\right\}\left(y_{n}^{i}\right)+N_{K_{i}}\left(y_{n}^{i}\right) \tag{3.6}
\end{equation*}
$$

Thus, there exist $\bar{w} \in N_{K_{i}}\left(y_{n}^{i}\right)$ and $w \in \partial_{2} f_{i}\left(x_{n}, y_{n}^{i}\right)$ such that

$$
\begin{equation*}
\lambda_{n}^{i} w+x_{n}-y_{n}^{i}+\bar{w}=0 \tag{3.7}
\end{equation*}
$$

From the definition of the normal cone $N_{K_{i}}\left(y_{n}^{i}\right)$, we have $\left\langle\bar{w}, y-y_{n}^{i}\right\rangle \leq 0$ for all $y \in K_{i}$. Taking into account (3.7), we obtain

$$
\begin{equation*}
\lambda_{n}^{i}\left\langle w, y-y_{n}^{i}\right\rangle \geq\left\langle y_{n}^{i}-x_{n}, y-y_{n}^{i}\right\rangle \tag{3.8}
\end{equation*}
$$

for all $y \in K_{i}$. Since $w \in \partial_{2} f_{i}\left(x_{n}, y_{n}^{i}\right)$,

$$
\begin{equation*}
f_{i}\left(x_{n}, y\right)-f_{i}\left(x_{n}, y_{n}^{i}\right) \geq\left\langle w, y-y_{n}^{i}\right\rangle, \forall y \in K_{i} \tag{3.9}
\end{equation*}
$$

Combining (3.8) and (3.9), one has

$$
\begin{equation*}
\lambda_{n}^{i}\left(f_{i}\left(x_{n}, y\right)-f_{i}\left(x_{n}, y_{n}^{i}\right)\right) \geq\left\langle y_{n}^{i}-x_{n}, y-y_{n}^{i}\right\rangle, \forall y \in K_{i} \tag{3.10}
\end{equation*}
$$

From $\left\|y_{n}^{i}-x_{n}\right\| \rightarrow 0$ and $x_{n} \rightharpoonup p$, we also have $y_{n}^{i} \rightharpoonup p$. Passing to the limit in the inequality (3.10) as $n \rightarrow \infty$ and employing the assumption (A3) and $\lambda_{n}^{i} \geq \lambda>0$, we conclude that $f_{i}(p, y) \geq 0$ for all $y \in K_{i}, i=1, \ldots, N$. Hence, $p \in F$. Finally, we show that $x_{n} \rightarrow p$. Let $x^{\dagger}=P_{F}\left(x_{0}\right)$. Using the inequality (3.1) with $u=x^{\dagger}$, we get

$$
\left\|x_{n}-x_{0}\right\| \leq\left\|x^{\dagger}-x_{0}\right\| .
$$

By the weak lower semicontinuity of the norm $\|$.$\| and x_{n} \rightharpoonup p$, we have

$$
\left\|p-x_{0}\right\| \leq \lim \inf _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\| \leq \lim \sup _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\| \leq\left\|x^{\dagger}-x_{0}\right\|
$$

By the definition of $x^{\dagger}, p=x^{\dagger}$ and so $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{0}\right\|=\left\|x^{\dagger}-x_{0}\right\|$. Thus, $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=\left\|x^{\dagger}\right\|$. By the Kadec-Klee property of the Hilbert space H, we have $x_{n} \rightarrow x^{\dagger}=P_{F} x_{0}$ as $n \rightarrow \infty$. From Lemma 3.5, one also obtains that $\left\{y_{n}^{i}\right\},\left\{z_{n}^{i}\right\}$ converge strongly $P_{F} x_{0}$. This completes the proof of Theorem 3.6.

Using Theorem 3.6, we get the following result was obtained in [11].
Corollary 3.7. Let $A_{i}, i=1, \ldots, N$ be L-Lipschitz continuous and pseudomonotone mappings from a real Hilbert space H into itself. In addition, the solution set $\bar{F}=\cap_{i=1}^{N} V I\left(A_{i}, K_{i}\right)$ is nonempty, where $V I\left(A_{i}, K_{i}\right)$ stands for the solution set of the variational inequality which is to find $x^{*} \in K_{i}$ such that $\left\langle A_{i}\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \forall y \in K_{i}$. Let $\left\{x_{n}\right\},\left\{y_{n}^{i}\right\},\left\{z_{n}^{i}\right\}$ be the sequences generated by the following parallel manner

$$
\left\{\begin{array}{l}
x_{0} \in H \\
y_{n}^{i}=P_{K_{i}}\left(x_{n}-\lambda_{n}^{i} A_{i}\left(x_{n}\right)\right), \\
z_{n}^{i}=P_{K_{i}}\left(x_{n}-\lambda_{n}^{i} A_{i}\left(y_{n}^{i}\right)\right), \\
H_{n}^{i}=\left\{z \in H:\left\langle x_{n}-z_{n}^{i}, z-x_{n}-\gamma_{n}^{i}\left(z_{n}^{i}-x_{n}\right)\right\rangle \leq 0\right\} \\
H_{n}=\cap_{i=1}^{N} H_{n}^{i} \\
W_{n}=\left\{z \in H:\left\langle x_{0}-x_{n}, x_{n}-z\right\rangle \geq 0\right\} \\
x_{n+1}=P_{H_{n} \cap W_{n}} x_{0}, n \geq 0,
\end{array}\right.
$$

where $0<\lambda \leq \lambda_{n}^{i} \leq \mu<1 / L, 0<\epsilon \leq \gamma_{n}^{i} \leq 1 / 2$ for some $\epsilon \in(0,1 / 2]$. Then, the sequences $\left\{x_{n}\right\},\left\{y_{n}^{i}\right\},\left\{z_{n}^{i}\right\}$ converge strongly to $P_{\bar{F}} x_{0}$.

Proof. For each $i=1, \ldots, N$, we put $f_{i}(x, y)=\left\langle A_{i}(x), y-x\right\rangle$. Since A_{i} is pseudomonotone, f_{i} is too. So the condition (A1) is satisfied for each f_{i}. The conditions (A3), (A4) are automatically fulfilled. We now show that f_{i} satisfies the condition (A2). Indeed, from the L - Lipschitz continuity of A_{i}, we have

$$
\begin{aligned}
f_{i}(x, y)+f_{i}(y, z)-f_{i}(x, z)= & \left\langle A_{i}(x), y-x\right\rangle+\left\langle A_{i}(y), z-y\right\rangle \\
& -\left\langle A_{i}(x), z-x\right\rangle \\
= & \left\langle A_{i}(x), y-z\right\rangle+\left\langle A_{i}(y), z-y\right\rangle \\
= & \left\langle A_{i}(x)-A_{i}(y), y-z\right\rangle \\
\geq & -\left\|A_{i}(x)-A_{i}(y)\right\|\|y-z\| \\
\geq & -L\|x-y\|\|y-z\| \\
\geq & -\frac{L}{2}\|x-y\|^{2}-\frac{L}{2}\|y-z\|^{2} .
\end{aligned}
$$

This implies that f_{i} satisfies the condition (A2) with $c_{1}=c_{2}=L / 2$. From Algorithm 3.1, we have

$$
\begin{aligned}
& y_{n}^{i}=\operatorname{argmin}\left\{\lambda_{n}^{i}\left\langle A_{i}\left(x_{n}\right), y-x_{n}\right\rangle+\frac{1}{2}\left\|x_{n}-y\right\|^{2}: y \in K_{i}\right\}, \\
& z_{n}^{i}=\operatorname{argmin}\left\{\lambda_{n}^{i}\left\langle A_{i}\left(y_{n}^{i}\right), y-y_{n}^{i}\right\rangle+\frac{1}{2}\left\|x_{n}-y\right\|^{2}: y \in K_{i}\right\} .
\end{aligned}
$$

A straightforward computation yields

$$
\begin{aligned}
& y_{n}^{i}=\operatorname{argmin}\left\{\frac{1}{2}\left\|y-\left(x_{n}-\lambda_{n}^{i} A_{i}\left(x_{n}\right)\right)\right\|^{2}: y \in K_{i}\right\}=P_{K_{i}}\left(x_{n}-\lambda_{n}^{i} A_{i}\left(x_{n}\right)\right) \\
& z_{n}^{i}=\operatorname{argmin}\left\{\frac{1}{2}\left\|y-\left(x_{n}-\lambda_{n}^{i} A_{i}\left(y_{n}^{i}\right)\right)\right\|^{2}: y \in K_{i}\right\}=P_{K_{i}}\left(x_{n}-\lambda_{n}^{i} A_{i}\left(y_{n}^{i}\right)\right)
\end{aligned}
$$

Applying Theorem 3.6 to Corollary 3.7, we come to the desired result.
Remark 3.8. In Corollary 3.7, we need only the pseudomonotonicity of the mappings $A_{i}, i=1, \ldots, N$ to obtain the convergence of the iteration sequences. However, in order to get the same result, Censor et al [11] required the monotonicity of these mappings which is more strict than the pseudomonotonicity.

In Algorithm 3.1, at the $n^{t h}$ step, in order to determine the next approximation x_{n+1} we have to construct $N+1$ subsets $H_{n}^{i}, i=1, \ldots, N$ and W_{n} and solve the following optimization problem on the intersection of $N+1$ closed convex sets

$$
\left\{\begin{array}{l}
\min \left\|z-x_{0}\right\|^{2}, \\
\text { such that } z \in H_{n}^{1} \cap \ldots \cap H_{n}^{N} \cap W_{n} .
\end{array}\right.
$$

This seems very costly when the number of subproblems N is large. Thus, Algorithm 3.1 can not develop practical numerical experiments. To overcome the complexity of this algorithm, we next propose the following cyclic algorithm for solving the CSEP for pseudomonotone bifunctions $f_{i}, i=1, \ldots, N$. We
write $[n]=n(\bmod N)+1$ to stand for the \bmod function taking values in $\{1,2, \ldots, N\}$.

Algorithm 3.9. (The cyclic hybrid extragradient-cutting algorithm)
Initialize. $x_{0} \in H, n:=0,0<\lambda \leq \lambda_{k} \leq \mu<\min \left\{\frac{1}{2 c_{1}}, \frac{1}{2 c_{2}}\right\}, \gamma_{k} \in\left[\epsilon, \frac{1}{2}\right]$ for some $\epsilon \in\left(0, \frac{1}{2}\right]$ and $k=1,2, \ldots$.
Step 1. Solve the strongly convex problem

$$
y_{n}=\arg \min \left\{\lambda_{n} f_{[n]}\left(x_{n}, y\right)+\frac{1}{2}\left\|x_{n}-y\right\|^{2}: y \in K_{[n]}\right\}
$$

Step 2. Solve the strongly convex problem

$$
z_{n}=\arg \min \left\{\lambda_{n} f_{[n]}\left(y_{n}, y\right)+\frac{1}{2}\left\|x_{n}-y\right\|^{2}: y \in K_{[n]}\right\} .
$$

Step 3. Determine the next approximation x_{n+1} as the projection of x_{0} onto $H_{n} \cap W_{n}$

$$
x_{n+1}=P_{H_{n} \cap W_{n}}\left(x_{0}\right),
$$

where

$$
\begin{aligned}
& H_{n}=\left\{z \in H:\left\langle x_{n}-z_{n}, z-x_{n}-\gamma_{n}\left(z_{n}-x_{n}\right)\right\rangle \leq 0\right\} \\
& W_{n}=\left\{z \in H:\left\langle x_{0}-x_{n}, x_{n}-z\right\rangle \geq 0\right\}
\end{aligned}
$$

Step 4. Set $n:=n+1$ and go back Step 1.
Using the same technique as in [23, Algorithm 1], we can find the explicit formula of the projection x_{n+1} of x_{0} onto the intersection of two subsets H_{n} and W_{n} in Step 3 of Algorithm 3.9. Indeed, from the definitions of H_{n} and W_{n}, we see that they are either halfspaces or H. Let $v_{n}=x_{n}+\gamma_{n}\left(z_{n}-x_{n}\right)$, we rewrite the set H_{n} as follows

$$
H_{n}=\left\{z \in H:\left\langle x_{n}-z_{n}, z-v_{n}\right\rangle \leq 0\right\} .
$$

By analyzing similarly as in [23, Algorithm 1], we get the explicit formula of the projection x_{n+1} of x_{0} onto $H_{n} \cap W_{n}$

$$
x_{n+1}:=P_{H_{n}} x_{0}=\left\{\begin{array}{lll}
x_{0} & \text { if } & z_{n}=x_{n} \\
x_{0}-\frac{\left\langle x_{n}-z_{n}, x_{0}-v_{n}\right\rangle}{\left\|x_{n}-z_{n}\right\|^{2}}\left(x_{n}-z_{n}\right) & \text { if } & z_{n} \neq x_{n}
\end{array}\right.
$$

if $P_{H_{n}} x_{0} \in W_{n}$. Otherwise,

$$
x_{n+1}=x_{0}+t_{1}\left(x_{n}-z_{n}\right)+t_{2}\left(x_{0}-x_{n}\right)
$$

where t_{1}, t_{2} are solutions of the system of linear equations with two unknowns

$$
\left\{\begin{array}{l}
t_{1}\left\|x_{n}-z_{n}\right\|^{2}+t_{2}\left\langle x_{n}-z_{n}, x_{0}-x_{n}\right\rangle=-\left\langle x_{0}-v_{n}, x_{n}-z_{n}\right\rangle, \\
t_{1}\left\langle x_{n}-z_{n}, x_{0}-x_{n}\right\rangle+t_{2}\left\|x_{0}-x_{n}\right\|^{2}=-\left\|x_{0}-x_{n}\right\|^{2}
\end{array}\right.
$$

Theorem 3.10. Assume that the bifunctions $f_{i}, i=1, \ldots, N$ satisfy all conditions (A1) - (A4). In addition, the solution set F is nonempty. Then, the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ generated by Algorithm 3.9 converge strongly to $P_{F}\left(x_{0}\right)$.

Proof. By the same arguments as in the proof of Lemmas 3.2-3.5, we see that F, H_{n}, W_{n} are closed and convex, and $F \subset H_{n} \cap W_{n}$ for all $n \geq 0$. Besides, the sequence $\left\{x_{n}\right\}$ is bounded and there hold the relations

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|y_{n}-x_{n}\right\|=\lim _{n \rightarrow \infty}\left\|z_{n}-x_{n}\right\|=0
$$

Assume that p is any weak cluster point of the sequence $\left\{x_{n}\right\}$. For each fixed index $i \in\{1,2, \ldots, N\}$, since the set of indexes i is finite, by [7, Theorem 5.3] there exists a subsequence $\left\{x_{n_{j}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{j}} \rightharpoonup p$ as $j \rightarrow \infty$ and $\left[n_{j}\right]=i$ for all j. By the same arguments as in (3.5) - (3.10), we conclude that $p \in E P\left(f_{i}\right)$. This is true for all $i=1, \ldots, N$. Thus, $p \in F$. The rest of the proof of Theorem 3.10 is the same to that of of Theorem 3.6.

Corollary 3.11. Let $A_{i}, i=1, \ldots, N$ be L - Lipschitz continuous and pseudomonotone mappings from a real Hilbert space H to itself. In addition, the solution set $\bar{F}=\cap_{i=1}^{N} V I\left(A_{i}, K_{i}\right)$ is nonempty, where $V I\left(A_{i}, K_{i}\right)$ is defined as in Corollary 3.7. Let $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ be the sequences generated by the following cyclic manner

$$
\left\{\begin{array}{l}
x_{0} \in H \\
y_{n}=P_{K_{[n]}}\left(x_{n}-\lambda_{n} A_{[n]}\left(x_{n}\right)\right), \\
z_{n}=P_{K_{[n]}}\left(x_{n}-\lambda_{n} A_{[n]}\left(y_{n}\right)\right), \\
H_{n}=\left\{z \in H:\left\langle x_{n}-z_{n}, z-x_{n}-\gamma_{n}\left(z_{n}-x_{n}\right)\right\rangle \leq 0\right\}, \\
W_{n}=\left\{z \in H:\left\langle x_{0}-x_{n}, x_{n}-z\right\rangle \geq 0\right\}, \\
x_{n+1}=P_{H_{n} \cap W_{n}} x_{0},
\end{array}\right.
$$

where $0<\lambda \leq \lambda_{n} \leq \mu<1 / L, 0<\epsilon \leq \gamma_{n} \leq 1 / 2$ for some $\epsilon \in(0,1 / 2]$. Then, the sequences $\left\{x_{n}\right\},\left\{y_{n}\right\},\left\{z_{n}\right\}$ converge strongly to $P_{\bar{F}} x_{0}$.

Proof. Using Theorem 3.10 and arguing similarly as in the proof of Corollary 3.7, we lead to the desired conclusion.

Remark 3.12. Corollaries 3.7 and 3.11 with $N=1$ give us the corresponding result of Nadezhkina and Takahashi in [20, Theorem 4.1].

Acknowledgements

The author wishes to thank the referees for their valuable comments and suggestions which improved the paper. The author also thanks Prof.Dsc Pham Ky Anh, Department of Mathematics, Hanoi University of Science, VNU for his useful hints to complete this work.

References

[1] P. N. Anh, A hybrid extragradient method extended to fixed point problems and equilibrium problems, Optimization 62 (2013), no. 2, 271-283.
[2] P. N. Anh, A hybrid extragradient method for pseudomonotone equilibrium problems and fixed point problems, Bull. Malays. Math. Sci. Soc. 36 (2013), no. 1, 107-116.
[3] P. K. Anh, Ng. Buong and D. V. Hieu, Parallel methods for regularizing systems of equations involving accretive operators, Appl. Anal. 93 (2014), no. 10, 2136-2157.
[4] P. K. Anh and D. V. Hieu, Parallel hybrid methods for variational inequalities, equilibrium problems and common fixed point problems, Vietnam J. Math. 44 (2016), no. 2, 351-374.
[5] P. K. Anh and D. V. Hieu, Parallel and sequential hybrid methods for a finite family of asymptotically quasi ϕ-nonexpansive mappings, J. Appl. Math. Comput. 48 (2015), no. 1-2, 241-263.
[6] H. H. Bauschke and J. M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev. 38 (1996), no. 3, 367-426.
[7] H. H. Bauschke and P. L. Combettes, A weak-to-strong convergence principle for Fejer monotone methods in Hilbert spaces, Math. Oper. Res. 26 (2001), no. 2, 248-264.
[8] M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl. 90 (1996), no. 1, 31-43.
[9] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), no. 1-4, 123-146.
[10] Y. Censor, W. Chen, P. L. Combettes, R. Davidi and G. T. Herman, On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints, Comput. Optim. Appl. 51 (2012), no. 3, 1065-1088.
[11] Y. Censor, A. Gibali, S. Reich and S. Sabach, Common solutions to variational inequalities, Set-Valued Var. Anal. 20 (2012), no. 2, 229-247.
[12] P. L. Combettes, The convex feasibility problem in image recovery, in, P.Hawkes(Ed.), 95, Advances in Imaging and Electron Physics, 155-270, Academic Press, New York, 1996.
[13] A. Dhara and J. Dutta, Optimality Conditions in Convex Optimization: A FiniteDimensional View, CRC Press, Boca Raton, 2012.
[14] B. V. Dinh, P. G. Hung and L. D. Muu, Bilevel optimization as a regularization approach to pseudomonotone equilibrium problems, Numer. Funct. Anal. Optim. 35 (2014), no. 5, 539-563.
[15] D. V. Hieu, A parallel hybrid method for equilibrium problems, variational inequalities and nonexpansive mappings in Hilbert space, J. Korean Math. Soc. 52 (2015), no. 2, 373-388.
[16] G. M. Korpelevich, The extragradient method for finding saddle points and other problems, Ekonomikai Matematicheskie Metody 12 (1976), 747-756.
[17] H. C. Lai and L. J. Lin, Moreau-Rockafellar type theorem for convex set functions, J. Math. Anal. Appl. 132 (1988), no. 2, 558-571.
[18] G. Mastroeni, On auxiliary principle for equilibrium problems, Publ. Dipart. Math. Univ. Pisa 3 (2000), 1244-1258.
[19] L. D. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal. 18 (1992), no. 12, 1159-1166.
[20] N. Nadezhkina and W. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim. 16 (2006), no. 4, 1230-1241.
[21] T. D. Quoc, L. D. Muu and V. H. Nguyen, Extragradient algorithms extended to equilibrium problems, Optimization 57 (2008) 749-776.
[22] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
[23] M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in Hilbert space, Math. Program. 87 (2000), no. 1, 189-202.
[24] H. Stark (Ed.), Image Recovery Theory and Applications, Academic Press, Orlando, 1987.
[25] S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), no. 1, 506-515.
(Dang van Hieu) Department of Mathematics, Ha Noi University of Science, VNU. 334, Nguyen Trai Street, Ha Noi, Vietnam.

E-mail address: dv.hieu83@gmail.com

[^0]: Article electronically published on October 31, 2016.
 Received: 21 January 2015, Accepted: 6 August 2015.

