ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 5, pp. 1221-1235

Title:

 $\mathcal X\text{-injective}$ and $\mathcal X\text{-projective}$ complexes

Author(s):

T. Özen and E. Yıldırım

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 42 (2016), No. 5, pp. 1221–1235 Online ISSN: 1735-8515

$\mathcal X\text{-}\mathbf{INJECTIVE}$ AND $\mathcal X\text{-}\mathbf{PROJECTIVE}$ COMPLEXES

T. ÖZEN* AND E. YILDIRIM

(Communicated by Omid Ali S. Karamzadeh)

ABSTRACT. Let \mathcal{X} be a class of R-modules. In this paper, we investigate \mathcal{X} -injective (projective) and DG- \mathcal{X} -injective (projective) complexes which are generalizations of injective (projective) and DG-injective (projective) complexes. We prove that some known results can be extended to the class of \mathcal{X} -injective (projective) and DG- \mathcal{X} -injective (projective) complexes for this general settings.

Keywords: Injective (Projective) complex, precover, preenvelope. MSC(2010): Primary: 18G35.

1. Introduction

Throughout this paper, R denotes an associative ring with identity and all modules are unitary. Let \mathcal{X} be a class of R-modules. An R-module E is called \mathcal{X} -injective (see [6]), if $Ext^1(B/A, E) = 0$ for every module $B/A \in \mathcal{X}$ or equivalently if E is injective with respect to every exact sequence $0 \to A \to B \to B/A \to 0$ where $B/A \in \mathcal{X}$. Dually we can define an \mathcal{X} -projective module. In Section 2, we define and characterize \mathcal{X} -injective, \mathcal{X} -projective, DG- \mathcal{X} -injective and DG- \mathcal{X} -projective complexes which are generalizations of injective, projective, DG-injective and DG-projective complexes, respectively (see [1] and [2]). By [2] we know that (ε ,DG-injective) is a cotorsion pair. We denote the class of all \mathcal{X} -complexes, that is, exact complexes with kernel in \mathcal{X} , by $\varepsilon_{\mathcal{X}}$, (in [5] the same class is denoted by $\widetilde{\mathcal{X}}$). We prove that if \mathcal{X} is extension closed, then $\varepsilon_{\mathcal{X}}^{\perp}(^{\perp}\varepsilon_{\mathcal{X}}) = DG-\mathcal{X}$ -injective (projective) which is proved in [5] when $(\mathcal{X}, \mathcal{X}^{\perp})$ is a cotorsion pair.

In the last section, we investigate when a complex has an exact $C(\mathcal{X}$ -projective (injective))-precover (preenvelope). We know that an injective (projective) complex is exact, thus we give some conditions that an \mathcal{X} -injective (projective) complex is exact and in particular in $\varepsilon_{\mathcal{X}-injective}(projective)$. We prove that if \mathcal{X} -injective (projective) $\subseteq \mathcal{X}$ and $(\mathcal{X}, \mathcal{X}$ -injective) $((\mathcal{X}-projective, \mathcal{X}))$ is a

1221

O2016 Iranian Mathematical Society

Article electronically published on October 31, 2016.

Received: 12 November 2014, Accepted: 7 August 2015.

^{*}Corresponding author.

complete cotorsion pair, then every complex has a monic (epic) $C(\mathcal{X}\text{-injective} (\text{projective}))$ -preenvelope (precover) in $\varepsilon_{\mathcal{X}-injective}$ ($\varepsilon_{\mathcal{X}-projective}$) and hence $C(\mathcal{X}\text{-injective} (\text{projective}))$ and $\varepsilon_{\mathcal{X}-injective}(\text{projective})$ complexes are identical.

Since every complex has an injective and projective resolution, we can compute the right derived functors $Ext^{i}(X,Y)$ of Hom(-,-) where Hom(X,Y) is the set of all chain maps from X to Y.

Moreover $\mathcal{H}om(X,Y)$ is the complex defined by $\mathcal{H}om(X,Y)_n = \prod_{p+q=n} (X_{-p},Y_q).$

(See for more details and the other definitions [1, 2, 3, 7]).

2. DG-X-injective and DG-X-projective complexes

We begin with the following generalized definitions.

Definition 2.1. Let \mathcal{X} be a class of R-modules. A complex $\mathcal{C} : \ldots \longrightarrow C^{n-1} \longrightarrow C^n \longrightarrow C^{n+1} \longrightarrow \ldots$ is called an \mathcal{X}^* -(cochain) complex, if $C^i \in \mathcal{X}$ for all $i \in \mathbb{Z}$. A complex $\mathcal{C} : \ldots \longrightarrow C_{n+1} \longrightarrow C_n \longrightarrow C_{n-1} \longrightarrow \ldots$ is called an \mathcal{X}^* -(chain) complex, if $C_i \in \mathcal{X}$ for all $i \in \mathbb{Z}$. The class of all \mathcal{X}^* -complexes is denoted by $C(\mathcal{X}^*)$.

Definition 2.2. A complex C is called an \mathcal{X} -injective complex, if $Ext^1(Y/X, C) = 0$ for every complex $Y/X \in C(\mathcal{X}^*)$. Equivalently, a complex C is an \mathcal{X} -injective complex if for any exact sequence $0 \to X \to Y \to Y/X \to 0$ with a complex $Y/X \in C(\mathcal{X}^*)$, the sequence $Hom(Y, C) \to Hom(X, C) \to 0$ is exact.

Dually we can define an \mathcal{X} -projective complex. A complex \mathcal{C} is called an \mathcal{X} -projective complex, if $Ext^1(C, X) = 0$ for every complex $X \in \mathcal{C}(\mathcal{X}^*)$, or equivalently a complex \mathcal{C} is an \mathcal{X} -projective complex if for any exact sequence $0 \to X \to A \to B \to 0$ with a complex $X \in \mathcal{C}(\mathcal{X}^*)$, the sequence $Hom(C, A) \to Hom(C, B) \to 0$ is exact. We denote the class of all \mathcal{X} -injective (projective) complexes by $C(\mathcal{X}$ -injective (projective)).

Definition 2.3. Let ε be the class of exact complexes. Then we can define $\varepsilon_{\mathcal{X}}$ as the class of exact complexes with kernels in \mathcal{X} .

Example 2.4. If P is an \mathcal{X} -projective (\mathcal{X} -injective) module, then $\overline{P} : ... \longrightarrow 0 \longrightarrow P \longrightarrow 0 \longrightarrow 0 \longrightarrow ...$ is an \mathcal{X} -projective (\mathcal{X} -injective) complex. Moreover any direct sum (product) of \mathcal{X} -projective (\mathcal{X} -injective) complexes is again an \mathcal{X} -projective (\mathcal{X} -injective) complex. Since $C(\mathcal{X}$ -injective (projective)) is closed under extensions, every bounded exact complex $Y : ... 0 \rightarrow Y^0 \rightarrow ... \rightarrow Y^n \rightarrow 0...$ with kernels an \mathcal{X} -injective (projective) module is in $C(\mathcal{X}$ -injective (projective)).

Since every right (left) bounded exact complex with kernels \mathcal{X} -injecti- ve (projective) module is an inverse (direct) limit of bounded exact complexes with kernels \mathcal{X} -injective (projective) module, then every left (right) bounded exact complex with kernels \mathcal{X} -injective (projective) module is in C(\mathcal{X} -injective (projective)).

Moreover if \mathcal{X} -injective $\subseteq \mathcal{X}$, then every $\varepsilon_{\mathcal{X}-injective}$ complex is a direct sum of \mathcal{X} -injective complexes, which is the same as injective complexes. Similarly, if \mathcal{X} -projective $\subseteq \mathcal{X}$, then every $\varepsilon_{\mathcal{X}-projective}$ complexes is a direct sum of \mathcal{X} -projective complexes. Thus, $\varepsilon_{\mathcal{X}-injective(projective)} \subseteq C(\mathcal{X}$ -injective (projective)).

Notice that if P is an \mathcal{X} -injective (\mathcal{X} -projective) module and P is not in the class \mathcal{X} , then \overline{P} is an \mathcal{X} -injective complex, but not an \mathcal{X}^* -complex. So an \mathcal{X} -injective (projective) complex may not be an \mathcal{X}^* -complex.

Lemma 2.5. Let X be an \mathcal{X} -injective complex such that $\frac{E(X)}{X} \in C(\mathcal{X}^*)$ (or $\frac{Y}{X} \in C(\mathcal{X}^*)$) where E(X) is an injective envelope of X. Then X = E(X) and so it is an injective complex (X is a direct summand of Y).

Proof. We know that every complex has an injective envelope, so X has an injective envelope E(X). Then E(X) is an injective complex, and so it is exact. We have the following commutative diagram:

such that $\phi i = id_x$. Therefore X is a direct summand of E(X). So X is an injective complex and hence it is exact. Similarly, if $\frac{Y}{X} \in C(\mathcal{X}^*)$, then we can prove that X is a direct summand of Y.

Definition 2.6. A complex I is called DG- \mathcal{X} -injective, if each I^n is \mathcal{X} -injective and $\mathcal{H}om(E, I)$ is exact for all $E \in \varepsilon_{\mathcal{X}}$. A complex I is called a DG- \mathcal{X} projective, if each I^n is \mathcal{X} -projective and $\mathcal{H}om(I, E)$ is exact for all $E \in \varepsilon_{\mathcal{X}}$.

Lemma 2.7. Let $A \xrightarrow{\beta} B \xrightarrow{\theta} C$ be an exact sequence of modules (complexes) where $Ker\beta \in \mathcal{X}$ ($C(\mathcal{X}^*)$). Then for all \mathcal{X} -projective modules (complexes) I, $Hom(I, A) \longrightarrow Hom(I, B) \longrightarrow Hom(I, C)$ is exact.

Proof. By the exact sequence $0 \longrightarrow Ker\theta \xrightarrow{i} B \xrightarrow{\theta} C$, $0 \longrightarrow Hom(I, Ker\theta) \longrightarrow Hom(I, B) \longrightarrow Hom(I, C)$ is exact. We have the following commutative diagram:

$$A \xrightarrow{\beta} Im\beta \longrightarrow 0$$

$$\downarrow f \\ \downarrow g \\ I$$

$$I$$

such that $\beta f = g$. Since I is an \mathcal{X} -projective module (complex) and $Ker\beta \in \mathcal{X}$ $(C(\mathcal{X}^*)), Hom(I, A) \longrightarrow Hom(I, B) \longrightarrow Hom(I, C)$ is exact. \Box

Dually we can give the following lemma:

Lemma 2.8. Let $A \xrightarrow{\beta} B \xrightarrow{\theta} C$ be an exact sequence of modules (complexes) where $\frac{C}{Im\theta} \in \mathcal{X}(C(\mathcal{X}^*))$. Then for all \mathcal{X} -injective modules (complexes) $I, Hom(C, I) \longrightarrow Hom(B, I) \longrightarrow Hom(A, I)$ is exact.

Example 2.9. Let $I = \dots \longrightarrow 0 \longrightarrow I^0 \longrightarrow 0 \longrightarrow \dots$ where I^0 is an \mathcal{X} -injective (\mathcal{X} -projective) module. Then I is a DG- \mathcal{X} -injective (DG- \mathcal{X} -projective) complex.

Proof. Let $E : ... \to E^{-1} \xrightarrow{d^{-1}} E^0 \xrightarrow{d^0} E^1 \xrightarrow{d^1} E^2 \xrightarrow{d^2} E^3 \to ...$ be exact and $Kerd^n \in \mathcal{X}$, then $\mathcal{H}om(E, I) \cong ...\mathcal{H}om(E^2, I^0) \longrightarrow \mathcal{H}om(E^1, I^0) \longrightarrow \mathcal{H}om(E^0, I^0)$ By Lemma 2.8, $\mathcal{H}om(E, I)$ is exact. \Box

Lemma 2.10. If a complex $X : \ldots \longrightarrow X_{n+1} \longrightarrow X_n \longrightarrow X_{n-1} \longrightarrow \ldots$ is an \mathcal{X} -injective (\mathcal{X} -projective) complex, then for all $n \in \mathbb{Z}$ X_n is an \mathcal{X} -injective (\mathcal{X} -projective) module.

Proof. Let $0 \longrightarrow N \xrightarrow{i} M$ be exact such that $\frac{M}{N} \in \mathcal{X}$ and $\alpha : N \to X_n$ be linear. Form the pushout:

where $A = \{(\alpha(n), -i(n)) : n \in N\}$. By the following diagram:

Ozen and Yıldırım

we have the exact sequence $0 \to X \to T \to S \to 0$ where $T : ... \to X_{n+2} \to X_{n+1} \to \frac{M \oplus X_n}{A} \to X_{n-1}...$ and $S : ... \to 0 \to 0 \to \frac{M}{N} \to 0$ Since X is an \mathcal{X} - *injective* complex, $Ext^1(S, X) = 0$, and so $0 \to Hom(S, X) \to Hom(T, X) \to Hom(X, X) \to Ext^1(S, X) = 0$. Therefore there exists $\beta_n : T_n = \frac{M \oplus X_n}{A} \to X_n$ such that $\beta_n \theta_n = 1$. So $\beta^n \theta^n(\alpha(n)) = \alpha(n)$

$$\beta^{n}\theta^{n}(\alpha(n)) = \alpha(n)$$

$$\beta^{n}((\alpha(n), 0) + A) = \alpha(n)$$

$$\beta^{n}((0, i) + A) = \alpha(n)$$

$$\beta^{n}\gamma_{n}i(n) = \alpha(n)$$

and hence $\beta^n \gamma_n i = \alpha$. So X_n is an \mathcal{X} -injective module.

The following example shows that if $X : ... \to X_{n+1} \to X_n \to X_{n-1} \to ...$ is a complex such that X_n are \mathcal{X} -injective (\mathcal{X} -projective) modules for all $n \in \mathbb{Z}$, then X does not need to be an \mathcal{X} -injective (\mathcal{X} -projective) complex.

Example 2.11. Let $R \in \mathcal{X}$ be an \mathcal{X} -injective module and $f : R \to R \oplus R$ be a morphism such that f(a) = (0, a) and $g : R \oplus R \to R$ be a morphism such that g(a, b) = a. Then gf = 0 where $g \neq 0$. Consider the following diagrams:

Then we have the diagram:

such that g1 = 0. But this is impossible. So <u>R</u> cannot be an \mathcal{X} -injective complex. Dually, we can give an example for \mathcal{X} -projectivity.

1225

Remark 2.12. There exists a module which is both in \mathcal{X} and an \mathcal{X} -injective module. Let \mathcal{X} be a class of injective modules and R be an injective module, then R is both in \mathcal{X} and an \mathcal{X} -injective module. Moreover let M be a flat cotorsion module (see Theorem 5.3.28 in [3] for the existence of such a module) and \mathcal{X} be a class of flat modules, then M is both in \mathcal{X} and an \mathcal{X} -injective module.

Lemma 2.13. If $I \in \varepsilon_{\mathcal{X}}^{\perp}$, then each I^n is an \mathcal{X} -injective module for each $n \in \mathbb{Z}$.

Proof. Let $S \subseteq M$ be a submodule of a module M with $\frac{M}{S} \in \mathcal{X}$ and $\alpha : S \longrightarrow I_n$ be linear. Form the pushout:

where $A = \{(\alpha(s), -s) : s \in S\}$. Thus i_2 is one-to-one the same as i. Then $\overline{I} : \ldots \longrightarrow I^{n-1} \longrightarrow I^n \oplus_S M \longrightarrow I^{n+1} \longrightarrow I^{n+2} \longrightarrow \ldots$ is a complex.

Therefore, we have an exact sequence $0 \longrightarrow I \longrightarrow \overline{I} \longrightarrow E \longrightarrow 0$ where $E: ... \longrightarrow \frac{M}{S} \longrightarrow \frac{M}{S} \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow ...$ and so we have an exact sequence $0 \longrightarrow Hom(E, I) \longrightarrow Hom(\overline{I}, I) \longrightarrow Hom(I, I) \longrightarrow Ext^1(E, I) = 0$ since $I \in \varepsilon_{\mathcal{X}}^{\perp}$. This implies that we can find $\overline{f}: \overline{I} \longrightarrow I$ with $\overline{f}f = 1$. Therefore, there exists a function $\overline{f}^n: I^n \oplus_S M \longrightarrow I^n$ with $\overline{f}^n f^n = 1$. So,

$$f^{n}f^{n}(\alpha(s)) = \alpha(s)$$
$$\overline{f}^{n}((\alpha(s), 0) + A) = \alpha(s)$$
$$\overline{f}^{n}((0, s) + A) = \alpha(s)$$
$$\overline{f}^{n}i_{1}i(s) = \alpha(s)$$

and hence $\overline{f}_n i_1 i = \alpha$ and thus each $I^n \in \mathcal{X}$ -injective.

Lemma 2.14. Let $f: X \longrightarrow Y$ be a morphism of complexes. Then the exact sequence $0 \longrightarrow Y \longrightarrow M(f) \longrightarrow X[1] \longrightarrow 0$ associated with the mapping cone M(f) splits if and only if f is homotopic to 0.

Proof. The proof follows from [2].

Lemma 2.15. Let X and I be complexes. If $Ext^1(X, I[n]) = 0$ for all $n \in \mathbb{Z}$, then Hom(X, I) is exact.

Proof. Since $Ext^1(X, I[n]) = 0$, if $f : X[-1] \to I[n]$ is a morphism, then $0 \to I[n] \to M(f) \to X \to 0$ splits.

By Lemma 2.14, $f : X[-1] \to I[n]$ is homotopic to zero for all n. So $f^1 : X \to I[n+1]$ is homotopic to zero for all $n \in \mathbb{Z}$. Thus $\mathcal{H}om(X, I)$ is exact.

In [5] the following proposition is proved in the case when $(\mathcal{X}, \mathcal{X}^{\perp})$ is a cotorsion pair.

Proposition 2.16. Let \mathcal{X} be extension closed. Then $\varepsilon_{\mathcal{X}}^{\perp}(\perp \varepsilon_{\mathcal{X}}) = DG-\mathcal{X}$ -injective (projective).

Proof. By Lemma 2.13 and Lemma 2.15 we have that $\varepsilon_{\mathcal{X}}^{\perp}({}^{\perp}\varepsilon_{\mathcal{X}}) \subseteq DG - \mathcal{X}$ injective (projective). Let $I \in DG - \mathcal{X}$ -injective. Therefore $\mathcal{H}om(X, I)$ is exact for all $X \in \varepsilon_{\mathcal{X}}$ and so for all $n, f: X \to I[n]$ is homotopic to zero. By Lemma 2.14 $A: 0 \to I[n] \to M(f) \to X[1] \to 0$ is split exact. We know that any exact complex $B: 0 \to I[n] \to Y \to X[1] \to 0$ splits at module level since the $I[n]^m$ are \mathcal{X} -injective modules and $X^m \in \mathcal{X}$. Therefore the exact sequences A and Bare isomorphic. It is known that $Ext^1(C, A) = 0$ if and only if every short exact sequence $0 \to A \to B \to C \to 0$ splits. This implies that $Ext^1(X, I[n]) = 0$ and thus the converse inclusion is proved. \Box

If we use Proposition 2.16, then we can give the following example since \mathcal{X} and $\varepsilon_{\mathcal{X}}^{\perp}({}^{\perp}\varepsilon_{\mathcal{X}})$ are extension closed and every right(left) bounded complex is a direct (inverse) transfinite limit of bounded complexes.

Example 2.17. Let \mathcal{X} be extension closed. Then every \mathcal{X} -projective (injective) complex is DG- \mathcal{X} -projective (injective). Every right (left) bounded complex I where I_i is an \mathcal{X} -projective (injective) module is a DG- \mathcal{X} -projective (injective) complex. Moreover $\varepsilon_{\mathcal{X}-injective}(projective) \subseteq$ DG- \mathcal{X} -injective (projective) since the direct (inverse) limit of DG- \mathcal{X} -injective complexes is also an inverse (direct) transfinite limit of bounded $\varepsilon_{\mathcal{X}-injective}(projective)$ complexes.

 $\varepsilon_{\mathcal{X}}$ and DG- \mathcal{X} -injective cannot be a cotorsion pair if \mathcal{X} is extension closed. We have the following theorem:

Theorem 2.18. Let \mathcal{X} be extension closed and we have enough \mathcal{X} -object. Then $(DG-\mathcal{Y}$ -projective, $\varepsilon_{\mathcal{Y}})$ is cotorsion pair where $\mathcal{Y} = \mathcal{X}$ -injective.

Proof. It follows from the proof of Proposition 3.6 in [5] and Proposition 2.16. \Box

3. $C(\mathcal{X}$ -projective)-precovers and $C(\mathcal{X}$ -injective)-preenvelopes

In this section we prove that if a complex has a $C(\mathcal{X}\text{-}projective)\text{-}precover}$ or $C(\mathcal{X}\text{-}injective)\text{-}preenvelope in <math>C(\mathcal{X}^*)$, then such precovers or preenvelopes are homotopic. Moreover we investigate when a complex has an exact $C(\mathcal{X}\text{-}projective (injective))\text{-}$ precover (preenvelope) and we give some conditions when an $\mathcal{X}\text{-}projective (injective)$ complex is exact and in particular in $\varepsilon_{\mathcal{X}-proje-}$ ctive(injective) \cdot

Lemma 3.1. *i)* Let $f : X \longrightarrow Y$ be a chain morphism, let X be an \mathcal{X}^* complex and let Y be an \mathcal{X} -injective complex. Then f is homotopic to zero. Moreover if a complex has a $C(\mathcal{X}$ -injective)-preenvelope in $C(\mathcal{X}^*)$, then such preenvelopes are homotopic.

ii) Let $f: X \longrightarrow Y$ be a chain homomorphism such that Y is an \mathcal{X}^* complex and X is an \mathcal{X} -projective complex. Then f is homotopic to zero. Moreover if a complex has a $C(\mathcal{X}$ -projective)-precover in $C(\mathcal{X}^*)$, then such precovers are homotopic.

Proof. i) Let $id: X \longrightarrow X$, then we have the following exact sequence:

where gi = f. Let $i_1^n : X[1]^n \longrightarrow M(id)^n$ be a canonical injection and $s^n : X[1]^{n-1} \longrightarrow Y^{n-1}$ such that $s^n = g^{n-1}i_1^{n-1}$ for all $n \in \mathbb{Z}$. Let u be the differential of the complex M(id). Then we have the following diagram

$$X^{n-1} \oplus X^{n-2} \xrightarrow{u^{n-2}} X^n \oplus X^{n-1} \xrightarrow{u^{n-1}} X^{n+1} \oplus X^n$$

$$\downarrow^{g^{n-2}} \qquad \qquad \downarrow^{g^{n-1}} \qquad \qquad \downarrow^{g^n}$$

$$Y^{n-2} \xrightarrow{\gamma^{n-2}} Y^{n-1} \xrightarrow{\gamma^{n-1}} Y^n$$

$$\begin{split} s^{n+1}\lambda^n + \gamma^{n-1}s^n &= g^n i_1^n \lambda^n + \gamma^{n-1}g^{n-1}i_1^{n-1} = g^n i_1^n \lambda^n + g^n u^{n-1}i_1^{n-1} = g^n (i_1^n \lambda^n + u^{n-1}i_1^{n-1}) = g^n i^n = f^n. \\ \text{ii) Consider } id: Y \longrightarrow Y \text{ and the exact sequence } 0 \longrightarrow Y[-1] \longrightarrow M(id)[-1] \longrightarrow H(id)[-1] \longrightarrow$$

 $Y \longrightarrow 0$. Since X is an $\mathcal{X} - projective$ complex, we have the following commutative diagram:

where $\pi g = f$. Let $\pi_1^n : M(id)[-1]^n \longrightarrow Y[-1]^n$ be a projection for all $n \in \mathbb{Z}$. Then if we take as $s^n = \pi_1^n g^n$, then for all $n \in \mathbb{Z}$, $s^{n+1}\lambda^n + \gamma^{n-1}s^n = f^n$ where λ and γ are boundary maps of the complexes of X and Y, respectively. So f is homotopic to zero.

Proposition 3.2. Let $({}^{\perp}\mathcal{X}, \mathcal{X})$ $((\mathcal{X}, \mathcal{X}^{\perp}))$ be a cotorsion pair. Then every \mathcal{X} -projective (\mathcal{X} -injective) complex is exact.

Proof. By [2] we see that every \mathcal{X} -projective (injective) complex has an exact precover (preenvelope) with kernel (cokernel) in DG-injective (projective). The result follows.

Lemma 3.3. Let \mathcal{X} be extension closed (and $({}^{\perp}\mathcal{X}, \mathcal{X})$) be a cotorsion pair). Let every *R*-module have an epic \mathcal{X} -projective-precover with kernel in \mathcal{X} . Then every bounded complex in $C(\mathcal{X}^*)$ has an epic exact $C(\mathcal{X}$ -projective)-precover (which is also in $\varepsilon_{\mathcal{X}-projective}$) with kernel in $C(\mathcal{X}^*)$ (which is also in $DG-\mathcal{X}$ projective-injective= $(\varepsilon_{\mathcal{X}-projective})^{\perp}$). Thus every bounded \mathcal{X} -projective complex in $C(\mathcal{X}^*)$ is exact (which is also in $\varepsilon_{\mathcal{X}-projective}$ and every bounded complex in $C(\mathcal{X}^*)$ has an $\varepsilon_{\mathcal{X}-projective}$ -precover).

Proof. Let $Y(n) : ... \to 0 \to Y^0 \to Y^1 \to ... \to Y^n \to 0 \to ... \in C(\mathcal{X}^*)$. We use induction on n. Let n = 0, then we have the following commutative diagram:

where $P^0 \to Y^0 \to 0$ is an \mathcal{X} -projective-precover in \mathcal{X} with kernel in \mathcal{X} since \mathcal{X} is extension closed, D(0) is exact and $Ker(D(0) \to Y(0)) \in \mathcal{C}(\mathcal{X}^*)$. We

consider the following diagram which is commutative:

$$D(n): \dots 0 \longrightarrow P^{0} \xrightarrow{\lambda^{0}} P^{0} \oplus P^{1} \xrightarrow{\lambda^{1}} \dots P^{n-1} \oplus P^{n} \xrightarrow{\lambda^{n}_{1}} P^{n} \dots$$

$$\downarrow f^{0} \qquad \qquad \downarrow (0, f^{1}) \qquad \qquad \downarrow (0, f^{n}) \qquad \qquad \downarrow$$

$$Y(n): \dots 0 \longrightarrow Y^{0} \xrightarrow{a^{0}} Y^{1} \xrightarrow{a^{1}} \dots Y^{n} \longrightarrow 0 \dots$$

where λ_1^n is onto, D(n) is an exact $C(\mathcal{X}\text{-projective})\text{-precover of } Y(n)$ such that $Ker(D(n) \to Y(n)) \in \mathcal{C}(\mathcal{X}^*)$ and the $P^i \to Y^i \to 0$ are $\mathcal{X}\text{-projective}$ -precovers in \mathcal{X} with kernels in \mathcal{X} for $1 \leq i \leq n$. Since $D(n) \to Y(n) \to 0$ and $\overline{P^{n+1}} \to \underline{Y^{n+1}} \to 0$ are $C(\mathcal{X}\text{-projective})\text{-precovers}$, we have the following commutative diagram:

Thus we have the diagram:

where $s^2 \lambda_1^n = s^1$ and $s^1 \lambda^{n-1} = 0$. Moreover we see that $f^{n+1}s^1 = a^n(0, f^n)$ and $f^{n+1}s^2 = 0$ by the following diagrams:

$$P^{n-1} \oplus P^{n} \xrightarrow{s^{1}} P^{n+1}$$

$$\downarrow^{(0,f^{n})} \qquad \qquad \downarrow^{f^{n+1}}$$

$$Y^{n} \xrightarrow{a^{n}} Y^{n+1}$$

$$P^{n} \xrightarrow{s^{2}} P^{n+1}$$

$$\downarrow \qquad \qquad \downarrow^{f^{n+1}}$$

$$0 \longrightarrow Y^{n+1}$$

Let $\lambda^n(x,y) = (\lambda_1^n(x,y), s^1(x,y)), \quad \lambda_1^{n+1}(x,y) = s^2(x) - y$. Then we have the commutative diagram:

$$D(n+1):\dots \longrightarrow P^{0}\dots \longrightarrow P^{n-1} \oplus P^{n} \stackrel{\lambda^{n}}{\to} P^{n} \oplus P^{n+1} \stackrel{\lambda^{n+1}_{1}}{\longrightarrow} P^{n+1}\dots$$

$$\downarrow^{f^{0}} \qquad \qquad \downarrow^{(0,f^{n})} \qquad \downarrow^{(0,f^{n+1})} \qquad \downarrow^{(0,f^{n+1})} \qquad \downarrow^{(0,f^{n+1})} \qquad \downarrow^{(0,f^{n+1})}$$

$$Y(n+1):\dots \longrightarrow Y^{0}\dots \longrightarrow Y^{n} \stackrel{a^{n}}{\longrightarrow} Y^{n+1} \longrightarrow 0\dots$$

where $Ker(D(n+1) \to Y(n+1)) \in C(\mathcal{X}^*)$ and since λ_1^{n+1} is onto, $Im(\lambda^n) = Ker(\lambda_1^{n+1})$, $Im(\lambda^{n-1}) = Ker(\lambda^n)$ and D(n) is exact, D(n+1) is exact. Therefore, Y(n) has a $C(\mathcal{X}$ -projective)-precover.

The following corollary is a direct consequence of Lemma 3.3.

Corollary 3.4. *i)* Let \mathcal{X} be extension closed. If \mathcal{X} -projective $\subseteq \mathcal{X}$ and every R-module has an epic \mathcal{X} -projective-precover with kernel in \mathcal{X} (and $({}^{\perp}\mathcal{X}, \mathcal{X})$) is a cotorsion pair), then every bounded complex has an an epic exact $C(\mathcal{X}$ -projective)-precover (which is also in $\varepsilon_{\mathcal{X}-projective}$) with kernel in $C(\mathcal{X}^*)$. Thus if $({}^{\perp}\mathcal{X}, \mathcal{X})$ is a complete cotorsion pair, then $\varepsilon_{\mathcal{X}-projective}$ bounded complexes and $C(\mathcal{X}$ -projective) bounded complexes are identical.

ii)If $({}^{\perp}\mathcal{X}, \mathcal{X})$ is a complete cotorsion pair, then every bounded complex in $C(\mathcal{X}^*)$ has an $\varepsilon_{\mathcal{X}-projective}$ -precover.

Lemma 3.5. If \mathcal{X} is extension closed and every *R*-module has a monic \mathcal{X} injective-preenvelope with cokernel in \mathcal{X} (and $(\mathcal{X}, \mathcal{X}^{\perp})$) is a cotorsion pair), then
every bounded complex in $C(\mathcal{X}^*)$ has a monic exact $C(\mathcal{X}$ -injective)-preenvelope
(which is also in $\varepsilon_{\mathcal{X}-injective}$) with cokernel in $C(\mathcal{X}^*)$ (which is also in $DG-\mathcal{X}$ injective-projective= $^{\perp}(\varepsilon_{\mathcal{X}-injective})$).

Thus every bounded \mathcal{X} -injective complex in $C(\mathcal{X}^*)$ is exact (which is also in $\varepsilon_{\mathcal{X}-injective}$ and hence every bounded complex in $C(\mathcal{X}^*)$ has an $\varepsilon_{\mathcal{X}-injective}$ -preenvelope).

Proof. Let $Y(n) : ... \to 0 \to Y_n \to Y_{n-1} \to ... \to Y_0 \to 0 \to ...$ We use induction on n. Let n = 0, then we have the following commutative diagram:

where $0 \to Y_0 \to E_0$ is a monic preenvelope in \mathcal{X} with cokernel in \mathcal{X} and thus E(0) is an exact preenvelope of Y(0) with cokernel in $C(\mathcal{X}^*)$. We consider the

following diagram which is commutative:

where the $0 \to Y_i \to E_i$ are \mathcal{X} -injective-preenvelopes in \mathcal{X} with cokernel in \mathcal{X} for $1 \leq i \leq n$, E(n) is exact with cokernel $(Y(n) \to E(n)) \in C(\mathcal{X}^*)$. Since $0 \to Y_n \to E_n$ and $0 \to \underline{Y_{n+1}} \to \overline{E_{n+1}}$ are $C(\mathcal{X}$ -injective)-preenvelopes, we have the following commutative diagram:

$$\begin{array}{ccc} \underline{Y_{n+1}} \longrightarrow Y(n) \\ & & \downarrow \\ \hline \\ \overline{E_{n+1}} \longrightarrow E(n) \end{array}$$

Then we have the diagram:

$$\overline{E_{n+1}}: \dots 0 \longrightarrow E_{n+1} \xrightarrow{1} E_{n+1} \longrightarrow 0 \longrightarrow \cdots \\
\downarrow^{s_{n+1}} \downarrow^{s_n} \downarrow \downarrow^{s_n} \downarrow \\
E(n): \dots 0 \longrightarrow E_n \xrightarrow{\lambda_n^1} E_n \oplus E_{n-1} \xrightarrow{\lambda_{n-1}} \cdots \longrightarrow \cdots$$

where $s_n = \lambda_n^1 s_{n+1}$ and $\lambda_{n-1} s_n = 0$. Moreover we see that $(f_n, 0)a_{n+1} = s_n f_{n+1}$ and $\lambda_n^1 s_{n+1} = s_n$ by the following diagrams:

$$Y_{n+1} \xrightarrow{a_{n+1}} Y_n$$

$$\downarrow f_{n+1} \qquad \downarrow (f_n, 0)$$

$$E_{n+1} \xrightarrow{s_n} E_n \oplus E_{n-1}$$

$$E_{n+1} \xrightarrow{s_{n+1}} E_n$$

$$\downarrow 1 \qquad \qquad \downarrow \lambda_n^1$$

$$E_{n+1} \xrightarrow{s_n} E_n \oplus E_{n-1}$$

Let $\lambda_{n+1}^1(x) = (x, -s_{n+1}(x)), \quad \lambda_n(x, y) = s_n(x) + \lambda_n^1(y)$. Then we have the following commutative diagram:

where E(n + 1) is exact with cokernel $(Y(n + 1) \rightarrow E(n + 1))$ in $C(\mathcal{X}^*)$. Therefore, Y(n) has a $C(\mathcal{X}$ -injective)-preenvelope.

Corollary 3.6. *i)* Let \mathcal{X} be extension closed. If \mathcal{X} -injective $\subseteq \mathcal{X}$ and every \mathcal{R} -module has a monic \mathcal{X} -injective-preenvelope with kernel in \mathcal{X} (and $(\mathcal{X}, \mathcal{X}^{\perp})$) is a cotorsion pair), then every bounded complex has an a monic exact $C(\mathcal{X}$ -injective)-preenvelope (which is also in $\varepsilon_{\mathcal{X}-injective} \subseteq C(\mathcal{X}$ -injective)) with kernel in $C(\mathcal{X}^*)$. Thus $\varepsilon_{\mathcal{X}-injective}$ and $C(\mathcal{X}-injective)$ bounded complexes are identical if $(\mathcal{X}, \mathcal{X}^{\perp})$ is a cotorsion pair.

ii) If $(\mathcal{X}, \mathcal{X}^{\perp})$ is a complete cotorsion pair, then every bounded complex in $C(\mathcal{X}^*)$ has an $\varepsilon_{\mathcal{X}-injective}$ -preenvelope.

We know that the direct (inverse) limit of exact complexes is also exact. Then we can give the following theorem.

Theorem 3.7. Let \mathcal{X} be closed under extensions. The following are satisfied: i) If every *R*-module has a monic (epic) \mathcal{X} -injective (projective)-preenvelope (precover) with cokernel (kernel) in \mathcal{X} , then every left (right) bounded complex in $C(\mathcal{X}^*)$ has a monic (epic) exact $C(\mathcal{X}$ -injective (projective))-preenvelope (precover) (which is also in $\varepsilon_{\mathcal{X}-injective}(\text{projective})$ if $(\mathcal{X}, \mathcal{X}^{\perp})$ ($(^{\perp}\mathcal{X}, \mathcal{X})$) is a cotorsion pair). Moreover if \mathcal{X} -injective (projective) $\subseteq \mathcal{X}$, then every left (right) bounded complex has a monic (epic) exact $C(\mathcal{X}$ -injective (projective))preenvelope (precover).

ii) If every R-module has a monic (epic) \mathcal{X} -injective (projective)-preenvelope (precover) with cokernel (kernel) in \mathcal{X} , then every right (left) bounded complex in $C(\mathcal{X}^*)$ has a monic (epic) exact $C(\mathcal{X}$ -injective(projective))-preenvelope (precover).

Therefore every right (left) bounded \mathcal{X} -injective (projective) complex in $C(\mathcal{X}^*)$ is exact (which is also in $\varepsilon_{\mathcal{X}-injective(projective)}$ and every right (left) bounded complexes in $C(\mathcal{X}^*)$ has an $\varepsilon_{\mathcal{X}-injective(projective)}$ -preenvelope (precover) if $(\mathcal{X},$ $\mathcal{X}^{\perp})$ (($^{\perp}\mathcal{X},\mathcal{X}$)) is a cotorsion pair). Moreover if \mathcal{X} -injective (projective) $\subseteq \mathcal{X}$, then every right (left) bounded complex has a monic (epic) exact $C(\mathcal{X}$ -injective (projective))-preenvelope (precover).

Proof. i) Let $Y : ... \to 0 \to Y^0 \to Y^1 \to ...$ and E(n) be a $C(\mathcal{X}\text{-injective})$ preenvelope of $Y(n) : ... \to 0 \to Y^0 \to ... \to Y^n \to 0 \to ...$. Then $\varprojlim Y(n) = Y$.
By Lemma 3.5, Y(n) has a $C(\mathcal{X}\text{-injective})$ -preenvelope E(n) such that $0 \to 0$.

 $Y(n) \to E(n)$ is exact. Then by Theorem 1.5.13 in [3] and the proof of Lemma 3.5 $0 \to \underline{\lim}Y(n) \to \underline{\lim}E(n)$ is exact with cokernel $\underline{\lim}\frac{E(n)}{Y(n)} \in C(\mathcal{X}^*)$ which is also a direct transfinite limit of $DG(\mathcal{X})$ -injective-projective complexes. Since $Ext^1(\frac{A}{B}, \underline{\lim}E(n)) = 0$ where $\frac{A}{B} \in C(\mathcal{X}^*)$ by Lemma 2.3 in [9], $\underline{\lim}E(n)$ is an exact $C(\mathcal{X}$ -injective)-preenvelope of Y. The other part is also proved similarly using $C(\mathcal{X}$ -projective) is closed under direct transfinite limits by Theorem 1.2 in [4].

ii) Let $Y : ... \to Y_2 \to Y_1 \to Y_0 \to 0 \to ...$ and E(n) be a $C(\mathcal{X}\text{-injective})$ preenvelope of $Y(n) : ... \to 0 \to Y_n \to ... \to Y_1 \to Y_0 \to 0 \to ...$ Then $\underline{lim}Y(n) = Y$. By Lemma 3.5, Y(n) has a $C(\mathcal{X}\text{-injective})$ -preenvelope E(n)such that $0 \to Y(n) \to E(n)$ is exact. Then by Theorem 1.5.6 in [3] $0 \to \underline{lim}Y(n) \to \underline{lim}E(n)$ is exact with cokernel $\underline{lim}\frac{E(n)}{Y(n)} \in C(\mathcal{X}^*)$ (which is also in $DG(\mathcal{X})\text{-injective-projective}$ if $(\mathcal{X}, \mathcal{X}^{\perp})$ is a cotorsion pair). Since $\underline{lim}E(n)$ is also an inverse transfinite limit of some bounded $\mathcal{X}\text{-injective complexes}$, $Ext^1(\underline{A}_{\overline{B}}, \underline{lim}E(n)) = 0$ where $\underline{A}_{\overline{B}} \in C(\mathcal{X}^*)$. So $\underline{lim}E(n)$ is an exact $C(\mathcal{X}\text{-injective})$ -preenvelope of Y.

Corollary 3.8. *i*) Let \mathcal{X} be closed under extensions. If every R-module has a monic (epic) \mathcal{X} -injective (projective)-preenvelope (precover) with cokernel (kernel) in \mathcal{X} , then every complex in $C(\mathcal{X}^*)$ has a monic (epic) exact $C(\mathcal{X}$ -injective (projective))-preenvelope (precover) (which is also in $\varepsilon_{\mathcal{X}-injective(projective)}$ if $(\mathcal{X}, \mathcal{X}^{\perp})$ ($(^{\perp}\mathcal{X}, \mathcal{X})$) is a cotorsion pair). Moreover if \mathcal{X} -injective (projective))-preenvelope (precover) (which is in $\varepsilon_{\mathcal{X}-injective}$ (projective))-preenvelope (precover) (which is in $\varepsilon_{\mathcal{X}-injective}$ ($\mathcal{E}_{\mathcal{X}-projective}$) if $(\mathcal{X}, \mathcal{X}^{\perp})$ (($^{\perp}\mathcal{X}, \mathcal{X}$)) is a cotorsion pair, thus $\varepsilon_{\mathcal{X}-injective}$ ($\varepsilon_{\mathcal{X}-projective}$) if $(\mathcal{X}, \mathcal{X}^{\perp})$ (($^{\perp}\mathcal{X}, \mathcal{X}$)) is a cotorsion pair, thus $\varepsilon_{\mathcal{X}-injective}$ (projective) and $C(\mathcal{X}$ -injective (projective)) complexes are identical).

ii) If $(\mathcal{X}, \mathcal{X}^{\perp})$ is a complete cotorsion pair, then every complex in $C(\mathcal{X}^*)$ has a monic $\varepsilon_{\mathcal{X}-injective}$ -preenvelope.

Example 3.9. Let \mathcal{X} be a class of R-modules closed under quotients, extensions and direct sums (for the existence of such classes, if \mathcal{X} is a class of injective modules on a hereditary noetherian ring which is constructed in [8], then \mathcal{X} is closed under quotients, extensions and direct limits and moreover if \mathcal{X} is the class of min-injective modules and simple ideals of ring R are projective, then it is closed under quotients, extensions and direct sums). If A and B are in \mathcal{X} such that $\phi: A \to B$ is a homomorphism, then by Theorem 2.10 in [6], we have monic \mathcal{X} -injective-preenvelopes such that $f: A \to E_A$ and $g: B \to E_B$ with cokernels in \mathcal{X} . Then there exists a homomorphism $s: E_A \to E_B$ such that $g\phi = sf$. Using Lemma 3.5 we can determine an exact $C(\mathcal{X}\text{-injective})$ -preenvelope E(1) of complex Y(1) as follows:

where $\alpha(x) = (x, -s(x))$ and $\beta(x, y) = s(x) + y$. Then every complex in $C(\mathcal{X}^*)$ has a monic exact C(X-injective)-preenvelope by Corollary 3.8.

References

- L. L. Avramov and H. B. Foxby, Homological dimensions of unbounded complexes, J. Pure Appl. Algebra 71 (1991), no. 2-3, 129–155.
- [2] E. E. Enochs, O. M. G. Jenda and J. Xu, Orthogonality in the category of complexes, Math. J. Okayama Univ. 38 (1996) 25–46.
- [3] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, de Gruyter Ex. Math., 30, Walter de Gruyter & Co., Berlin, 2000.
- [4] P. Eklof, Homological algebra and set theory, Trans. Amer. Math. Soc. 227 (1977) 207– 225.
- [5] J. Gillespie, The flat model structure on Ch(R), Trans. Amer. Math. Soc. 356 (2004), no. 8, 3369–3390.
- [6] L. X. Mao and N. Q. Ding, L-injective hulls of modules, Bull. Aust. Math. Soc. 74 (2006), no. 1, 37–44.
- [7] Joseph J. Rotman, An Introduction to Homological Algebra, Springer, New York, 2009.
- [8] J. T. Stafford and R. B. Warfield, Construction of Hereditary Noetherian Rings, Proc. Lond. Math. Soc. (3) 51 (1985), no. 1, 1–20.
- [9] J. Trlifaj, Ext and inverse limits, Illinois J. Math. 47 (2003), no. 1-2, 529-538.

(Tahire Özen) DEPARTMENT OF MATHEMATICS, ABANT IZZET BAYSAL UNIVERSITY, GÖLKÖY KAMPÜSÜ BOLU, TURKEY.

E-mail address: ozen_t@ibu.edu.tr

(Emine Yıldırım) DEPARTMENT OF MATHEMATICS, ABANT IZZET BAYSAL UNIVERSITY, GÖLKÖY KAMPÜSÜ BOLU, TURKEY.

E-mail address: emineyyildirim@gmail.com