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ABSTRACT. Let X be a class of R-modules. In this paper, we investi-
gate X-injective (projective) and DG-X-injective (projective) complexes
which are generalizations of injective (projective) and DG-injective (pro-
jective) complexes. We prove that some known results can be extended
to the class of X-injective (projective) and DG-X-injective (projective)
complexes for this general settings.

Keywords: Injective (Projective) complex, precover, preenvelope.
MSC(2010): Primary: 18G35.

1. Introduction

Throughout this paper, R denotes an associative ring with identity and all
modules are unitary. Let X be a class of R-modules. An R-module E is
called X-injective (see [0]), if Ext'(B/A,E) = 0 for every module B/A € X
or equivalently if F is injective with respect to every exact sequence 0 —
A — B — B/A — 0 where B/A € X. Dually we can define an X-projective
module. In Section 2, we define and characterize X-injective, X-projective,
DG-X-injective and DG-A-projective complexes which are generalizations of
injective, projective, DG-injective and DG-projective complexes, respectively
(see [1] and [2]). By [2] we know that (¢,DG-injective) is a cotorsion pair. We
denote the class of all X-complexes, that is, exact complexes with kernel in X,
by ex, (in [5] the same class is denoted by X'). We prove that if X is extension
closed, then ey (tey) = DG-X-injective (projective) which is proved in [7]
when (X, X1) is a cotorsion pair.

In the last section, we investigate when a complex has an exact C(X-
projective (injective))-precover (preenvelope). We know that an injective (pro-
jective) complex is exact, thus we give some conditions that an X-injective (pro-
jective) complex is exact and in particular in €x_injective(projective): We Prove
that if X-injective (projective)C X and (X, X-injective) ((X-projective, X)) is a
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X-injective and X-projective complexes 1222

complete cotorsion pair, then every complex has a monic (epic) C'(X-injective

(projective))-preenvelope (precover) in €x_injective (Ex—projective) and hence

C(X-injective (projective)) and €x _injective(projective) COMplexes are identical.
Since every complex has an injective and projective resolution, we can com-

pute the right derived functors Ext'(X,Y) of Hom(—,—) where Hom(X,Y)

is the set of all chain maps from X to Y.

Moreover Hom(X,Y) is the complex defined by Hom(X,Y), = H (X_p,Yq).

ptg=n
(See for more details and the other definitions [, 2, 3, 7]).

2. DG-X-injective and DG-X-projective complexes
We begin with the following generalized definitions.

Definition 2.1. Let X be a class of R-modules. A complex C : ... —
cnl — On — O™t — . is called an X*-(cochain) complex, if C* € X
foralli € Z. A complexC :... — Cpy1 — C, — Cp,_1 —> ... is called

an X*-(chain) complex, if C; € X for all i € Z. The class of all X*-complexes
is denoted by C(X™).

Definition 2.2. A complex C is called an X-injective complex, if Ext!(Y/X,
C) = 0 for every complex Y/X € C(X*). Equivalently, a complex C is an
X-injective complex if for any exact sequence 0 - X —Y — Y/X — 0 with a
complex Y/X € C(X*), the sequence Hom(Y,C) — Hom(X,C) — 0 is exact.

Dually we can define an X-projective complex. A complex C is called an
X-projective complex, if Ext!'(C,X) = 0 for every complex X € C(X*), or
equivalently a complex C is an X-projective complex if for any exact sequence
0 — X — A— B — 0with a complex X € C(X*), the sequence Hom(C, A) —
Hom(C,B) — 0 is exact. We denote the class of all X-injective (projective)
complexes by C(X-injective (projective)).

Definition 2.3. Let ¢ be the class of exact complexes. Then we can define €y
as the class of exact complexes with kernels in X.

Example 2.4. If P is an X-projective (X-injective) module, then P : ... —
0— P — P —0—0— ..is an X-projective (X-injective) complex.
Moreover any direct sum (product) of X-projective (X-injective) complexes is
again an X-projective (X-injective) complex. Since C(X-injective (projective))
is closed under extensions, every bounded exact complex Y : ...0 = Y0 — ... —
Y™ — 0... with kernels an X-injective (projective) module is in C(X-injective
(projective)).

Since every right (left) bounded exact complex with kernels X-injecti- ve
(projective) module is an inverse (direct) limit of bounded exact complexes
with kernels X-injective (projective) module, then every left (right) bounded
exact complex with kernels X-injective (projective) module is in C(X-injective
(projective)).
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Moreover if X-injective C X, then every € x _injective cOmplex is a direct sum
of X-injective complexes, which is the same as injective complexes. Similarly,
if X-projective C X, then every €x_projective complexes is a direct sum of
X-projective complexes. Thus, €x_injective(projective) & C(X-injective (pro-
jective)).

Notice that if P is an X-injective (X-projective) module and P is not in
the class X', then P is an X-injective complex, but not an X*-complex. So an
X-injective (projective) complex may not be an X*-complex.

Lemma 2.5. Let X be an X-injective complex such that % e C(X*) (or
¥ € C(x*)) where E(X) is an injective envelope of X. Then X = E(X) and
so it is an injective complex (X is a direct summand of Y).

Proof. We know that every complex has an injective envelope, so X has an
injective envelope F(X). Then F(X) is an injective complex, and so it is
exact. We have the following commutative diagram:

0 - X —— E(X)
idy

»

X

such that ¢i = id,. Therefore X is a direct summand of E(X). So X is an
injective complex and hence it is exact. Similarly, if % € C(X*), then we can
prove that X is a direct summand of Y. O

Definition 2.6. A complex I is called DG-X-injective, if each I™ is X-injective
and Hom(E,I) is exact for all E € ex. A complex I is called a DG-X-
projective, if each I™ is X-projective and Hom(I, E) is exact for all £/ € ex.

Lemma 2.7. Let A 25 B %5 C be an exact sequence of modules (complezes)
where Kerp € X (C(X*)). Then for all X-projective modules (complezes) I,
Hom(I,A) — Hom(I,B) — Hom(I,C) is ezact.

Proof. By the exact sequence 0 — Kerf B4 C, 0— Hom(I,
Ker) — Hom(I,B) — Hom(I,C) is exact. We have the following com-
mutative diagram:

AL g —— 0
v,
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such that 8f = g. Since I is an X-projective module (complex) and Ker§ € X
(C(x*)),Hom(I, A) — Hom(I,B) — Hom(I,C) is exact. O

Dually we can give the following lemma:

Lemma 2.8. Let A 5 B - C be an ezact sequence of modules (com-
plexes) where % € X(C(X*)). Then for all X-injective modules (complexes)
I, Hom(C,I) — Hom(B,I) — Hom(A,I) is exact.

Example 2.9. Let I =.... — 0 — I — 0 — 0 — ... where I? is an X-
injective (X-projective) module. Then I is a DG-X-injective (DG-X-projective)
complex.

—1 0 1 2
Proof. Let B : ... — B2 %25 g0 4y pt 4y g2 & p3 o e exact
and Kerd" € X, then Hom(E,I) & ..Hom(E? I°) — Hom(E',I°) —
Hom(E°, I°).... By Lemma 2.8, Hom(E, I) is exact. O
Lemma 2.10. If a complex X : ... — X,41 — X;y — Xpo1 —> ... s

an X -injective (X -projective) complex, then for alln € Z X, is an X-injective
(X -projective) module.

Proof. Let 0 — N —5 M be exact such that % e XYand a: N — X, be
linear. Form the pushout:

N M
v
X, Lo Xn &M
A

where A = {(a(n), —i(n)) : n € N}. By the following diagram:

0 XnJrl — XnJrl >~ 0 > 0
Y Y
Y
M® X, M
0 - X, — 0
A N
Y \ Y
0 anl — Xn*l 0 0
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we have the exact sequence 0 — X — T — S — 0 where T : ... —
Xpgo — Xppg — M 5 ¥, . and S:. —0—0— ¥ —

0.... Since X is an X — injective complex, Ezt!(S,X) = 0, and so 0 —
Hom(S,X) — Hom(T,X) — Hom(X,X) — Exzt'(S,X) = 0. Therefore
there exists 3, : T,, = % — X, such that 8,6, = 1. So
B"0" (a(n)) = a(n)
B"((e(n),0) + A) = a(n)
B"((0,i) + A) = a(n)
B"Yni(n) = a(n)
and hence 8"v,% = a. So X, is an X-injective module. ]
The following example shows that if X : ... = X471 — X,, = X;,-1 — ... is

a complex such that X,, are X-injective (X-projective) modules for all n € Z,
then X does not need to be an X-injective (X-projective) complex.

Example 2.11. Let R € X be an X-injective module and f: R — R® R be
a morphism such that f(a) = (0,a) and g : R® R — R be a morphism such
that g(a,b) = a. Then gf = 0 where g # 0. Consider the following diagrams:

.0 R ROR —— 0.
f g
0 - 0 - R - 0
f
.0 R ROR 0.

]

.0 R®&R —— R&R 0...
Then we have the diagram:
.0 R——~ RaR 0..

]

RO®R —— ROR 0...

T

...0 ~ 0 - R 0...

such that g1 = 0. But this is impossible. So R cannot be an X-injective
complex. Dually, we can give an example for X'-projectivity.
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Remark 2.12. There exists a module which is both in X and an AX’-injective
module. Let X be a class of injective modules and R be an injective module,
then R is both in X and an X-injective module. Moreover let M be a flat
cotorsion module (see Theorem 5.3.28 in [3] for the existence of such a module)
and X be a class of flat modules, then M is both in X and an X-injective
module.

Lemma 2.13. If] € ¢%, then each I"™ is an X -injective module for eachn € Z.

Proof. Let S C M be a submodule of a module M with % ceXanda:S — 1,
be linear. Form the pushout:

S

i Ime M
In....Q.., i =I"®os M

where A = {(a(s),—s) : s € S}. Thus iy is one-to-one the same as i. Then
I:..— Il s I"egM — I" — "2 5 | is a complex.

0 - Infl - Infl > 0 > 0
! M
0 - J" ~ I"®g M - — 0
S
4 Y
M
0 > TN+1 - n+1 - - 0
I I 5
Therefore, we have an exact sequence 0 — I — I — E — 0 where
EH% H% — 0 — 0 — 0 — ... and so we have an exact

sequence 0 — Hom(E,I) — Hom(I,I) — Hom(I,I) — Ext'(E,I) =0
since I € £%. This implies that we can find f : I — I with ff = 1. Therefore,
there exists a function ?n I @g M — I™ with ?nf” =1. So,
T 1(als) = als)
F((al5),0) + 4) = a(s)
S (0,5) + A) = afs)
flini(s) = a(s)
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and hence f,i1i = o and thus each I"™ € X-injective.
O

Lemma 2.14. Let f: X — Y be a morphism of complexes. Then the exact
sequence 0 — Y — M (f) — X[1] — 0 associated with the mapping cone
M(f) splits if and only if [ is homotopic to 0.

Proof. The proof follows from [2]. O

Lemma 2.15. Let X and I be complexes. If Ext'(X,I[n]) =0 for alln € Z,
then Hom(X, I) is exact.

Proof. Since Ext!'(X,I[n]) = 0, if f : X[-1] — I[n] is a morphism, then
0— I[n] - M(f) = X — 0 splits.

By Lemma 2.14, f : X[—1] — I[n] is homotopic to zero for all n. So
ft+ X — I[n + 1] is homotopic to zero for all n € Z. Thus Hom(X, ) is
exact. g

In [5] the following proposition is proved in the case when (X, X*) is a cotorsion
pair.

Proposition 2.16. Let X be extension closed. Then ex*(*ex) = DG-X-
injective (projective).

Proof. By Lemma 2.13 and Lemma 2.15 we have that ex*(tex) C DG — X-
injective (projective). Let I € DG — X-injective. Therefore Hom(X, I) is exact
for all X € ey and so for all n, f: X — I[n] is homotopic to zero. By Lemma
214 A:0— I[n] - M(f) — X[1] — 0 is split exact. We know that any exact
complex B:0— I[n] =Y — X[1] — 0 splits at module level since the I[n|™
are X-injective modules and X™ € X. Therefore the exact sequences A and B
are isomorphic. It is known that Ext!(C, A) = 0 if and only if every short exact
sequence 0 — A — B — C — 0 splits. This implies that Ext! (X, I[n]) = 0
and thus the converse inclusion is proved. O

If we use Proposition 2.16, then we can give the following example since X
and ex1(tey) are extension closed and every right(left) bounded complex is
a direct (inverse) transfinite limit of bounded complexes.

Example 2.17. Let X be extension closed. Then every X-projective (in-
jective) complex is DG-X-projective (injective). Every right (left) bounded
complex I where I; is an X-projective (injective) module is a DG-X-projecti-
ve (injective) complex. Moreover € x i jective(projective) © DG-X-injective (pro-
jective) since the direct (inverse) limit of DG-X-injective complexes is also an
inverse (direct) transfinite limit of bounded & X—injective(projective) COMplexes.

ex and DG-X-injective cannot be a cotorsion pair if X is extension closed.
We have the following theorem:



X-injective and X-projective complexes 1228

Theorem 2.18. Let X be extension closed and we have enough X -object. Then
(DG-Y-projective,ey) is cotorsion pair where Y = X-injective.

Proof. Tt follows from the proof of Proposition 3.6 in [5] and Proposition 2.16.
O

3. C(X-projective)-precovers and C(X-injective)-preenvelopes

In this section we prove that if a complex has a C(X-projective)-precover
or C(X-injective)-preenvelope in C(X™*), then such precovers or preenvelopes
are homotopic. Moreover we investigate when a complex has an exact C(X-
projective (injective))- precover (preenvelope) and we give some conditions
when an X-projective (injective) complex is exact and in particular in e x _proje—

ctive(injective) -+

Lemma 3.1. i) Let f : X — Y be a chain morphism, let X be an X* complex
and let' Y be an X —injective complex. Then f is homotopic to zero. Moreover
if a complex has a C(X-injective )-preenvelope in C'(X*), then such preenvelopes
are homotopic.

it) Let f : X — 'Y be a chain homomorphism such that Y is an X* complex
and X is an X-projective complex. Then f is homotopic to zero. Moreover if
a complex has a C(X-projective)-precover in C(X*), then such precovers are
homotopic.

Proof. i) Let id : X — X, then we have the following exact sequence:

0 - X —— M(id) - X[1] -0

f

»

Y

where gi = f. Let ¢} : X[1]" — M(id)™ be a canonical injection and s™ :
X[1""! — Y ! such that s® = ¢" 4}~ for all n € Z . Let u be the
differential of the complex M (id). Then we have the following diagram

n—2 n—1
Xn—l EBXTL—Q u > X'rL D X'rL—l u > Xn+1 ey Xn
gn72 gnfl qn

n—2 n—1

Yn—l

Yn—2 Y’n

Sn+1/\n+,yn71$n _ gni?kn_'_,ynflgnfli?—l _ gnl?/\n+gnunflz?ll—1 — gn(z?)\n_F
unfli?*l) _ gnln _ fn

ii) Consider id : Y — Y and the exact sequence 0 — Y[—1] — M (id)[-1] —
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Y — 0. Since X is an X — projective complex, we have the following com-
mutative diagram:

X

where mg = f. Let 7} : M (id)[—1]" — Y[—1]" be a projection for all n € Z.
Then if we take as s" = 7l'g", then for all n € Z, s"TI\" + 471" = f" where
A and  are boundary maps of the complexes of X and Y, respectively. So f
is homotopic to zero. O

Proposition 3.2. Let (*X,X) (X,X1)) be a cotorsion pair. Then every
X -projective (X -injective) complex is exact.

Proof. By [2] we see that every X-projective (injective) complex has an exact
precover (preenvelope) with kernel (cokernel) in DG-injective (projective). The
result follows. O

Lemma 3.3. Let X be extension closed (and (tX,X) be a cotorsion pair).
Let every R-module have an epic X -projective-precover with kernel in X. Then
every bounded complex in C(X*) has an epic exact C(X-projective)-precover
(which is also in €x_projective) With kernel in C(X*) (which is also in DG-X -
projective-injectivez(&;(,pmjecme)L). Thus every bounded X -projective com-
plex in C(X*) is exact (which is also in e x_projective and every bounded complex
in C(X*) has an €x_projective-Precover).

Proof. Let Y(n): ... 50— Y? =Yl 5 . V" 50— ... C(X*). We use
induction on n. Let n = 0, then we have the following commutative diagram:

id

D(O) .. — 0 > PO >~ PO - 0
Y0):... — 0 > YO0 -0 - 0 .

where P® — Y? — 0 is an X-projective-precover in X with kernel in X since
X is extension closed, D(0) is exact and Ker(D(0) — Y (0)) € C(X*). We
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consider the following diagram which is commutative:

0 1 A"
D(n):..0 - p0 2 s pogpl A pn-lg pn L opn
lf” l(o,fl) J(o,f") {
Y(n):..0 - Yo @ Ly yn 0...

where A7 is onto, D(n) is an exact C(X-projective)-precover of Y (n) such
that Ker(D(n) — Y(n)) € C(X*) and the P* — Y* — 0 are X-projective-
precovers in X with kernels in X for 1 < ¢ < n. Since D(n) = Y(n) —» 0
and Pntl — Y"+1 5 0 are C(X-projective)-precovers, we have the following
commutative diagram:

D(n) —— pot1

Y(n) — yrtt

Thus we have the diagram:

0 n—1 )\111
D(n): ...0 - p0 —2 s pog pl s pn-lg pn L pno
Pl 0 -0 - 0... ~ prtl — pntl

where s?2A7 = s! and s!A"7! = 0. Moreover we see that f"*1s! = a"(0, f7)
and f"t1s%2 = 0 by the following diagrams:
1

Pnfl @Pn id > Pn+1

(0,5™) Jf"“

Yn Yn+1

2
P’ﬂ L, PnJrl

fn+1

O - Yn+1
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Let A" (z,y) = (\P(z,9), s (2, ), AN (z,y) = s*(z) — y. Then we have the
commutative diagram:
n+1

Dn+1):... — p0  —— pn=lg pn A pra prtl 2 prdl

Jfo l(Oyf") J(O,f"“) \

Y(n+1):.. — YO0 yn — syt 0...

a

where Ker(D(n +1) — Y (n+ 1)) € C(X*) and since N} is onto, Im(\") =
Ker(A\"™), Im(A"~') = Ker(\") and D(n) is exact, D(n+1) is exact. There-
fore, Y'(n) has a C(X-projective)-precover. O

The following corollary is a direct consequence of Lemma 3.3.

Corollary 3.4. i) Let X be extension closed. If X-projective C X and every
R-module has an epic X-projective-precover with kernel in X (and (*X,X)
is a cotorsion pair), then every bounded complex has an an epic exact C(X-
projective)-precover (which is also in € x —projective) With kernel in C(X* ). Thus
if (J-X,X) s a complete cotorsion pair, then €x_projective bounded complexes
and C(X-projective) bounded complexes are identical.

i)If (L X, X) is a complete cotorsion pair, then every bounded complex in C(X*)
has an €x_projective-precover.

Lemma 3.5. If X is extension closed and every R-module has a monic X -
injective-preenvelope with cokernel in X (and (X, X~ ) is a cotorsion pair), then
every bounded complex in C(X*) has a monic exact C(X -injective)-preenvelope
(which is also in € x _injective) With cokernel in C(X*) (which is also in DG-X -
injective-projective="(ex injective) )-

Thus every bounded X -injective complex in C(X*) is exact (which is also in
Ex—injective and hence every bounded complex in C(X*) has an €x_injective-
preenvelope).

Proof. Let Y(n) : ... 2 0—>Y, > Y, 1 — .. > Y = 0— ... We use
induction on n. Let n = 0, then we have the following commutative diagram:

Y(0):...0 -0 - Yy - 0...

E(0): .0 — Ey —

> EO > (...

where 0 — Yy — Ej is a monic preenvelope in X with cokernel in & and thus
E(0) is an exact preenvelope of Y (0) with cokernel in C'(X*). We consider the
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following diagram which is commutative:

Y(n):..0 — 0 Y, — Y, 0
l l(.ﬂuo) lfo
)‘i /\nfl
E(Tl) : 0 — En — En @Enfl — e - EO 0

where the 0 — Y; — E,; are X-injective-preenvelopes in & with cokernel in X
for 1 < i < n, E(n) is exact with cokernel (Y (n) — E(n)) € C(X*). Since
0—-Y, > E,and 0 - Y,y1 — FE,41 are C(X-injective)-preenvelopes, we
have the following commutative diagram:

b<

nt1 — Y (n)

En+1 - E(n)
Then we have the diagram:
EnJrl 0 — En+1 EnJrl > 0 >
Sn41 Lsn l
AL An—1
E(n):..0 E, E,®E, 1 -

where s, = Als,11 and A\, 15, = 0. Moreover we see that (f,,0)a,11 =
Spfar1 and ALs, 11 = s, by the following diagrams:

An 41
Yn+ 1 Yn

tfn#»l

En+1 i’ En EBEn—l

(fn,0)

EnJrl
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Let AL 1 (2) = (2, —snt1(2)), An(z,y) = sn(x) + AL(y). Then we have the
following commutative diagram:

An 41

Y(n4+1):.0 — 0 Yot - Y. Yo...
l . | (Fasr0) |0 [

n41 A

E(TL+ ].) 1.0 — En+1 —_— En+1 @En > En @Enfl... —_— E()

where E(n + 1) is exact with cokernel (Y(n + 1) — E(n + 1)) in C(X™*).
Therefore, Y (n) has a C(X-injective)-preenvelope. O

Corollary 3.6. i) Let X be extension closed. If X-injective C X and every
R-module has a monic X -injective-preenvelope with kernel in X (and (X, X+)
is a cotorsion pair), then every bounded complex has an a monic exact C(X-
injective)-preenvelope (which is also in € x —injective © C (X -injective)) with ker-
nel in C(X*). Thus ex_injective and C(X — injective) bounded complezes are
identical if (X,X~) is a cotorsion pair .

i) If (X,XL) is a complete cotorsion pair, then every bounded complex in
C(X*) has an €x_injective-preenvelope.

We know that the direct (inverse) limit of exact complexes is also exact. Then
we can give the following theorem.

Theorem 3.7. Let X be closed under extensions. The following are satisfied:
i) If every R-module has a monic (epic) X-injective (projective)-preenvelope
(precover) with cokernel (kernel) in X, then every left (right) bounded com-
plex in C(X*) has a monic (epic) exact C(X-injective (projective))-preenvelope
(precover) (which is also in €x_injective(projective) if (X, x1) (Fx,X)) is
a cotorsion pair). Moreover if X-injective (projective) C X, then every left
(right) bounded complex has a monic (epic) exact C(X-injective (projective))-
preenvelope (precover).

it) If every R-module has a monic (epic) X-injective (projective)-preenvelope
(precover) with cokernel (kernel) in X, then every right (left) bounded complex
in C(X*) has a monic (epic) exact C(X -injective(projective))-preenvelope (pre-
cover).

Therefore every right (left) bounded X -injective (projective) complex in C(X*)
is exvact (which is also i €x _injective(projective) and every right (left) bounded
complexes in C(X*) has an € x_injective(projective) -Preenvelope (precover) if (X,
XL) ((Fx,X)) is a cotorsion pair). Moreover if X -injective (projective) C X,
then every right (left) bounded complex has a monic (epic) exact C(X -injective
(projective) )-preenvelope (precover).

Proof. i) Let Y : ... = 0 — Y% - Y! — ... and E(n) be a C(X-injective)-
preenvelope of Y(n) : .. 50— Y% — ... - Y" - 0— ... Then MY(n) =Y.
By Lemma 3.5, Y(n) has a C(X-injective)-preenvelope E(n) such that 0 —



X-injective and X-projective complexes 1234

Y (n) — E(n) is exact. Then by Theorem 1.5.13 in [3] and the proof of Lemma
350— MY(?’L) — ME(n) is exact with cokernel Mggzg € C(X*) which is
also a direct transfinite limit of DG(X)-injective-projective complexes. Since
Ea:t%%,éi_mE(n)) = 0 where 4 € C(X*) by Lemma 2.3 in [9], @E(n) is an
exact C(X-injective)-preenvelope of Y. The other part is also proved similarly
using C(X-projective) is closed under direct transfinite limits by Theorem 1.2
in [4].

i)Let Y : ... > Y, =2 Y, =Yy = 0— ... and E(n) be a C(X-injective)-
preenvelope of Y(n) : ... = 0 =Y, - ... Y1 - Y - 0 — ... Then
lz_>mY(n) =Y. By Lemma 3.5, Y(n) has a C(X-injective)-preenvelope E(n)
such that 0 — Y (n) — E(n) is exact. Then by Theorem 1.5.6 in [3] 0 —

lz_>mY(n) — lz_r@E(n) is exact with cokernel lz_r@% € C(X*) (which is also

in DG(X)-injective-projective if (X, X1) is a cotorsion pair). Since lz_>mE(n)
is also an inverse transfinite limit of some bounded X-injective complexes,
Extl(%,lzl}E(n)) = 0 where 4 € C(X*). So lz_n;E(n) is an exact C(X-
injective)-preenvelope of Y. O

Corollary 3.8. i) Let X be closed under extensions. If every R-module has a
monic (epic) X-injective (projective)-preenvelope (precover) with cokernel (ker-
nel) in X, then every complex in C(X*) has a monic (epic) exact C(X -injective
(projective) )-preenvelope (precover) (which is also in €x _ipjective(projective) if
(X, X1) (F&,X)) is a cotorsion pair). Moreover if X-injective (projective)
C X, then every complex has a monic (epic) exact C(X-injective (projective))-
preenvelope (precover) (IUh’LCh isin EX —injective (EXfprojective) Zf (Xa XJ_) ((J_Xv
X)) is a cotorsion pair, thus € x_injcctive(projective) and C(X-injective (projec-
tive)) complezes are identical).

i) If (X, X+) is a complete cotorsion pair, then every complex in C(X*) has
a MONGC € X —injective -PTEENVElODE.

Example 3.9. Let & be a class of R-modules closed under quotients, exten-
sions and direct sums (for the existence of such classes, if X is a class of injective
modules on a hereditary noetherian ring which is constructed in [3], then X is
closed under quotients, extensions and direct limits and moreover if X' is the
class of min-injective modules and simple ideals of ring R are projective, then
it is closed under quotients, extensions and direct sums). If A and B are in
X such that ¢ : A — B is a homomorphism, then by Theorem 2.10 in [(], we
have monic X-injective-preenvelopes such that f: A - E4 and g : B — Ep
with cokernels in X'. Then there exists a homomorphism s : E4 — Eg such
that g¢ = sf. Using Lemma 3.5 we can determine an exact C(X-injective)-
preenvelope E(1) of complex Y (1) as follows:
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[e3

Es® EpB
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E():.0 —— E4 0...

where a(z) = (z, —s(z)) and S(z,y) = s(z)+y. Then every complex in C'(X™*)
has a monic exact C(X-injective)-preenvelope by Corollary 3.8.
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