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Abstract. In this paper, we propose two iterative methods for finding

a common solution of a finite family of equilibrium problems for pseu-
domonotone bifunctions. The first is a parallel hybrid extragradient-
cutting algorithm which is extended from the previously known one for
variational inequalities to equilibrium problems. The second is a new

cyclic hybrid extragradient-cutting algorithm. In the cyclic algorithm,
using the known techniques, we can perform and develop practical nu-
merical experiments.
Keywords: Hybrid method, parallel algorithm, cyclic algorithm, extra-

gradient method, equilibrium problem.
MSC(2010): Primary: 90C33; Secondary: 68W10, 65K10.

1. Introduction

Let C be a nonempty closed and convex subset of a real Hilbert space H and
f be a bifunction from H ×H to the set of real numbers R. The equilibrium
problem (EP) for the bifunction f on C is to find x∗ ∈ C such that

(1.1) f(x∗, y) ≥ 0, ∀y ∈ C.

The solution set of the EP (1.1) is denoted by EP (f). The EP is a generaliza-
tion of many mathematical problems [9, 19]. In recent years, many algorithms
have been proposed for solving the EP, see [1, 9, 14, 18, 19, 21, 25] and the
references therein. When the bifunction f is monotone, the most of existing
algorithms for solving the EP involve the regularization equilibrium problem
(REP), i.e., at the nth iteration step, known xn, determine the next approxi-
mation xn+1 as the solution of the problem:

(1.2) Find x ∈ C such that: f(x, y) +
1

rn
⟨y − x, x− xn⟩ ≥ 0, ∀y ∈ C,
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where rn ≥ d > 0. Note that the problem (1.2) is strongly monotone when the
bifunction f is monotone. Thus, its solution exists and is unique under certain
assumption of the continuty of the bifunction f . Unforturnately, in general, for
instance when f is pseudomonotone, the problem (1.2) is not strongly monotone
and so the unique solvability of (1.2) is not guaranteed even its solution set can
not be convex. In this case, the authors in [1, 21] replaced the REP (1.2) by
two strongly convex programs{

yn = argmin
{
ρf(xn, y) +

1
2 ||xn − y||2 : y ∈ C

}
,

xn+1 = argmin
{
ρf(yn, y) +

1
2 ||xn − y||2 : y ∈ C

}
,

where ρ > 0 satisfies some suitable conditions.
Now let Ki, i = 1, . . . , N be a finite family of closed and convex subsets

of H such that K = ∩N
i=1Ki ̸= Ø and fi : H × H → R, i = 1, . . . , N be

pseudomonotone bifunctions. The problem, so called the common solutions to
equilibrium problems (CSEP), for the bifunctions fi is stated as follows: Find
x∗ ∈ K such that

(1.3) fi(x
∗, y) ≥ 0, ∀y ∈ Ki, i = 1, . . . , N.

Clearly, the CSEP with N = 1 is the EP. The motivation and inspiration for
researching the CSEP with N > 1 are originated from some simple observations
that if fi(x, y) = 0 for all x, y ∈ H then all inequalities in (1.3) are automatically
satisfied. Thus, the CSEP reduces to the following convex feasibility problem
(CFP)

(1.4) Find x∗ ∈ K := ∩N
i=1Ki ̸= Ø

which is to find an element in the intersection of a family of convex sets {Ki}Ni=1

in a Hilbert space H. The CFP has received great attention due to broad
applicability in many areas of applied mathematics, most notably, as image
recovery from projections, computerized tomography, and radiation therapy
treatment planing, see for instance [6, 12]. Besides, if Ki is the fixed point set
of the mapping Si : H → H, then the CFP (1.4) is the common fixed point
problem (CFPP), i.e.,

(1.5) Find x∗ ∈ F := ∩N
i=1F (Si) ̸= Ø,

where F (Si) is the fixed point set of Si, i = 1, . . . , N . Also, if Ki = H and
fi(x, y) = ⟨x− Six, y − x⟩ then it is easy to show that x∗ is a fixed point of Si

if and only if it is a solution of the EP for the bifunction fi on Ki [9]. Thus,
the CSEP also becomes the CFPP (1.5). Some parallel algorithms for solving
the CFPP can be found in [4, 5, 15].
If fi(x, y) = ⟨Ai(x), y − x⟩, where Ai : H → H are nonlinear operators, then
the CSEP becomes the following common solutions of variational inequalities
problem (CSVIP): Find x∗ ∈ K := ∩N

i=1Ki such that

(1.6) ⟨Ai(x
∗), y − x∗⟩ ≥ 0, ∀y ∈ Ki, i = 1, . . . , N
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which was announced in [11]. Moreover, there are many other mathemati-
cal models which are special cases of the CSEP such as: common minimizer
problems, common saddle point problems, variational inequalities over the in-
tersection of closed convex subsets, common solutions of operator equations, see
[3, 4, 5, 9, 11, 15] and the references therein. These problems have been widely
studied over the past decades because of their practical applications to image
reconstruction, signal processing, biomedical engineering, communication, etc
[6, 10, 12, 24].

In this paper, we propose two parallel and cyclic extragradient - cutting
algorithms for solving the CSEP for pseudomonotone bifunctions. The former
is extended from a previously known algorithm for variational inequalities [11]
to equilibrium problems. The authors in [11] studied the CSVIP for Lipschitz
continuous and monotone operators. They used the extragradient (or double
projection) method which was introduced by Korpelevich [16] in Euclidean
space, and by Nadezhkina and Takahashi [20] in Hilbert space to construct
iteration sequences. Our first algorithm reduces to the CSVIP under a weaker
hypothesis that operators need only the pseudomonotonicity. The latter is a
sequential algorithm which seems to be performed more easily than the first and
can delvelop practical numerical experiments by using the known techniques
of Solodov and Svaiter [23] when the number of subproblems N is large. The
cyclic algorithm can be considered as an improvement of the iterative method
in [11] and others when the CSEP is reduced to the CSVIP.

The paper is organized as follows: In Section 2, we collect some definitions
and primary results for using in the next section. Section 3 deals with our
proposed algorithms and proving the convergence theorems.

2. Preliminaries

In this section, we recall some definitions and results for further researches.
For solving the CSEP (1.3), we assume that each bifunction fi satisfies the
following conditions:

(A1) fi is pseudomonotone on H, i.e., for all x, y ∈ H,

fi(x, y) ≥ 0 ⇒ fi(y, x) ≤ 0;

(A2) fi is Lipschitz-type continuous, i.e., there exist two positive constants
c1, c2 such that

fi(x, y) + fi(y, z) ≥ fi(x, z)− c1||x− y||2 − c2||y − z||2, ∀x, y, z ∈ H;

(A3) fi is weakly continuous on H ×H;
(A4) fi(x, .) is convex and subdifferentiable on H for every fixed x ∈ H.

Note that the condition (A2) is fulfilled for the bifunction

f(x, y) = ⟨A(x), y − x⟩ ,
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where A is a Lipschitz continuous operator (proved in Corollary 3.7 below).
We have the following result.

Lemma 2.1. [8, Proposition 4.1] If the bifunction f satisfies the conditions
(A1)− (A4), then the solution set EP (f) is closed and convex.

The metric projection PC : H → C is defined by

PCx = argmin {∥y − x∥ : y ∈ C} .
Since C is nonempty, closed and convex, PCx exists and is unique. It is also
known that PC has the following characteristic properties

Lemma 2.2. Let PC : H → C be the metric projection from H onto C. Then

(i) PC is firmly nonexpansive, i.e.,

⟨PCx− PCy, x− y⟩ ≥ ∥PCx− PCy∥2 , ∀x, y ∈ H.

(ii) For all x ∈ C, y ∈ H,

(2.1) ∥x− PCy∥2 + ∥PCy − y∥2 ≤ ∥x− y∥2 .
(iii) z = PCx if and only if

(2.2) ⟨x− z, z − y⟩ ≥ 0, ∀y ∈ C.

The normal cone NC to C at a point x ∈ C is defined by

NC(x) = {w ∈ H : ⟨w, x− y⟩ ≥ 0, ∀y ∈ C} .
The proof of the following lemma is similar to the proof of Theorem 27.4 in [22]
(also see Theorem 3.1 in [13]) which uses Moreau-Rockafellar Theorem in [17]
to find the subdifferential of a sum of convex function g and indicator function
δC to C in a real Hilbert space H.

Lemma 2.3. [22, Theorem 27.4] Let C be a convex subset of a real Hilbert
space H and g : C → R be a convex and subdifferentiable function on C. Then,
x∗ is a solution to the following convex problem

min {g(x) : x ∈ C}
if and only if 0 ∈ ∂g(x∗) + NC(x

∗), where ∂g(.) denotes the subdifferential of
g and NC(x

∗) is the normal cone of C at x∗.

3. Main results

In this section, we propose two algorithms for solving the CSEP (1.3) and
analyse the convergence of the iteration sequences generated by the algorithms.
In the sequel, without loss of generality, we assume that the bifunctions fi, i =
1, . . . , N are Lipschitz-type continuous with the same positive constants c1 and
c2, i.e.,

fi(x, y) + fi(y, z) ≥ fi(x, z)− c1||x− y||2 − c2||y − z||2

for all x, y, z ∈ H. Moreover, the solution set F = ∩N
i=1EP (fi) is nonempty.
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Algorithm 3.1. (The parallel hybrid extragradient-cutting algorithm)

Initialize. x0 ∈ H,n := 0, 0 < λ ≤ λi
k ≤ µ < min

{
1

2c1
, 1
2c2

}
, γi

k ∈ [ϵ, 1
2 ] for

some ϵ ∈ (0, 1
2 ], k = 1, 2, . . . and i = 1, . . . , N .

Step 1. Solve N strongly convex problems in parallel, i = 1, . . . , N

yin = argmin

{
λi
nfi(xn, y) +

1

2
||xn − y||2 : y ∈ Ki

}
.

Step 2. Solve N strongly convex problems in parallel, i = 1, . . . , N

zin = argmin

{
λi
nfi(y

i
n, y) +

1

2
||xn − y||2 : y ∈ Ki

}
.

Step 3. Determine the next approximation xn+1 as the projection of x0 onto
the intersection Hn ∩Wn

xn+1 = PHn∩Wn(x0),

where Hn = ∩N
i=1H

i
n and

Hi
n =

{
z ∈ H :

⟨
xn − zin, z − xn − γi

n(z
i
n − xn)

⟩
≤ 0

}
,

Wn = {z ∈ H : ⟨x0 − xn, xn − z⟩ ≥ 0} .
Step 4. If xn+1 = xn then stop. Otherwise, set n := n+ 1 and go back Step
1.

In order to prove the convergence of Algorithm 3.1, we need the following
lemmas.

Lemma 3.2. [2, Lemma 3.1] (cf. [21, Theorem 3.2]) Assume that x∗ ∈ F . Let{
yin

}
,
{
zin

}
be the sequences determined as in Steps 1 and 2 of Algorithm 3.1.

Then, there holds the relation

||zin − x∗||2 ≤ ||xn − x∗||2 −
(
1− 2λi

nc1
)
||yin − xn||2 −

(
1− 2λi

nc2
)
||zin − yin||2.

Lemma 3.3. If Algorithm 3.1 reaches to the iteration step n, then F ⊂ Hn∩Wn

and xn+1 is well-defined.

Proof. By Lemma 2.1, the solution set F is closed and convex. From the
definitions ofHi

n,Wn, i = 1, . . . , N , we see that these sets are closed and convex.
Thus, Hn is also closed and convex. We now show that F ⊂ Hn ∩Wn for all
n ≥ 0. For each i = 1, . . . , N , we put

Ci
n =

{
z ∈ H : ||z − zin|| ≤ ||z − xn||

}
.

A straightforward calculation leads to

Ci
n =

{
z ∈ H :

⟨
xn − zin, z − xn − 1

2
(zin − xn)

⟩
≤ 0

}
.

By γi
n ∈ [ϵ, 1

2 ], C
i
n ⊂ Hi

n for all i = 1, . . . , N . So, Cn := ∩N
i=1C

i
n ⊂ Hn. From

Lemma 3.2 and 0 < λ ≤ λi
n ≤ µ < min

{
1

2c1
, 1
2c2

}
, we obtain ||zin − x∗|| ≤



Common solutions to pseudomonotone equilibrium problems 1212

||xn−x∗|| for all x∗ ∈ F and i = 1, . . . , N . This implies that F ⊂ Ci
n. Therefore,

F ⊂ Cn for all n ≥ 0. Next, we show that F ⊂ Cn ∩Wn for all n ≥ 0 by the
induction. Indeed, we have F ⊂ C0 ∩W0. Assume that F ⊂ Cn ∩Wn for some
n ≥ 0. From xn+1 = PHn∩Wn(x0) and (2.2), we obtain

⟨x0 − xn+1, xn+1 − z⟩ ≥ 0, ∀z ∈ Hn ∩Wn.

Since F ⊂ Cn ∩Wn ⊂ Hn ∩Wn,

⟨x0 − xn+1, xn+1 − z⟩ ≥ 0, ∀z ∈ F.

This together with the definition of Wn+1 implies that F ⊂ Wn+1, and so
F ⊂ Cn+1 ∩ Wn+1. Thus, by the induction we obtain F ⊂ Cn ∩ Wn for all
n ≥ 0. By Cn ⊂ Hn, we get F ⊂ Hn ∩Wn for all n ≥ 0. Since F is nonempty,
Hn ∩Wn is also nonempty. Therefore, xn+1 is well-defined. □

Lemma 3.4. If Algorithm 3.1 finishes at the iteration step n < ∞, then xn ∈
F .

Proof. Assume that xn+1 = xn. Since xn+1 = PHn∩Wn(x0), xn = xn+1 ∈ Hn.
This together with the definition of Hn implies that γi

n||xn − zin|| ≤ 0. From
the last inequality and γi

n ≥ ϵ > 0, one gets xn = zin. By Lemma 3.2 and the
hypothesis of λi

n, we obtain yin = xn. Thus

xn = argmin

{
λi
nfi(xn, y) +

1

2
||xn − y||2 : y ∈ Ki

}
.

Thus, from [18, Proposition 2.1], one has xn ∈ EP (fi) for all i = 1, . . . , N, or
xn ∈ F . The proof of Lemma 3.4 is complete. □

Lemma 3.5. Let {xn} ,
{
yin

}
,
{
zin

}
be the sequences generated by Algorithm

3.1. Then, there hold the following relations for all i = 1, . . . , N

lim
n→∞

||xn+1 − xn|| = lim
n→∞

||yin − xn|| = lim
n→∞

||zin − xn|| = 0.

Proof. From the definition ofWn and the relation (2.2), we have xn = PWn(x0).
For each u ∈ F ⊂ Wn, from (2.1), one obtains

(3.1) ||xn − x0|| ≤ ||u− x0||.
Thus, the sequence {||xn − x0||} is bounded, and so, from Lemma 3.2 the
sequences {xn} and

{
zin

}
are also bounded. Moreover, the projection xn+1 =

PHn∩Wn(x0) implies xn+1 ∈ Wn. Thus, from xn = PWnx0 and (2.1), we also
see that

||xn − x0|| ≤ ||xn+1 − x0||.
So, the sequence {||xn − x0||} is non-decreasing. Hence, there exists the limit
of the sequence {||xn − x0||}. By xn+1 ∈ Wn, xn = PWn(x0) and the relation
(2.1), we also have

(3.2) ||xn+1 − xn||2 ≤ ||xn+1 − x0||2 − ||xn − x0||2
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Passing to the limit in the inequality (3.2) as n → ∞, one gets

(3.3) lim
n→∞

||xn+1 − xn|| = 0.

Since xn+1 ∈ Hn, xn+1 ∈ Hi
n for all i = 1, . . . , N . From the definition of Hi

n,
we have

γi
n||zin − xn||2 ≤

⟨
xn − zin, xn − xn+1

⟩
.

This together with the inequality | ⟨x, y⟩ | ≤ ||x||||y|| implies that γi
n||zin−xn|| ≤

||xn − xn+1||. From γi
n ≥ ϵ > 0 and (3.3), one has

(3.4) lim
n→∞

||zin − xn|| = 0, i = 1, . . . , N.

From Lemma 3.2 and the triangle inequality, we have(
1− 2λi

nc1
)
||yin − xn||2 ≤ ||xn − x∗||2 − ||zin − x∗||2

≤ (||xn − x∗||+ ||zin − x∗||)(||xn − x∗|| − ||zin − x∗||)
≤ (||xn − x∗||+ ||zin − x∗||)||xn − zin||.

The last inequality together with (3.4), the hypothesis of λi
n and the bounded-

ness of {xn},
{
zin

}
imply that

lim
n→∞

||yin − xn|| = 0, i = 1, . . . , N.

The proof Lemma 3.4 is complete. □

Theorem 3.6. Assume that the bifunctions fi, i = 1, . . . , N satisfy all con-
ditions (A1) − (A4). In addition the solution set F is nonempty. Then, the
sequences {xn} ,

{
yin

}
,
{
zin

}
generated by Algorithm 3.1 converge strongly to

PF (x0).

Proof. By Lemmas 2.1 and 3.3, we see that the sets F,Hn,Wn are closed and
convex for all n ≥ 0. Besides, by Lemma 3.5 the sequence {xn} is bounded.
Assume that p is any weak cluster point of the sequence {xn}. Then, there
exists a subsequence of {xn} converging weakly to p. For the sake of simplicity,
we denote this subsequence again by {xn} and xn ⇀ p as n → ∞. We now
show that p ∈ F . Indeed, from the relation

(3.5) yin = argmin{λi
nfi(xn, y) +

1

2
||xn − y||2 : y ∈ Ki},

and Lemma 2.3, one gets

(3.6) 0 ∈ ∂2

{
λi
nfi(xn, y) +

1

2
||xn − y||2

}
(yin) +NKi(y

i
n).

Thus, there exist w̄ ∈ NKi(y
i
n) and w ∈ ∂2fi(xn, y

i
n) such that

(3.7) λi
nw + xn − yin + w̄ = 0.
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From the definition of the normal cone NKi(y
i
n), we have

⟨
w̄, y − yin

⟩
≤ 0 for

all y ∈ Ki. Taking into account (3.7), we obtain

(3.8) λi
n

⟨
w, y − yin

⟩
≥

⟨
yin − xn, y − yin

⟩
for all y ∈ Ki. Since w ∈ ∂2fi(xn, y

i
n),

(3.9) fi(xn, y)− fi(xn, y
i
n) ≥

⟨
w, y − yin

⟩
, ∀y ∈ Ki.

Combining (3.8) and (3.9), one has

(3.10) λi
n

(
fi(xn, y)− fi(xn, y

i
n)
)
≥

⟨
yin − xn, y − yin

⟩
, ∀y ∈ Ki.

From ||yin − xn|| → 0 and xn ⇀ p, we also have yin ⇀ p. Passing to the limit
in the inequality (3.10) as n → ∞ and employing the assumption (A3) and
λi
n ≥ λ > 0, we conclude that fi(p, y) ≥ 0 for all y ∈ Ki, i = 1, . . . , N . Hence,

p ∈ F . Finally, we show that xn → p. Let x† = PF (x0). Using the inequality
(3.1) with u = x†, we get

||xn − x0|| ≤ ||x† − x0||.
By the weak lower semicontinuity of the norm ||.|| and xn ⇀ p, we have

||p− x0|| ≤ lim inf
n→∞

||xn − x0|| ≤ lim sup
n→∞

||xn − x0|| ≤ ||x† − x0||.

By the definition of x†, p = x† and so limn→∞ ||xn − x0|| = ||x† − x0||. Thus,
limn→∞ ||xn|| = ||x†||. By the Kadec-Klee property of the Hilbert space H,
we have xn → x† = PFx0 as n → ∞. From Lemma 3.5, one also obtains that{
yin

}
,
{
zin

}
converge strongly PFx0. This completes the proof of Theorem

3.6. □

Using Theorem 3.6, we get the following result was obtained in [11].

Corollary 3.7. Let Ai, i = 1, . . . , N be L - Lipschitz continuous and pseu-
domonotone mappings from a real Hilbert space H into itself. In addition, the
solution set F̄ = ∩N

i=1V I(Ai,Ki) is nonempty, where V I(Ai,Ki) stands for
the solution set of the variational inequality which is to find x∗ ∈ Ki such
that ⟨Ai(x

∗), y − x∗⟩ ≥ 0, ∀y ∈ Ki. Let {xn} ,
{
yin

}
,
{
zin

}
be the sequences

generated by the following parallel manner

x0 ∈ H,
yin = PKi(xn − λi

nAi(xn)),
zin = PKi(xn − λi

nAi(y
i
n)),

Hi
n =

{
z ∈ H :

⟨
xn − zin, z − xn − γi

n(z
i
n − xn)

⟩
≤ 0

}
,

Hn = ∩N
i=1H

i
n,

Wn = {z ∈ H : ⟨x0 − xn, xn − z⟩ ≥ 0} ,
xn+1 = PHn∩Wn

x0, n ≥ 0,

where 0 < λ ≤ λi
n ≤ µ < 1/L, 0 < ϵ ≤ γi

n ≤ 1/2 for some ϵ ∈ (0, 1/2]. Then,
the sequences {xn} ,

{
yin

}
,
{
zin

}
converge strongly to PF̄x0.
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Proof. For each i = 1, . . . , N , we put fi(x, y) = ⟨Ai(x), y − x⟩. Since Ai is
pseudomonotone, fi is too. So the condition (A1) is satisfied for each fi. The
conditions (A3), (A4) are automatically fulfilled. We now show that fi satisfies
the condition (A2). Indeed, from the L - Lipschitz continuity of Ai, we have

fi(x, y) + fi(y, z)− fi(x, z) = ⟨Ai(x), y − x⟩+ ⟨Ai(y), z − y⟩
− ⟨Ai(x), z − x⟩

= ⟨Ai(x), y − z⟩+ ⟨Ai(y), z − y⟩
= ⟨Ai(x)−Ai(y), y − z⟩
≥ −||Ai(x)−Ai(y)||||y − z||
≥ −L||x− y||||y − z||

≥ −L

2
||x− y||2 − L

2
||y − z||2.

This implies that fi satisfies the condition (A2) with c1 = c2 = L/2. From
Algorithm 3.1 , we have

yin = argmin{λi
n ⟨Ai(xn), y − xn⟩+

1

2
||xn − y||2 : y ∈ Ki},

zin = argmin{λi
n

⟨
Ai(y

i
n), y − yin

⟩
+

1

2
||xn − y||2 : y ∈ Ki}.

A straightforward computation yields

yin = argmin{1
2
||y − (xn − λi

nAi(xn))||2 : y ∈ Ki} = PKi(xn − λi
nAi(xn)),

zin = argmin{1
2
||y − (xn − λi

nAi(y
i
n))||2 : y ∈ Ki} = PKi(xn − λi

nAi(y
i
n)).

Applying Theorem 3.6 to Corollary 3.7, we come to the desired result. □

Remark 3.8. In Corollary 3.7, we need only the pseudomonotonicity of the
mappings Ai, i = 1, . . . , N to obtain the convergence of the iteration sequences.
However, in order to get the same result, Censor et al [11] required the mono-
tonicity of these mappings which is more strict than the pseudomonotonicity.

In Algorithm 3.1, at the nth step, in order to determine the next approxi-
mation xn+1 we have to construct N +1 subsets Hi

n, i = 1, . . . , N and Wn and
solve the following optimization problem on the intersection of N + 1 closed
convex sets {

min ||z − x0||2,
such that z ∈ H1

n ∩ . . . ∩HN
n ∩Wn.

This seems very costly when the number of subproblems N is large. Thus,
Algorithm 3.1 can not develop practical numerical experiments. To overcome
the complexity of this algorithm, we next propose the following cyclic algorithm
for solving the CSEP for pseudomonotone bifunctions fi, i = 1, . . . , N . We
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write [n] = n(mod N) + 1 to stand for the mod function taking values in
{1, 2, . . . , N}.

Algorithm 3.9. (The cyclic hybrid extragradient-cutting algorithm)

Initialize. x0 ∈ H, n:=0, 0 < λ ≤ λk ≤ µ < min
{

1
2c1

, 1
2c2

}
, γk ∈ [ϵ, 1

2 ] for

some ϵ ∈ (0, 1
2 ] and k = 1, 2, . . ..

Step 1. Solve the strongly convex problem

yn = argmin

{
λnf[n](xn, y) +

1

2
||xn − y||2 : y ∈ K[n]

}
.

Step 2. Solve the strongly convex problem

zn = argmin

{
λnf[n](yn, y) +

1

2
||xn − y||2 : y ∈ K[n]

}
.

Step 3. Determine the next approximation xn+1 as the projection of x0 onto
Hn ∩Wn

xn+1 = PHn∩Wn(x0),

where

Hn = {z ∈ H : ⟨xn − zn, z − xn − γn(zn − xn)⟩ ≤ 0} ,
Wn = {z ∈ H : ⟨x0 − xn, xn − z⟩ ≥ 0} .

Step 4. Set n := n+ 1 and go back Step 1.

Using the same technique as in [23, Algorithm 1], we can find the explicit
formula of the projection xn+1 of x0 onto the intersection of two subsets Hn

and Wn in Step 3 of Algorithm 3.9. Indeed, from the definitions of Hn and
Wn, we see that they are either halfspaces or H. Let vn = xn + γn(zn − xn),
we rewrite the set Hn as follows

Hn = {z ∈ H : ⟨xn − zn, z − vn⟩ ≤ 0} .

By analyzing similarly as in [23, Algorithm 1], we get the explicit formula of
the projection xn+1 of x0 onto Hn ∩Wn

xn+1 := PHnx0 =

{
x0 if zn = xn,

x0 − ⟨xn−zn,x0−vn⟩
||xn−zn||2 (xn − zn) if zn ̸= xn

if PHnx0 ∈ Wn. Otherwise,

xn+1 = x0 + t1(xn − zn) + t2(x0 − xn),

where t1, t2 are solutions of the system of linear equations with two unknowns{
t1||xn − zn||2 + t2 ⟨xn − zn, x0 − xn⟩ = −⟨x0 − vn, xn − zn⟩ ,
t1 ⟨xn − zn, x0 − xn⟩+ t2||x0 − xn||2 = −||x0 − xn||2.
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Theorem 3.10. Assume that the bifunctions fi, i = 1, . . . , N satisfy all condi-
tions (A1) − (A4). In addition, the solution set F is nonempty. Then, the
sequences {xn} , {yn} , {zn} generated by Algorithm 3.9 converge strongly to
PF (x0).

Proof. By the same arguments as in the proof of Lemmas 3.2−3.5, we see that
F,Hn,Wn are closed and convex, and F ⊂ Hn ∩Wn for all n ≥ 0. Besides, the
sequence {xn} is bounded and there hold the relations

lim
n→∞

||xn+1 − xn|| = lim
n→∞

||yn − xn|| = lim
n→∞

||zn − xn|| = 0.

Assume that p is any weak cluster point of the sequence {xn}. For each fixed
index i ∈ {1, 2, . . . , N}, since the set of indexes i is finite, by [7, Theorem 5.3]
there exists a subsequence

{
xnj

}
of {xn} such that xnj ⇀ p as j → ∞ and

[nj ] = i for all j. By the same arguments as in (3.5)− (3.10), we conclude that
p ∈ EP (fi). This is true for all i = 1, . . . , N . Thus, p ∈ F . The rest of the
proof of Theorem 3.10 is the same to that of of Theorem 3.6. □

Corollary 3.11. Let Ai, i = 1, . . . , N be L - Lipschitz continuous and pseu-
domonotone mappings from a real Hilbert space H to itself. In addition, the
solution set F̄ = ∩N

i=1V I(Ai,Ki) is nonempty, where V I(Ai,Ki) is defined
as in Corollary 3.7. Let {xn} , {yn} , {zn} be the sequences generated by the
following cyclic manner

x0 ∈ H,
yn = PK[n]

(xn − λnA[n](xn)),
zn = PK[n]

(xn − λnA[n](yn)),
Hn = {z ∈ H : ⟨xn − zn, z − xn − γn(zn − xn)⟩ ≤ 0} ,
Wn = {z ∈ H : ⟨x0 − xn, xn − z⟩ ≥ 0} ,
xn+1 = PHn∩Wnx0,

where 0 < λ ≤ λn ≤ µ < 1/L, 0 < ϵ ≤ γn ≤ 1/2 for some ϵ ∈ (0, 1/2]. Then,
the sequences {xn} , {yn} , {zn} converge strongly to PF̄x0.

Proof. Using Theorem 3.10 and arguing similarly as in the proof of Corollary
3.7, we lead to the desired conclusion. □

Remark 3.12. Corollaries 3.7 and 3.11 with N = 1 give us the corresponding
result of Nadezhkina and Takahashi in [20, Theorem 4.1].
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