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Abstract. Let X be a class of R-modules. In this paper, we investi-
gate X -injective (projective) and DG-X -injective (projective) complexes
which are generalizations of injective (projective) and DG-injective (pro-
jective) complexes. We prove that some known results can be extended

to the class of X -injective (projective) and DG-X -injective (projective)
complexes for this general settings.
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1. Introduction

Throughout this paper, R denotes an associative ring with identity and all
modules are unitary. Let X be a class of R-modules. An R-module E is
called X -injective (see [6]), if Ext1(B/A,E) = 0 for every module B/A ∈ X
or equivalently if E is injective with respect to every exact sequence 0 →
A → B → B/A → 0 where B/A ∈ X . Dually we can define an X -projective
module. In Section 2, we define and characterize X -injective, X -projective,
DG-X -injective and DG-X -projective complexes which are generalizations of
injective, projective, DG-injective and DG-projective complexes, respectively
(see [1] and [2]). By [2] we know that (ε,DG-injective) is a cotorsion pair. We
denote the class of all X -complexes, that is, exact complexes with kernel in X ,
by εX , (in [5] the same class is denoted by X̃ ). We prove that if X is extension
closed, then εX

⊥(⊥εX ) = DG-X -injective (projective) which is proved in [5]
when (X ,X⊥) is a cotorsion pair.

In the last section, we investigate when a complex has an exact C(X -
projective (injective))-precover (preenvelope). We know that an injective (pro-
jective) complex is exact, thus we give some conditions that an X -injective (pro-
jective) complex is exact and in particular in εX−injective(projective). We prove
that if X -injective (projective)⊆ X and (X ,X -injective) ((X -projective,X )) is a
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X -injective and X -projective complexes 1222

complete cotorsion pair, then every complex has a monic (epic) C(X -injective
(projective))-preenvelope (precover) in εX−injective (εX−projective) and hence
C(X -injective (projective)) and εX−injective(projective) complexes are identical.

Since every complex has an injective and projective resolution, we can com-
pute the right derived functors Exti(X,Y ) of Hom(−,−) where Hom(X,Y )
is the set of all chain maps from X to Y .
Moreover Hom(X,Y ) is the complex defined by Hom(X,Y )n =

∏
p+q=n

(X−p, Yq).

(See for more details and the other definitions [1, 2, 3, 7]).

2. DG-X -injective and DG-X -projective complexes

We begin with the following generalized definitions.

Definition 2.1. Let X be a class of R-modules. A complex C : . . . −→
Cn−1 −→ Cn −→ Cn+1 −→ . . . is called an X ∗-(cochain) complex, if Ci ∈ X
for all i ∈ Z. A complex C : . . . −→ Cn+1 −→ Cn −→ Cn−1 −→ . . . is called
an X ∗-(chain) complex, if Ci ∈ X for all i ∈ Z. The class of all X ∗-complexes
is denoted by C(X ∗).

Definition 2.2. A complex C is called an X -injective complex, if Ext1(Y/X,
C) = 0 for every complex Y/X ∈ C(X ∗). Equivalently, a complex C is an
X -injective complex if for any exact sequence 0→ X → Y → Y/X → 0 with a
complex Y/X ∈ C(X ∗), the sequence Hom(Y,C)→ Hom(X,C)→ 0 is exact.

Dually we can define an X -projective complex. A complex C is called an
X -projective complex, if Ext1(C,X) = 0 for every complex X ∈ C(X ∗), or
equivalently a complex C is an X -projective complex if for any exact sequence
0→ X → A→ B → 0 with a complex X ∈ C(X ∗), the sequence Hom(C,A)→
Hom(C,B) → 0 is exact. We denote the class of all X -injective (projective)
complexes by C(X -injective (projective)).

Definition 2.3. Let ε be the class of exact complexes. Then we can define εX
as the class of exact complexes with kernels in X .

Example 2.4. If P is an X -projective (X -injective) module, then P : ... −→
0 −→ P −→ P −→ 0 −→ 0 −→ ... is an X -projective (X -injective) complex.
Moreover any direct sum (product) of X -projective (X -injective) complexes is
again an X -projective (X -injective) complex. Since C(X -injective (projective))
is closed under extensions, every bounded exact complex Y : ...0→ Y 0 → ...→
Y n → 0... with kernels an X -injective (projective) module is in C(X -injective
(projective)).

Since every right (left) bounded exact complex with kernels X -injecti- ve
(projective) module is an inverse (direct) limit of bounded exact complexes
with kernels X -injective (projective) module, then every left (right) bounded
exact complex with kernels X -injective (projective) module is in C(X -injective
(projective)).
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Moreover if X -injective ⊆ X , then every εX−injective complex is a direct sum
of X -injective complexes, which is the same as injective complexes. Similarly,
if X -projective ⊆ X , then every εX−projective complexes is a direct sum of
X -projective complexes. Thus, εX−injective(projective) ⊆ C(X -injective (pro-
jective)).

Notice that if P is an X -injective (X -projective) module and P is not in
the class X , then P is an X -injective complex, but not an X ∗-complex. So an
X -injective (projective) complex may not be an X ∗-complex.

Lemma 2.5. Let X be an X -injective complex such that E(X)
X ∈ C(X ∗) (or

Y
X ∈ C(X ∗)) where E(X) is an injective envelope of X. Then X = E(X) and
so it is an injective complex (X is a direct summand of Y).

Proof. We know that every complex has an injective envelope, so X has an
injective envelope E(X). Then E(X) is an injective complex, and so it is
exact. We have the following commutative diagram:

0 X E(X)

X

-

?

idx

-
i ppppppppp	 ϕ

such that ϕi = idx. Therefore X is a direct summand of E(X). So X is an
injective complex and hence it is exact. Similarly, if Y

X ∈ C(X ∗), then we can
prove that X is a direct summand of Y. □

Definition 2.6. A complex I is called DG-X -injective, if each In is X -injective
and Hom(E, I) is exact for all E ∈ εX . A complex I is called a DG-X -
projective, if each In is X -projective and Hom(I, E) is exact for all E ∈ εX .

Lemma 2.7. Let A
β−→ B

θ−→ C be an exact sequence of modules (complexes)
where Kerβ ∈ X (C(X ∗)). Then for all X -projective modules (complexes) I,
Hom(I,A) −→ Hom(I,B) −→ Hom(I, C) is exact.

Proof. By the exact sequence 0 −→ Kerθ
i−→ B

θ−→ C, 0 −→ Hom(I,
Kerθ) −→ Hom(I,B) −→ Hom(I, C) is exact. We have the following com-
mutative diagram:

A Imβ 0

I

-β -

6
gpppppp

pppI
f
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such that βf = g. Since I is an X -projective module (complex) and Kerβ ∈ X
(C(X ∗)),Hom(I, A) −→ Hom(I,B) −→ Hom(I, C) is exact. □

Dually we can give the following lemma:

Lemma 2.8. Let A
β−→ B

θ−→ C be an exact sequence of modules (com-
plexes) where C

Imθ ∈ X (C(X
∗)). Then for all X -injective modules (complexes)

I, Hom(C, I) −→ Hom(B, I) −→ Hom(A, I) is exact.

Example 2.9. Let I = .... −→ 0 −→ I0 −→ 0 −→ 0 −→ ... where I0 is an X -
injective (X -projective) module. Then I is a DG-X -injective (DG-X -projective)
complex.

Proof. Let E : ... −→ E−1 d−1

−→ E0 d0

−→ E1 d1

−→ E2 d2

−→ E3 −→ ... be exact
and Kerdn ∈ X , then Hom(E, I) ∼= ...Hom(E2, I0) −→ Hom(E1, I0) −→
Hom(E0, I0).... By Lemma 2.8, Hom(E, I) is exact. □

Lemma 2.10. If a complex X : . . . −→ Xn+1 −→ Xn −→ Xn−1 −→ . . . is
an X -injective (X -projective) complex, then for all n ∈ Z Xn is an X -injective
(X -projective) module.

Proof. Let 0 −→ N
i−→ M be exact such that M

N ∈ X and α : N → Xn be
linear. Form the pushout:

N M

Xn
Xn ⊕M

A

-i

?

α

ppppppppppp?γn

p p p p p p p-θn

where A = {(α(n),−i(n)) : n ∈ N}. By the following diagram:

0 Xn+1 Xn+1 0 0

0 Xn
M ⊕Xn

A

M

N
0

0 Xn−1 Xn−1 0 0

- -

?

-

?

-

?
- -

?

-

?

-

?
- - - -
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we have the exact sequence 0 −→ X −→ T −→ S −→ 0 where T : ... −→
Xn+2 −→ Xn+1 −→ M⊕Xn

A −→ Xn−1... and S : ... −→ 0 −→ 0 −→ M
N −→

0.... Since X is an X − injective complex, Ext1(S,X) = 0, and so 0 →
Hom(S,X) → Hom(T,X) → Hom(X,X) → Ext1(S,X) = 0. Therefore
there exists βn : Tn = M⊕Xn

A −→ Xn such that βnθn = 1. So

βnθn(α(n)) = α(n)

βn((α(n), 0) +A) = α(n)

βn((0, i) +A) = α(n)

βnγni(n) = α(n)

and hence βnγni = α. So Xn is an X -injective module. □

The following example shows that if X : ... → Xn+1 → Xn → Xn−1 → ... is
a complex such that Xn are X -injective (X -projective) modules for all n ∈ Z,
then X does not need to be an X -injective (X -projective) complex.

Example 2.11. Let R ∈ X be an X -injective module and f : R → R ⊕ R be
a morphism such that f(a) = (0, a) and g : R ⊕ R → R be a morphism such
that g(a, b) = a. Then gf = 0 where g ̸= 0. Consider the following diagrams:

...0 R R⊕R 0...

...0 0 R 0...

-

?

-f

?

f

-

?

g

?
- - -

...0 R R⊕R 0...

...0 R⊕R R⊕R 0...

-

?

-f

?
f

-

?
1

?
- -1 -

Then we have the diagram:

...0 R R⊕R 0...

...0 R⊕R R⊕R 0...

...0 0 R 0...

-

?

-f

?
f

-

?
1

?
-

?

-1

?

-

?
g

?
- - -

such that g1 = 0. But this is impossible. So R cannot be an X -injective
complex. Dually, we can give an example for X -projectivity.
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Remark 2.12. There exists a module which is both in X and an X -injective
module. Let X be a class of injective modules and R be an injective module,
then R is both in X and an X -injective module. Moreover let M be a flat
cotorsion module (see Theorem 5.3.28 in [3] for the existence of such a module)
and X be a class of flat modules, then M is both in X and an X -injective
module.

Lemma 2.13. If I ∈ ε⊥X , then each In is an X -injective module for each n ∈ Z.

Proof. Let S ⊆M be a submodule of a module M with M
S ∈ X and α : S −→ In

be linear. Form the pushout:

S M

In
In ⊕M

A
= In ⊕S M

-i

?

α

ppppppppp?i1

p p p p p p p-i2

where A = {(α(s),−s) : s ∈ S}. Thus i2 is one-to-one the same as i. Then
I : ... −→ In−1 −→ In ⊕S M −→ In+1 −→ In+2 −→ ... is a complex.

0 In−1 In−1 0 0

0 In In ⊕S M
M

S
0

0 In+1 In+1
M

S
0

- -

?

-

?

-

?
- -

?

-

?

-

?
- - - -

Therefore, we have an exact sequence 0 −→ I −→ I −→ E −→ 0 where
E : ... −→ M

S −→
M
S −→ 0 −→ 0 −→ 0 −→ ... and so we have an exact

sequence 0 −→ Hom(E, I) −→ Hom(I, I) −→ Hom(I, I) −→ Ext1(E, I) = 0
since I ∈ ε⊥X . This implies that we can find f : I −→ I with ff = 1. Therefore,

there exists a function f
n
: In ⊕S M −→ In with f

n
fn = 1. So,

f
n
fn(α(s)) = α(s)

f
n
((α(s), 0) +A) = α(s)

f
n
((0, s) +A) = α(s)

f
n
i1i(s) = α(s)
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and hence fni1i = α and thus each In ∈ X -injective.
□

Lemma 2.14. Let f : X −→ Y be a morphism of complexes. Then the exact
sequence 0 −→ Y −→ M(f) −→ X[1] −→ 0 associated with the mapping cone
M(f) splits if and only if f is homotopic to 0.

Proof. The proof follows from [2]. □

Lemma 2.15. Let X and I be complexes. If Ext1(X, I[n]) = 0 for all n ∈ Z,
then Hom(X, I) is exact.

Proof. Since Ext1(X, I[n]) = 0, if f : X[−1] → I[n] is a morphism, then
0→ I[n]→M(f)→ X → 0 splits.

By Lemma 2.14, f : X[−1] → I[n] is homotopic to zero for all n. So
f1 : X → I[n + 1] is homotopic to zero for all n ∈ Z. Thus Hom(X, I) is
exact. □

In [5] the following proposition is proved in the case when (X ,X⊥) is a cotorsion
pair.

Proposition 2.16. Let X be extension closed. Then εX
⊥(⊥εX ) = DG-X -

injective (projective).

Proof. By Lemma 2.13 and Lemma 2.15 we have that εX
⊥(⊥εX ) ⊆ DG−X -

injective (projective). Let I ∈ DG−X -injective. Therefore Hom(X, I) is exact
for all X ∈ εX and so for all n, f : X → I[n] is homotopic to zero. By Lemma
2.14 A : 0→ I[n]→M(f)→ X[1]→ 0 is split exact. We know that any exact
complex B : 0→ I[n]→ Y → X[1]→ 0 splits at module level since the I[n]m

are X -injective modules and Xm ∈ X . Therefore the exact sequences A and B
are isomorphic. It is known that Ext1(C,A) = 0 if and only if every short exact
sequence 0 → A → B → C → 0 splits. This implies that Ext1(X, I[n]) = 0
and thus the converse inclusion is proved. □

If we use Proposition 2.16, then we can give the following example since X
and εX

⊥(⊥εX ) are extension closed and every right(left) bounded complex is
a direct (inverse) transfinite limit of bounded complexes.

Example 2.17. Let X be extension closed. Then every X -projective (in-
jective) complex is DG-X -projective (injective). Every right (left) bounded
complex I where Ii is an X -projective (injective) module is a DG-X -projecti-
ve (injective) complex. Moreover εX−injective(projective) ⊆DG-X -injective (pro-
jective) since the direct (inverse) limit of DG-X -injective complexes is also an
inverse (direct) transfinite limit of bounded εX−injective(projective) complexes.

εX and DG-X -injective cannot be a cotorsion pair if X is extension closed.
We have the following theorem:
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Theorem 2.18. Let X be extension closed and we have enough X -object. Then
(DG-Y-projective,εY) is cotorsion pair where Y = X -injective.

Proof. It follows from the proof of Proposition 3.6 in [5] and Proposition 2.16.
□

3. C(X -projective)-precovers and C(X -injective)-preenvelopes

In this section we prove that if a complex has a C(X -projective)-precover
or C(X -injective)-preenvelope in C(X ∗), then such precovers or preenvelopes
are homotopic. Moreover we investigate when a complex has an exact C(X -
projective (injective))- precover (preenvelope) and we give some conditions
when an X -projective (injective) complex is exact and in particular in εX−proje−

ctive(injective) .

Lemma 3.1. i) Let f : X −→ Y be a chain morphism, let X be an X ∗ complex
and let Y be an X −injective complex. Then f is homotopic to zero. Moreover
if a complex has a C(X -injective)-preenvelope in C(X ∗), then such preenvelopes
are homotopic.
ii) Let f : X −→ Y be a chain homomorphism such that Y is an X ∗ complex
and X is an X -projective complex. Then f is homotopic to zero. Moreover if
a complex has a C(X -projective)-precover in C(X ∗), then such precovers are
homotopic.

Proof. i) Let id : X −→ X, then we have the following exact sequence:

0 X M(id) X[1] 0

Y

- -i

?

f

-ppppppppppp	 g

-

where gi = f . Let in1 : X[1]n −→ M(id)n be a canonical injection and sn :
X[1]n−1 −→ Y n−1 such that sn = gn−1in−1

1 for all n ∈ Z . Let u be the
differential of the complex M(id). Then we have the following diagram

Xn−1 ⊕Xn−2 Xn ⊕Xn−1 Xn+1 ⊕Xn

Y n−2 Y n−1 Y n

-un−2

?
gn−2

-un−1

?
gn−1

?
gn

-γn−2

-γn−1

sn+1λn+γn−1sn = gnin1λ
n+γn−1gn−1in−1

1 = gnin1λ
n+gnun−1in−1

1 = gn(in1λ
n+

un−1in−1
1 ) = gnin = fn.

ii) Consider id : Y −→ Y and the exact sequence 0 −→ Y [−1] −→M(id)[−1] −→
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Y −→ 0. Since X is an X − projective complex, we have the following com-
mutative diagram:

M(id)[−1] Y 0

X

-
π

-

pppppp
pppppp6g
�
�
�

�
��

f

where πg = f . Let πn
1 : M(id)[−1]n −→ Y [−1]n be a projection for all n ∈ Z.

Then if we take as sn = πn
1 g

n, then for all n ∈ Z, sn+1λn+γn−1sn = fn where
λ and γ are boundary maps of the complexes of X and Y , respectively. So f
is homotopic to zero. □

Proposition 3.2. Let (⊥X ,X ) ((X ,X⊥)) be a cotorsion pair. Then every
X -projective (X -injective) complex is exact.

Proof. By [2] we see that every X -projective (injective) complex has an exact
precover (preenvelope) with kernel (cokernel) in DG-injective (projective). The
result follows. □

Lemma 3.3. Let X be extension closed (and (⊥X ,X ) be a cotorsion pair).
Let every R-module have an epic X -projective-precover with kernel in X . Then
every bounded complex in C(X ∗) has an epic exact C(X -projective)-precover
(which is also in εX−projective) with kernel in C(X ∗) (which is also in DG-X -
projective-injective=(εX−projective)

⊥). Thus every bounded X -projective com-
plex in C(X ∗) is exact (which is also in εX−projective and every bounded complex
in C(X ∗) has an εX−projective-precover).

Proof. Let Y (n) : ...→ 0→ Y 0 → Y 1 → ...→ Y n → 0→ ... ∈ C(X ∗). We use
induction on n. Let n = 0, then we have the following commutative diagram:

D(0) : ... 0 P 0 P 0 0 ...

Y (0) : ... 0 Y 0 0 0 ...

- -

?

-id

?
f0

-

?

-

?

-

- - - - -

where P 0 → Y 0 → 0 is an X -projective-precover in X with kernel in X since
X is extension closed, D(0) is exact and Ker(D(0) → Y (0)) ∈ C(X ∗). We
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consider the following diagram which is commutative:

D(n) : ...0 P 0 P 0 ⊕ P 1 ...Pn−1 ⊕ Pn Pn...

Y (n) : ...0 Y 0 Y 1 ...Y n 0...

- -λ0

?
f0

-λ
1

?
(0,f1)

-λ
n
1

?
(0,fn)

?
- -a0

-a1
-

where λn
1 is onto, D(n) is an exact C(X -projective)-precover of Y (n) such

that Ker(D(n) → Y (n)) ∈ C(X ∗) and the P i → Y i → 0 are X -projective-
precovers in X with kernels in X for 1 ≤ i ≤ n. Since D(n) → Y (n) → 0

and Pn+1 → Y n+1 → 0 are C(X -projective)-precovers, we have the following
commutative diagram:

D(n) Pn+1

Y (n) Y n+1

-s

? ?
-

Thus we have the diagram:

D(n) : ...0 P 0 P 0 ⊕ P 1... Pn−1 ⊕ Pn Pn...

Pn+1 : ...0 0 0... Pn+1 Pn+1...

- -λ0

? ?

-λ
n−1

-λ
n
1

?
s1

?
s2

- - - -1

where s2λn
1 = s1 and s1λn−1 = 0. Moreover we see that fn+1s1 = an(0, fn)

and fn+1s2 = 0 by the following diagrams:

Pn−1 ⊕ Pn Pn+1

Y n Y n+1

-s1

?
(0,fn)

?
fn+1

-an

Pn Pn+1

0 Y n+1

-s2

? ?

fn+1

-
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Let λn(x, y) = (λn
1 (x, y), s

1(x, y)), λn+1
1 (x, y) = s2(x)− y. Then we have the

commutative diagram:

D(n+ 1) : ... P 0... Pn−1 ⊕ Pn Pn ⊕ Pn+1 Pn+1...

Y (n+ 1) : ... Y 0... Y n Y n+1 0...

-

?
f0

- -λ
n

?
(0,fn)

-λn+1
1

?
(0,fn+1)

?
- - -an

-

where Ker(D(n+ 1)→ Y (n+ 1)) ∈ C(X ∗) and since λn+1
1 is onto, Im(λn) =

Ker(λn+1
1 ), Im(λn−1) = Ker(λn) and D(n) is exact, D(n+1) is exact. There-

fore, Y (n) has a C(X -projective)-precover. □

The following corollary is a direct consequence of Lemma 3.3.

Corollary 3.4. i) Let X be extension closed. If X -projective ⊆ X and every
R-module has an epic X -projective-precover with kernel in X (and (⊥X ,X )
is a cotorsion pair), then every bounded complex has an an epic exact C(X -
projective)-precover (which is also in εX−projective) with kernel in C(X ∗). Thus
if (⊥X ,X ) is a complete cotorsion pair, then εX−projective bounded complexes
and C(X -projective) bounded complexes are identical.
ii)If (⊥X ,X ) is a complete cotorsion pair, then every bounded complex in C(X ∗)
has an εX−projective-precover.

Lemma 3.5. If X is extension closed and every R-module has a monic X -
injective-preenvelope with cokernel in X (and (X ,X⊥) is a cotorsion pair), then
every bounded complex in C(X ∗) has a monic exact C(X -injective)-preenvelope
(which is also in εX−injective) with cokernel in C(X ∗) (which is also in DG-X -
injective-projective=⊥(εX−injective)).
Thus every bounded X -injective complex in C(X ∗) is exact (which is also in
εX−injective and hence every bounded complex in C(X ∗) has an εX−injective-
preenvelope).

Proof. Let Y (n) : ... → 0 → Yn → Yn−1 → ... → Y0 → 0 → .... We use
induction on n. Let n = 0, then we have the following commutative diagram:

Y (0) : ...0 0 Y0 0...

E(0) : ...0 E0 E0 0...

-

?

-

?

-

?
- -id -

where 0→ Y0 → E0 is a monic preenvelope in X with cokernel in X and thus
E(0) is an exact preenvelope of Y (0) with cokernel in C(X ∗). We consider the
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following diagram which is commutative:

Y (n) : ...0 0 Yn
... Y0 0

E(n) : ...0 En En ⊕ En−1 ... E0 0

- -

?

-an

?
(fn,0)

- -

?
f0

- -λ
1
n -λn−1 - -

where the 0 → Yi → Ei are X -injective-preenvelopes in X with cokernel in X
for 1 ≤ i ≤ n, E(n) is exact with cokernel (Y (n) → E(n)) ∈ C(X ∗). Since
0 → Yn → En and 0 → Yn+1 → En+1 are C(X -injective)-preenvelopes, we
have the following commutative diagram:

Yn+1 Y (n)

En+1 E(n)

-

? ?
-

Then we have the diagram:

En+1 : ...0 En+1 En+1 0 ...

E(n) : ...0 En En ⊕ En−1 ... ...

- -1

?
sn+1

-

?
sn

-

?- -λ1
n -λn−1 -

where sn = λ1
nsn+1 and λn−1sn = 0. Moreover we see that (fn, 0)an+1 =

snfn+1 and λ1
nsn+1 = sn by the following diagrams:

Yn+1 Yn

En+1 En ⊕ En−1

-an+1

?
fn+1

?
(fn,0)

-sn

En+1 En

En+1 En ⊕ En−1

-sn+1

?
1

?
λ1
n

-sn
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Let λ1
n+1(x) = (x,−sn+1(x)), λn(x, y) = sn(x) + λ1

n(y). Then we have the
following commutative diagram:

Y (n+ 1) : ...0 0 Yn+1 Yn... Y0...

E(n+ 1) : ...0 En+1 En+1 ⊕ En En ⊕ En−1... E0...

- -

?

-an+1

?(fn+1,0)

-

?
(fn,0) ?f

0

- -λ1
n+1 -λn -

where E(n + 1) is exact with cokernel (Y (n + 1) → E(n + 1)) in C(X ∗).
Therefore, Y (n) has a C(X -injective)-preenvelope. □

Corollary 3.6. i) Let X be extension closed. If X -injective ⊆ X and every
R-module has a monic X -injective-preenvelope with kernel in X (and (X ,X⊥)
is a cotorsion pair), then every bounded complex has an a monic exact C(X -
injective)-preenvelope (which is also in εX−injective ⊆ C(X -injective)) with ker-
nel in C(X ∗). Thus εX−injective and C(X − injective) bounded complexes are
identical if (X ,X⊥) is a cotorsion pair .
ii) If (X ,X⊥) is a complete cotorsion pair, then every bounded complex in
C(X ∗) has an εX−injective-preenvelope.

We know that the direct (inverse) limit of exact complexes is also exact. Then
we can give the following theorem.

Theorem 3.7. Let X be closed under extensions. The following are satisfied:
i) If every R-module has a monic (epic) X -injective (projective)-preenvelope
(precover) with cokernel (kernel) in X , then every left (right) bounded com-
plex in C(X ∗) has a monic (epic) exact C(X -injective (projective))-preenvelope
(precover) (which is also in εX−injective(projective) if (X ,X⊥) ((⊥X ,X )) is
a cotorsion pair). Moreover if X -injective (projective) ⊆ X , then every left
(right) bounded complex has a monic (epic) exact C(X -injective (projective))-
preenvelope (precover).
ii) If every R-module has a monic (epic) X -injective (projective)-preenvelope
(precover) with cokernel (kernel) in X , then every right (left) bounded complex
in C(X ∗) has a monic (epic) exact C(X -injective(projective))-preenvelope (pre-
cover).
Therefore every right (left) bounded X -injective (projective) complex in C(X ∗)
is exact (which is also in εX−injective(projective) and every right (left) bounded
complexes in C(X ∗) has an εX−injective(projective)-preenvelope (precover) if (X ,
X⊥) ((⊥X ,X )) is a cotorsion pair). Moreover if X -injective (projective) ⊆ X ,
then every right (left) bounded complex has a monic (epic) exact C(X -injective
(projective))-preenvelope (precover).

Proof. i) Let Y : ... → 0 → Y 0 → Y 1 → ... and E(n) be a C(X -injective)-
preenvelope of Y (n) : ...→ 0→ Y 0 → ...→ Y n → 0→ .... Then lim←−Y (n) = Y .

By Lemma 3.5, Y (n) has a C(X -injective)-preenvelope E(n) such that 0 →
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Y (n)→ E(n) is exact. Then by Theorem 1.5.13 in [3] and the proof of Lemma

3.5 0→ lim←−Y (n)→ lim←−E(n) is exact with cokernel lim←−
E(n)
Y (n) ∈ C(X ∗) which is

also a direct transfinite limit of DG(X )-injective-projective complexes. Since
Ext1(AB , lim←−E(n)) = 0 where A

B ∈ C(X ∗) by Lemma 2.3 in [9], lim←−E(n) is an

exact C(X -injective)-preenvelope of Y. The other part is also proved similarly
using C(X -projective) is closed under direct transfinite limits by Theorem 1.2
in [4].
ii) Let Y : ... → Y2 → Y1 → Y0 → 0 → ... and E(n) be a C(X -injective)-
preenvelope of Y (n) : ... → 0 → Yn → ... → Y1 → Y0 → 0 → .... Then
lim−→Y (n) = Y . By Lemma 3.5, Y (n) has a C(X -injective)-preenvelope E(n)

such that 0 → Y (n) → E(n) is exact. Then by Theorem 1.5.6 in [3] 0 →
lim−→Y (n) → lim−→E(n) is exact with cokernel lim−→

E(n)
Y (n) ∈ C(X ∗) (which is also

in DG(X )-injective-projective if (X ,X⊥) is a cotorsion pair). Since lim−→E(n)

is also an inverse transfinite limit of some bounded X -injective complexes,
Ext1(AB , lim−→E(n)) = 0 where A

B ∈ C(X ∗). So lim−→E(n) is an exact C(X -
injective)-preenvelope of Y. □
Corollary 3.8. i) Let X be closed under extensions. If every R-module has a
monic (epic) X -injective (projective)-preenvelope (precover) with cokernel (ker-
nel) in X , then every complex in C(X ∗) has a monic (epic) exact C(X -injective
(projective))-preenvelope (precover) (which is also in εX−injective(projective) if

(X ,X⊥) ((⊥X ,X )) is a cotorsion pair). Moreover if X -injective (projective)
⊆ X , then every complex has a monic (epic) exact C(X -injective (projective))-
preenvelope (precover) (which is in εX−injective (εX−projective) if (X ,X⊥) ((⊥X ,
X )) is a cotorsion pair, thus εX−injective(projective) and C(X -injective (projec-
tive)) complexes are identical).
ii) If (X ,X⊥) is a complete cotorsion pair, then every complex in C(X ∗) has
a monic εX−injective-preenvelope.

Example 3.9. Let X be a class of R-modules closed under quotients, exten-
sions and direct sums (for the existence of such classes, if X is a class of injective
modules on a hereditary noetherian ring which is constructed in [8], then X is
closed under quotients, extensions and direct limits and moreover if X is the
class of min-injective modules and simple ideals of ring R are projective, then
it is closed under quotients, extensions and direct sums). If A and B are in
X such that ϕ : A → B is a homomorphism, then by Theorem 2.10 in [6], we
have monic X -injective-preenvelopes such that f : A → EA and g : B → EB

with cokernels in X . Then there exists a homomorphism s : EA → EB such
that gϕ = sf . Using Lemma 3.5 we can determine an exact C(X -injective)-
preenvelope E(1) of complex Y (1) as follows:
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Y (1) : ...0 0 A B 0...

E(1) : ...0 EA EA ⊕ EB EB 0...

-

?

-

?

-ϕ

?

(f,0)

-

?

g

- -α -β -

where α(x) = (x,−s(x)) and β(x, y) = s(x)+y. Then every complex in C(X ∗)
has a monic exact C(X-injective)-preenvelope by Corollary 3.8.
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