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ABSTRACT. In this paper, some KKT type sufficient global optimality
conditions for general mixed integer nonlinear programming problems
with equality and inequality constraints (MINPP) are established. We
achieve this by employing a Lagrange function for MINPP. In addition,
verifiable sufficient global optimality conditions for general mixed integer
quadratic programming problems are derived easily. Numerical examples
are also presented.
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1. Introduction

Consider the following general mixed integer nonlinear programming prob-
lem:

minge g f ()

gi(z) <0,i eI ={1,2,--- ,m}

he(z) =0,eec E={m+1,m+2,--- ,m+p}

X € [ul,vl],l e M,

T; € {pj,pj—Fl,...,qj},j eN

where M NN =0, MUN = {1,...,n}, uj,v € R and u; < v; for any | € M,

Dj,q; are integers and p; < q; for all j € N, f, g;, he are twice continuously dif-

ferentiable functions on an open subset of R™ containing [ [y, [ur, vi] [ [;e v [Ps: 45]-
The mixed integer nonlinear programming problems MINPP are applied to

a very wide range of areas, such as engineering design, computational biology,

MINPP : s.t.
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Sufficient global optimality conditions for MINPP 1238

reliability networks, facility planning and scheduling, combinatorial optimiza-
tion problems etc. For more information, the interested reader may refer to
[ i ) ) ) ) ) ]'

It is very difficult to solve the mixed integer nonlinear programming prob-
lems due to the nonlinear property and mixed variable of the objective func-
tion. Most approaches to solve the mixed integer nonlinear programming prob-
lems are branch-and-bound, decomposition and outer approximation method,
which can be found in [2, 16, &, 4, 5, 3]. Especially Tawarmalani and Sahini-
dis [17] adopted nonlinear convex relaxations via a polyhedral branch-and-cut
approach to solve mixed integer nonlinear programming problems. Ruth and
Floudas [18] have presented ANTIGONE, algorithms for continuous/integer
global optimization of nonlinear equations, a general mixed integer nonlinear
global optimization framework. In recent years the global optimality conditions
become the focus of many researches.

Global optimality conditions of many special cases of MINPP have been es-
tablished by many authors. Some global optimality conditions characterizing
global minimizer of quadratic minimization problem have been discussed in
[1, 12, 13]. Wu [20] presented sufficient global optimality conditions for weakly
convex minimization problems by using abstract convex analysis theory. Suffi-
cient conditions for the global optimality of bivalent nonconvex quadratic pro-
grams involving quadratic inequality constraints as well as equality constraints
were presented in [21] by employing the Lagrange function. Wu and Bai [22]
presented some global optimality conditions for mixed quadratic programming
problems without constraints, their approach is based on a L-subdifferential
and an associated L-normal cone.

Jeyakumar et al. presented global optimality necessary conditions for poly-
nomial problems with box or bivalent constraints using separable polynomial
relaxations in [14]. Jeykumar, Srisatkunrajah and Huy in[15] have presented
some new Kuhn-Tucker sufficiency global optimality conditions for multi ex-
tremal smooth nonlinear programming problems with equality and inequality
constraints. They established Kuhn-Tucker sufficiency criteria for global opti-
mality in terms of the Lagrangian of nonlinear programming problem. Wu et al.
[23] have established some global optimality conditions for quartic polynomial
optimization.

In this paper, we establish some sufficient global optimality conditions for
general mixed integer nonlinear programming problems with equality and in-
equality constraints by employing a Lagrange function, then derive easily veri-
fiable sufficient global optimality conditions for general mixed integer quadratic
programming problems with equality and inequality constraints. We also give
some numerical examples to show the significance of sufficient global optimality
conditions.
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2. Sufficient global optimality conditions for MINPP

In this section, we will derive some sufficient global optimality conditions for
MINPP at a feasible point . We first present some notations and preliminaries
that will be used later in the paper. The real line is denoted by R and the n-
dimensional Euclidean space is denoted by R™. For vectors z,y € R™", x > y

means that x; > y;, for i = 1,...,n. The notation A > B means A — B is
a positive semidefinite matrix and A < 0 means —A > 0. A diagonal matrix
with diagonal elements aq,...,a, is denoted by diag(as,...,a,). M™ is the

set of all symmetric n X n matrices.

For MINPP given in the introduction, we let U = {z = (21,...,2,)T |2, €
[w,v],l € M,z; € {pjapj +1,-- 7Qj}7j €N) D ={z € R"gi(x) <0,i €
I, he(z) = 0,e € E}; S =UND. For given A = (A, -+, \,)T € RT and
= (:ula T 7MP)T € R;D’ let

L(z, A\, p) := f(2) + Z Aigi(z) + Z prehe ().

el ecE
Let z € S, foranyl € M,j € N,
-1, if ;=
(21) %l D= 1, if &, = v R
sign(VL(Z, A\, 1)),  ifw < T <y
—1, if .i‘j :pj
(22) %j = 1 if i‘j =qj 5

sign(VL(z, A\, p))j, ifp; <Zj <gqy
5 (VL(Z, A\, 1)

2. 7, - =
( 3) bwl v — Uy
AN L(T > (VL(7 .
(2.4) be, = max{xj(v (f7)\7ﬂ))y7x3(v '(fv/\ﬁ/v‘))J}’
q; —Pj
(2.5) br: = (b0,

A
where sign(VL(Z, A, 1))k = ¢ 0, (VL& \p)r=0 k=1,2,--- n. For
A, j

T = (ZT1,%0, - ,2n)T €8, let

Sz ={x = (xl,...,xn)T | gi(z) < 0,he(z) =0,u; < a; <y,
(2.6) zj=2;Viel,ec E,l€ M,je N}.
If Z is a local minimizer of MINPP, then Z must be a local minimizer of f(x)

on Sz. Moreover, if a certain constraint qualification holds then the following
KKT conditions holds:
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(3X € R, n € RP), Z)\,»gi(i) = 0,and

(2.7) (VL(z,\, )T (x — ) > 0,V € H [ur, vi] H {z,}.
leM jEN

The condition (2.7) can equivalently be written as

(2.8) (GAE€RYT, e RP),> Nigi(z) = 0,and Z,(VL(Z, A, 1)), < 0,V € M.
icl
Here we call condition (2.8) as the KKT local necessary conditions for prob-
lem MINPP. In the following, we will discuss some KKT sufficient global op-
timality conditions for problem MINPP. Let Q = diag(aq, s, - ,ay) be a
diagonal matrix in M"™. For MINPP, define a quadratic function h := R" — R
by

h(zx) == %CL‘TQJJ +(VL(z,\ 1) — Qx) "',

where A € R, i € RP. Let Q = diag(ay,- -+ ,a,), where & = min{0,a;} fori €
M;a; = oy for i € N and let

(2.9) U:= H [ug, vr] H[pj,qj].
leM JEN

Now we derive sufficient conditions of global optimality for MINPP whenever
all functions are twice continuously differentiable functions on an open subset
of R™ containing U.

Theorem 2.1. (Global Sufficient Conditions for MINPP) Let z € S,
suppose that there exist A = (A1, -, )T € R, = (1, ,pp)" € RP and

a diagonal matriz Q = diag(a, a9, -+ , ), such that
Yier Migi(T) =0
[SC1] diag(bz) =< %Q

V2L(z, A\ ) —Q = 0,Vr € U

then T is a global minimizer of problem MINPP. Moreover if for each xz € U,
V2L(z, A\, 1) — Q = 0, then T is unique.

Proof. Since for each z € U, YQL(x,A,u) — @ = 0, we have that ¢(x) :=
L(z, A\, ) — h(x) is convex on U. It is easy to see that V¢(z) = 0. So 7 is a
minimizer of convex function ¢(z) on convex set U, i.e., ¢p(z)—¢(Z) > 0,Vz € U.
Thus

(2.10) L(z, A\, ) — L(Z, A\, ) > h(x) — h(z),Vx € U.
As Y e Nigi(x) <0,Vz € D, Y7o ANigi(T) = 0, we have
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F@)— 1@ > 1)+ Y Aane) + 3 pehe(@) — (2)
i€l ecE
= f(z) + Z)‘igi(x) + Z prehe(z) — (f(2) + Z Aigi(Z) + Z tehe(2))
i€l eel i€l eeE

= L(I, Av:u) - L(‘fa A,ﬂ),vm eD.
By (2.10), we have
f(@) = f(Z) = h(x) — h(T),Vz € S,
where
"1
(2.11) h(.’L‘) — h(i‘) = Z[Qak(l‘k — .’Ek)Q + (VL(z, )\7M))k(-73lc — ik)]
k=1
In the following, we prove
-1
(2.12)2[5%(% — 21)? + (VL(Z, M\, ) g (21, — )] > 0, for any z € U.
k=1
if and only if for any k =1,...,n,

1
(2.13) iak(xk —71)2 + (VL(Z,\, 1) g (zx — Tx) > 0, for any z € U.
In fact, if there exist an Iy € M and a y;, € [u, v;] such that

1
50”0 (ylo - ‘ilo)2 + (VL('fa )"M))lo (ylo - ‘flo) <0,

then let z; = y;,, when [ = lp, l € M and z; = 7; when [ # [y, | € M, let
z; =z; for all j € N, then @ = (z1,...,2,)" € U and we have that

n

S Ran(en — 5)2 + (VL@ A 1) — )]

2
k=1
1 . ) _
= ialo (ylo - xlo) + (VL('I’ /\hu))lo (ylo - xlo) <0,
which contradicts (2.12). If there exist a jo € N and a y;, € {p;,--- ,¢;} such

that )
§ajo (yjo - JE‘]'0)2 + (VL('fa /\mu))jo (yjo - ijo) <0,
then let z; = Z; for all I € M, and x; = y;, when j = jo, j € N, x; = Z; when
j # jo, j €N, then x = (21,...,7,)" € U and we have that

n

S [l — 7% + (VLA )k — 72)]
k=1

1 _ _ _
= iajo (yjo - xjo)z + (VL(xa )‘vﬂ))jo (yjo - xjo) <0,
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which contradicts (2.12).

Then, we verify that (2.13) is equivalent to condition diag(bz) = %Q We
consider the following cases:

Case 1. If 7} =y, then (2.13) is equivalent to

1

§al(xl —Z;) + (VL(Z, A\, p)); > 0, for any x; € (ug, vi].
If oy > 0, then (2.13) is equivalent to (VL(Z, A\, u)); > 0; If oy < 0, then
(2.13) is equivalent to (VL(Z, A, ) > *W' So when Z; = w;, (2.13) is
equivalent to

FUVL(E,\ 1)), < min{0, W}.

Case 2. If T; = v;, then (2.13) is equivalent to

1
5011(201 —2) + (VL(Z, A, ) <0, for any z; € [ug,vr).
If @y > 0, then (2.13) is equivalent to (VL(Z, A, u)); < 0; If oy < 0, then (2.13)
is equivalent to (VL(Z, A, 1)) < W So when Z; = v, (2.13) is equivalent
to

FUVL(E,\ 1)), < min{0, W}.

Case 3. If u; < T < vy, when x; € [y, Z;), (2.13) is equivalent to

1
5041(391 —Z1) + (VL(z, A\, 1)) <0,

when 2; € (Z;,v;], (2.13) is equivalent to

1
sl =) + (VL@ A ) = 0.

So if w; < T < vy, (2.13) is equivalent to
(VL(@/\,N))J = 07 [67] 2 07
and also is equivalent to

F/(VL(Z,\, 1)), < min{0, W}.

Case 4. If Z; = p;, then (2.13) is equivalent to
1 _ _
iaj(xj —Z;)+ (VL(Z, A\, p)); >0, for any z; € {p; +1,p; +2,--- ,¢;}.

If a; > 0, (2.13) is equivalent to (VL(Z, A\, pn)); > —5; if a; < 0, (2.13) is

equivalent to (VL(Z, A, p)); > —%. So if Z; = pj, (2.13) is equivalent to

= - .o (g5 —pi)ay
T (VL(Z, A\, p))j < mln{?J7 %}
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Case 5. If Z; = g¢;, then (2.13) is equivalent to
1
§ozj(:13j —zj)+ (VL(z,\ pn)); <0, for any z; € {p;,p; +1,- ;— 1}
If oy > 0, (2.13) is equivalent to (VL(Z,\,p)); < % if a; < 0, (2.13) is
equivalent to (VL(Z, A\, p)); < M So if z; = g;, (2.13) is equivalent to

~ _ a5 (g —pj)ey
(VLA )y < min{ %, =Py
Case 6. If z; € {p; +1,---,¢; — 1}, when z; € {p;,---,z; — 1}, (2.13)
is equivalent to a;(z; — Z;) + (VL(Z, A\, p)); < 0; when z; € {Z; +1,---,¢;},
(2.13) is equivalent to $a;(z; — ;) + (VL(Z,A, 1)); > 0. So (2.13) is equivalent
to

~F < (VL@ A ), € Fay 2 0,

and also is equivalent to

z;(VL(Z, A\ 1)) < mln{ W}

By the above discussion, we know that [SCl] implies that f(x) — f(Z) > 0 for
any ¢ € S, i.e., T is a global minimizer of problem MINPP.

Moreover if for each © € S, VL(x, A\, u) — Q > 0, then ¢(z) is strictly convex
over U, ¢(z) — ¢(z) > 0,Vz € U \ {z}, hence Z is unique. O

Remark 2.2. Note that if N = (), then our preceding condition [SC1] reduces
to the sufficient condition given by Theorem 2.1 in [15], which is the special
case of Theorem 2.1 when N = ().

Below, we show that the KKT global sufficient conditions for MINPP.

Theorem 2.3. (KKT Global Sufficient Conditions for MINPP) Let z €
S, suppose that there exist A = (A1, ,An)? € RT and p = (u1, -+, pp)’ €
RP such that

2ic1 2igi(T)
[SC2] z(VL( 3’6,)\,“) < 0,leM
diag(bz) = +’\“),Vx eU

9

then T is a global minimizer of problem MINPP. Moreover if

V2L(x, A, )

diag(bz
iag(bz) < 5

Nz eU,

then  is unique.
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Proof. Let oy = 2bg,,k = 1,2,--- ,n. Since Ty(VL(Z, A, p))1 < 0,1 € M, we
know that bz, <0,¥l € M. Hence, @ = ). Therefore, [SC2] implies that

2ier Aifi (fl) =0
Q = V2L(x, )\, pu), Vo € U.

By Theorem 2.1, we know that Z is a global minimizer of problem MINPP. [

Remark 2.4. Note that if N = (), then condition [SC2] is just Theorem 2.2
given in [15], which is the special case of Theorem 2.3 when N = {).

We can easily get the following corollaries.

Corollary 2.5. Let € S, M = (. If there exist A\ = (A1, - ,A\p)? € RT
and p = (p1,- -+, pp)T € RP such that

dier 2igi(@) =0
[5C3] { diag(bs) = AV2L(z, A ), Ve € U

then T is a global minimizer of problem MINPP.
Proof. Tt can be obtained directly from Theorem 2.3. 0

Corollary 2.6. Letz € S. If
L (V) <0,¥le M
[SC4] x%( 7@ V2 f () =
diag(bz) X —5—>,Vx € U
then T is a global minimizer of problem MINPP over U.

Remark 2.7. Note that Corollary 2.1 in [15] is the special case of Corollary 2.6
when N = {).

We now provide a simple mixed integer nonlinear programming example with
equality and inequality constraints where the KKT global sufficient conditions
can be verified numerically, and it may be used to eliminate local minimizers
that are global.

Example 2.8. Consider the following minimization problem:
(EP1) min f(2) i= =212 + 6297 — 21 — 2°
1 +29—2<0

2
125 =0
s.t. 2 € [-1,1]
x9 € {—1,0,1}.

Let & = (Z1,7Z2)T € S, where 7; € {1,—1} and Z3 = 0. Then we can easily
verify that the KKT local necessary conditions for problem (EP1): A\ (Z; +
Tog — 2) = 0, ,U/l(i'l.’f%) = 0, )\1 Z 0, 1250 € R and %1(—1 - 2@1 + )\1 + ,uli'%) S 0
hold at Z for A\; =0 and puy = —1.
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Moreover we can check that the KKT global sufficient conditions [SC1]

hold at z = (1,0) since bz, = 52, bz, = 0 and W — diag(bz) =
1
2 0 = 0,Vzy € [—1,1]. Hence, Z = (1,0) is a global minimizer
0 3 — 3z

of problem (EP1). But condition [SC1] does not hold at (—1,0).
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