A note on Fouquet-Vanherpe’s question and Fulkerson conjecture

F. Chen
A NOTE ON FOUQUET-VANHERPE’S QUESTION AND
FULKERSON CONJECTURE

F. CHEN

(Communicated by Amir Daneshgar)

Abstract. The excessive index of a bridgeless cubic graph G is the least integer k, such that G can be covered by k perfect matchings. An equivalent form of Fulkerson conjecture (due to Berge) is that every bridgeless cubic graph has excessive index at most five. Clearly, Petersen graph is a cyclically 4-edge-connected snark with excessive index at least five, so Fouquet and Vanherpe asked whether Petersen graph is the only one with that property. Håggkvist gave a negative answer to their question by constructing two graphs Blowup(K_4, C) and Blowup($Prism$, C_4). Based on the first graph, Esperet et al. constructed infinite families of cyclically 4-edge-connected snarks with excessive index at least five. Based on these two graphs, we construct infinite families of cyclically 4-edge-connected snarks $E_{0,1,2,...,(k-1)}$ in which $E_{0,1,2}$ is Esperet et al.’s construction. In this note, we prove that $E_{0,1,2,3}$ has excessive index at least five, which gives a strongly negative answer to Fouquet and Vanherpe’s question.

As a subcase of Fulkerson conjecture, Håggkvist conjectured that every cubic hypohamiltonian graph has a Fulkerson-cover. Motivated by a related result due to Hou et al.’s, in this note we prove that Fulkerson conjecture holds on some families of bridgeless cubic graphs.

Keywords: Fulkerson-cover, excessive index, snark, hypohamiltonian graph.

MSC(2010): Primary: 05C70; Secondary: 05C75, 05C40, 05C15.

1. Introduction

Let G be a simple graph (without loops or parallel edges) with vertex set $V(G)$ and edge set $E(G)$. A perfect matching of G is a 1-regular spanning subgraph of G. The excessive index of G (first introduced by Bonisoli and Cariolaro [3]), denoted by $\chi'_e(G)$, is the least integer k, such that G can be covered by k perfect matchings. We call these k perfect matchings as the minimum perfect matching cover of G.

Article electronically published on October 31, 2016.
Received: 15 August 2014, Accepted: 15 August 2015.

©2016 Iranian Mathematical Society
The following conjecture is due to Berge and Fulkerson, and first appeared in [6].

Conjecture 1.1 (Fulkerson conjecture, Fulkerson [6]). If G is a bridgeless cubic graph, then G can be covered by six perfect matchings such that each edge is in exactly two of them.

We call such 6 perfect matchings as the *Fulkerson-cover*. If Fulkerson conjecture is true, then deleting one perfect matching from the Fulkerson-cover would result in a covering of the graph by 5 perfect matchings. Thus, Berge conjectured that (unpublished and first appeared in [13])

Conjecture 1.2 (Berge, unpublished and first appeared in [13]). If G is a bridgeless cubic graph, then $\chi'_e(G) \leq 5$.

Mazzuoccolo [10] proved that Conjectures 1.1 and 1.2 are equivalent. But on a given graph, the equivalence of these two conjectures has not been proved.

A graph G is called *cyclically k-edge-connected* if at least k edges must be removed to disconnect it into two components, each of which contains a circuit.

Obviously, Conjectures 1.1 and 1.2 hold on 3-edge-colorable cubic graphs. So in this note, we only consider bridgeless non 3-edge-colorable cubic graphs, which are called *snarks*. For more details, see the book written by Zhang [14]. Fouquet and Vanherpe [5] proved that there are several infinite families of cyclically 3-edge-connected snarks with excessive index at least five. But for cyclically 4-edge-connected snarks, they only know Petersen graph. They proposed the following question.

Question 1.1 (Fouquet and Vanherpe [5]). If G is a cyclically 4-edge-connected snark, then either G is Petersen graph or $\chi'_e(G) < 5$.

Häggblund [7] gave a negative answer to Question 1.1 by constructing two graphs Blowup(K_4, C) and Blowup($Prism, C_4$). Based on Blowup(K_4, C), Esperet et al. [4] constructed infinite families of cyclically 4-edge-connected snarks with excessive index at least five. Based on these two graphs, in Section 2, we construct infinite families of bridgeless cubic graphs $M_{0,1,2,\ldots,(k-1)}$ and infinite families of cyclically 4-edge-connected snarks $E_{0,1,2,\ldots,(k-1)}$ ($k \geq 2$) where $E_{0,1,2}$ is Esperet et al.’s [4] construction.

In Section 3, we prove that each graph in $E_{0,1,2,3}$ (see Fig. 1) has excessive index at least five. This gives a strongly negative answer to Question 1.1. In Section 4, we prove that each graph in $M_{0,1,2,3}$ has a Fulkerson-cover.

Let $X \subseteq V(G)$ and $e = uv \in E(G)$. We use $G \setminus X$ to denote the subgraph of G obtained from G by deleting all the vertices of X and all the edges incident with X. Moreover if $X = \{x\}$, we simply write $G \setminus x$. Similarly, we use $G \setminus e$ to denote the subgraph of G obtained from G by deleting e. A *minor* of G is any graph obtained from G by means of a sequence of vertex and edge deletions and edge contractions. According to Hao et al. [8] and Hou et al. [9], we use \overline{G}
to denote the graph obtained from \(G \) by contracting all the vertices of degree 2.

A graph \(G \) is called hypohamiltonian if \(G \) itself doesn’t have Hamilton circuits but \(G \setminus v \) does for each vertex \(v \in V(G) \). A graph \(G \) is called Kotzig if \(G \) has a 3-edge-coloring, each pair of which form a Hamilton circuit (the definition is defined by Häggkvist and Markström).

The research on Fulkerson conjecture has attracted more and more graph theorists, and in particular, Häggkvist [11] proposed the following conjecture in 2007.

Conjecture 1.3 (Häggkvist [11]). *If \(G \) is a cubic hypohamiltonian graph, then \(G \) has a Fulkerson-cover.*

There is little progress on Conjecture 1.3. Recently, Hou et al. [9] partially solved Conjecture 1.3 in the following theorem.

Theorem 1.1 (Hou, Lai and Zhang [9]). *Let \(G \) be a bridgeless cubic graph. If there exists a vertex \(v \in V(G) \) such that \(G \setminus v \) is a Kotzig graph, then \(\chi'(G) \leq 5 \).

Motivated by their results, in Section 5, we prove that

Theorem 1.2. *Let \(G \) be a bridgeless cubic graph. Then \(G \) has a Fulkerson-cover if one of the followings holds:

1. there exists a vertex \(v \in V(G) \) such that \(G \setminus v \) is a Kotzig graph and \(G \setminus e \) doesn’t have Petersen graph as a minor for each edge \(e \) incident with \(v \).
2. there exists an edge \(e \in E(G) \) such that \(G \setminus e \) is a Kotzig graph.
3. for each \(e \in E(G) \), \(G \setminus e \) doesn’t have Petersen graph as a minor.*

Note that our proof is independent of Hou et al.’s [9].

![Fig. 1](image-url)
2. Preliminaries

In this section, we will give some necessary definitions, constructions, lemmas and propositions.

Lemma 2.1 (Parity lemma, Blanuša [1]). Let G be a cubic graph. If M is a perfect matching of G and T an edge-cut of G, then $|M \cap T| \equiv |T| \pmod{2}$.

Let X be a subset of $V(G)$. The edge-cut of G associated with X, denoted by $\partial_X(G)$, is the set of edges of G with exactly one end in X. The edge set $C = \partial_X(G)$ is called a k-edge-cut if $|\partial_X(G)| = k$.

Let G_i be a cyclically 4-edge-connected snark with excessive index at least 5, for $i = 0, 1$. Let $x_i y_i$ be an edge of G_i and $x_i^0, x_i^1, y_i^0, y_i^1$ the neighbours of x_i (y_i). Let H_i be the graph obtained from G_i by deleting the vertices x_i and y_i. Let $\{G; G_0, G_1\}$ be the graph obtained from the disjoint union of G_0, H_1 by adding six vertices $a_0, b_0, c_0, a_1, b_1, c_1$ and 13 edges $a_0 y_0^0, a_0 x_0^1, a_0 c_0, c_0 b_0, b_0 y_0^1, b_0 x_1^1, b_1 x_1^1, b_1 y_1^1, b_1 c_1, c_1 a_1, a_1 x_0^0, a_1 y_0^1, c_0 c_1$. We call graphs of this type as $E_{0,1}$ (see Fig. 2).

[Diagram of $E_{0,1}$]

Fig. 2

Now we construct $E_{0,1},...,E_{k-1}$ ($k \geq 2$) as follows:

1. $\{G; G_0, G_1\} \in E_{0,1}$ with $A_j = \{a_j, b_j, c_j\}$ for $j = 0, 1$.
2. For $3 \leq i \leq k$, $\{G; G_0, G_1, ..., G_{i-2}\}$ is obtained from $\{G; G_0, G_1, ..., G_{i-2}\}$ by adding H_{i-1} and $A_{i-1} = \{a_{i-1}, b_{i-1}, c_{i-1}\}$ and by inserting a vertex v_{i-3} into e_0, such that
 (i) G_{i-1} is a cyclically 4-edge-connected snark with excessive index at least 5 ($x_{i-1} y_{i-1}$ is an edge of G_{i-1} and $x_{i-1}^0, x_{i-1}^1, y_{i-1}^0, y_{i-1}^1$ are the neighbours of x_{i-1}, y_{i-1});
 (ii) $H_{i-1} \subseteq G_{i-1} \setminus \{x_{i-1}, y_{i-1}\}$;
 (iii) $e_0 \in E((G; G_0, G_1, ..., G_{i-2})) - \cup_{j=0}^{i-2} E(H_j) - \cup_{j=0}^{i-2} \{a_j c_j, c_j b_j\}$ and e_0 is incident with c_0;
 (iv) a_{i-1} is adjacent to x_{i-1}^0 and y_{i-1}^0, b_{i-1} is adjacent to x_{i-1}^0 and y_{i-1}^1, c_{i-1} is adjacent to x_{i-1}^1 and y_{i-2}^1, b_{i-2} is adjacent to x_{i-1}^1 and y_{i-2}^1, c_{i-1} is adjacent...
to a_{i-1}, b_{i-1} and v_{i-3}, the other edges of \{G; G_0, G_1, \ldots, G_{i-2}\} remain the same.

(v) $\{G; G_0, G_1, \ldots, G_{i-1}\} \in E_{0,1,\ldots,(i-1)}$.

If $k = 3$, then we obtain the class of graphs constructed by Esperet et al. [4]. If we ignore the excessive index and non 3-edge-colorability of G_i ($i = 0, 1, 2, \ldots, (k - 1)$) and only assume that G_i has a Fulkerson-cover, then we obtain infinite families of bridgeless cubic graphs. We denote graphs of this type as $M_{0,1,2,\ldots,(k-1)}$ ($k \geq 2$).

Let $\{G; G_0, G_1, G_2, G_3\}$ be a graph in $E_{0,1,2,3}$. We consider how each perfect matching M of $\{G; G_0, G_1, G_2, G_3\}$ intersects $\partial_G(H_i)$ (see Fig. 1). Since $|\partial_G(H_i)| = 4$, by Lemma 2.1, we have that $|M \cap \partial_G(H_i)|$ is even. If $|M \cap \partial_G(H_i)| = 0$, then we say that M is of type 0 on H_i. If $|M \cap \partial_G(H_i)| = 2$, then we consider two cases: we say that M is of type 1 on H_i if $|M \cap \partial_G(H_i, A_i)| = |M \cap \partial_G(H_i, A_{i-1})| = 1$, while M is of type 2 on H_i, otherwise. If $|M \cap \partial_G(H_i)| = 4$, then we say that M is of type 4 on H_i. By observation, it’s easy to obtain the following propositions.

Proposition 2.2. If a perfect matching M contains uv_0, vc_1 (uc_3, vc_2), then at least one of the following holds:

1. M is of type 4 on H_1 (H_3), type 0 on H_0, H_2, type 1 on H_3 (H_1).
2. M is of type 2 on H_0, H_1 (H_3), type 0 on H_2, type 1 on H_3 (H_1).
3. M is of type 2 on H_1 (H_3), H_2, type 0 on H_0, type 1 on H_3 (H_1).
4. M is of type 2 on H_0, H_2, type 0 on H_1 (H_3), type 1 on H_3 (H_1).
5. M is of type 1 on H_0, H_1 (H_3), H_2, type 0 on H_3 (H_1).

Proposition 2.3. If a perfect matching M contains uv_0, vc_2 (uc_3, vc_1), then at least one of the following holds:

1. M is of type 2 on H_0, type 0 on H_1 (H_3), type 1 on H_2, H_3 (H_1).
2. M is of type 2 on H_1 (H_3), type 0 on H_0, type 1 on H_2, H_3 (H_1).
3. M is of type 2 on H_3 (H_1), type 0 on H_2, type 1 on H_0, H_1 (H_3).
4. M is of type 2 on H_2, type 0 on H_3 (H_1), type 1 on H_0, H_1 (H_3).

Proposition 2.4. If a perfect matching M contains uv, then at least one of the following holds:

1. M is of type 1 on H_0, H_2, type 0 on H_1, H_3.
2. M is of type 1 on H_1, H_3, type 0 on H_0, H_2.

It’s easy to see that each perfect matching of type 0 on H_i corresponds to a perfect matching of G_i containing x_iy_i, while each perfect matching of type 1 on H_i corresponds to a perfect matching of G_i avoiding x_iy_i. Thus, we obtain the following proposition.

Proposition 2.5 (Esperet and Mazzuoccolo [4]). If $\{G; G_0, G_1, G_2, G_3\}$ can be covered by k perfect matchings, and each of type 0 or 1 (not all of type 1) on H_i, for some $i \in \{0, 1, 2, 3\}$, then G_i can be covered by k perfect matchings.
3. Each graph in $E_{0,1,2,3}$ has excessive index at least 5

From the construction of $E_{0,1,2,3}$, we have the following theorem.

Theorem 3.1. Each graph in $E_{0,1,2,3}$ is a snark.

Proof. If not, suppose that $\{G; G_0, G_1, \ldots, G_{k-2}, G_{k-1}\} \in E_{0,1,2,3}$ has a 3-edge-coloring $\{M_1, M_2, M_3\}$. If M_1 is of type 2 or 4 on H_i, for some $i \in \{0, 1, 2, \ldots, (k-1)\}$, without loss of generality, suppose that $|M_1 \cap \partial G(H_i, A_i)| = 2$, then by the construction, $|M_1 \cap \partial G(H_{i+1}, A_i)| = 0$, $|M_2 \cap \partial G(H_{i+1}, A_i)| = |M_3 \cap \partial G(H_{i+1}, A_i)| = 1$. By Lemma 2.1, both M_2 and M_3 are of type 1 on H_{i+1}, M_1 is of type 0 on H_{i+1}. By Proposition 2.5, G_{i+1} is 3-edge-colorable, a contradiction. Thus, M_1 is of type 1 or 0 on H_i ($j = 1, 2, 3$). But now by Lemma 2.1, we have that there exists an M_l ($l \in \{1, 2, 3\}$), such that M_l is of type 0 on H_i and the other two perfect matchings are of type 1 on H_i. Now by Proposition 2.5, G_l is 3-edge-colorable, a contradiction. \(\Box\)

From Theorem 3.1, it’s easy to obtain the following theorem.

Theorem 3.2. If $\{G; G_0, G_1, \ldots, G_{k-2}, G_{k-1}\} \in E_{0,1,2,3}$, then the graph $\{G; G_0, G_1, \ldots, G_{k-2}, G_{k-1}\}$ is a cyclically 4-edge-connected snark.

Now we analyze the excessive index of $E_{0,1,2,3}$. First we consider the case $k = 2$.

Question 3.1. If $\{G; G_0, G_1\} \in E_{0,1}$, then $\chi'_e(\{G; G_0, G_1\}) \geq 5$?

Answer. The answer is no. Since both G_0 and G_1 are the copies of Petersen graph, then $\{G; G_0, G_1\}$ has a perfect matching M_1, such that $E(\{G; G_0, G_1\}) = M_1$ is a set of two disjoint circuits C_0 and C_1, each of which contains 11 vertices. Furthermore, C_i contains all the vertices of $H_i \cup \{a_i, b_i, c_i\}$ for $i = 0, 1$. Let M_2 be a perfect matching of $\{G; G_0, G_1\}$ satisfying $x_0^0x_1^0 \subseteq E(C_0 \cup C_1)$. Let M_3 be a perfect matching of $\{G; G_0, G_1\}$ satisfying $a_0x_1^0 \subseteq M_3$ and $M_3 \setminus a_0x_1^0 \subseteq E(C_0 \cup C_1)$. Let M_4 be a perfect matching of $\{G; G_0, G_1\}$ satisfying $c_0c_1 \subseteq M_4$ and $M_4 \setminus c_0c_1 \subseteq E(C_0 \cup C_1)$. It’s easy to verify that $\{G; G_0, G_1\}$ can be covered by $\{M_1, M_2, M_3, M_4\}$. Thus $\chi'_e(\{G; G_0, G_1\}) = 4$.

Esperet et al. [4] proved that for every graph $G \in E_{0,1,2,3}$, $\chi'_e(G) \geq 5$.

For the case $k = 4$, we have the following theorem.

Theorem 3.3. If $\{G; G_0, G_1, G_2, G_3\} \in E_{0,1,2,3}$, then $\chi'_e(\{G; G_0, G_1, G_2, G_3\}) \geq 5$.

Proof. If not, suppose that $\{G; G_0, G_1, G_2, G_3\} \in E_{0,1,2,3}$ is a counterexample, then by Theorem 3.1, $\chi'_e(\{G; G_0, G_1, G_2, G_3\}) = 4$. Assume that $F = \{M_1, M_2, M_3, M_4\}$ is the minimum perfect matching cover of the graph $\{G; G_0, G_1, G_2, G_3\}$.

Claim 3.1. F has at most one element of type 4.
Proof. If not, without loss of generality, suppose that M_1 and M_2 are of type 4, then by Proposition 2.2 (1), M_1, M_2 are of type 0 on H_0 and H_2. By Proposition 2.5, M_3 and M_4 must be of type 2 on H_0 and H_2. But now uv can’t be covered by \mathcal{F}, a contradiction.

Claim 3.2. \mathcal{F} has no element of type 4.

Proof. If not, without loss of generality, suppose that M_1 is of type 4 on H_1, then by Proposition 2.2 (1), M_1 is of type 0 on H_0, H_2, type 1 on H_3. Since \mathcal{F} is the minimum perfect matching cover of $\{G; G_0, G_1, G_2, G_3\}$, without loss of generality, suppose that $uv \in M_2$. By Proposition 2.4, either M_2 is of type 1 on H_0, H_2, type 0 on H_1, H_3 or M_2 is of type 1 on H_1, H_3, type 0 on H_0, H_2.

If M_2 is of type 1 on H_1, H_3, type 0 on H_0, H_2, then by Proposition 2.5, M_3 and M_4 must be of type 2 on H_0, H_2. Now in this situation $\chi'_v(G_3) \leq 4$, a contradiction. Thus M_2 is of type 1 on H_0, H_2, type 0 on H_1, H_3. But now M_3 and M_4 are of type 0 on H_1. Otherwise either $\partial(H_2)$ can’t be covered by \mathcal{F} or $\chi'_v(G_1) \leq 4$, for some $i \in \{0, 2, 3\}$, a contradiction. Now by Propositions 2.2 (4)(5), 2.3 (1)(4) and 2.4 (1), each of M_3 and M_4 is of type 1 or 0 on H_2. Thus $\chi'_v(G_3) \leq 4$, a contradiction.

Claim 3.3. Every element of \mathcal{F} containing uv can’t be of type 1 on H_1, H_3, type 0 on H_0, H_2.

Proof. If not, then assume that $uv \in M_1$ and M_1 is of type 1 on H_1, H_3, type 0 on H_0, H_2. Now there is at most one perfect matching of type 0 on H_1 or H_3. Since otherwise either $\partial_C(H_1)$ can’t be covered by \mathcal{F} or $\chi'_v(G_i) \leq 4$, for some $i \in \{1, 3\}$, a contradiction. By Propositions 2.2-2.4, there are at least two perfect matchings of type 0 on H_0 or H_2. But if there are 3 perfect matchings of type 0 on H_0 or H_2, then $\partial_C(H_0)$ or $\partial_C(H_2)$ can’t be covered by \mathcal{F}, a contradiction. Thus there are exactly 2 perfect matchings of type 0 on H_0 or H_2. Without loss of generality, suppose that M_1 and M_2 are of type 0 on H_0. By Proposition 2.5, M_3 and M_4 are of type 2 on H_0.

If M_3 or M_4 is of type 2 on H_1 or H_3, then it’s of type 0 on H_2. By Proposition 2.5, M_2 and M_4 or M_2 and M_3 are of type 2 on H_2. By relabelling, we may assume that M_2 and M_3 are of type 2 on H_2. Now M_2 is of type 2 on H_2, type 0 on H_0, M_3 is of type 2 on H_0, H_2, M_4 is of type 2 on H_0, H_1 or H_0, H_3. But now either $\partial_C(H_2)$ can’t be covered by \mathcal{F} or $\chi'_v(G_i) \leq 4$, for some $i \in \{1, 3\}$. Thus M_3 and M_4 can’t be of type 2 on H_1 or H_3. But now, by Propositions 2.2-2.4, we have that each of M_3 and M_4 is either of type 1 on H_1, type 0 on H_3 or of type 0 on H_1, type 1 on H_3. By Proposition 2.5, we have that either M_2 is of type 2 on H_1 and H_3 or $\chi'_v(G_i) \leq 4$, for some $i \in \{1, 3\}$, a contradiction.
By Claim 3.2, \(\mathcal{F} \) has no perfect matching of type 4. Since \(\mathcal{F} \) is the minimum perfect matching cover of \(\{G; G_0, G_1, G_2, G_3\} \), without loss of generality, suppose that \(uv \in M_1 \). By Proposition 2.4, either \(M_1 \) is of type 1 on \(H_1, H_3 \), type 0 on \(H_0, H_2 \) or \(M_1 \) is of type 1 on \(H_0, H_2 \), type 0 on \(H_1, H_3 \). By Claim 3.3, \(M_1 \) is of type 1 on \(H_0, H_2 \), type 0 on \(H_1, H_3 \). Similar to the proof of Claim 3.3, there are two perfect matchings of type 0 on \(H_1 \) or \(H_3 \). Suppose that \(M_1 \) and \(M_2 \) are of type 0 on \(H_1 \). By Proposition 2.5, \(M_3 \) and \(M_4 \) are of type 2 on \(H_1 \). Now by Propositions 2.2 (2)(3), 2.3 (2)(3), \(M_3 \) and \(M_4 \) are of type 1 on \(H_3 \). But now by Proposition 2.5, we have that \(M_2 \) is of type 2 on \(H_3 \), type 0 on \(H_1 \), a contradiction. Since this type of perfect matchings don’t exist.

Therefore \(M_1 \) can’t be of type 1 on \(H_0, H_2 \), type 0 on \(H_1, H_3 \), a contradiction to Proposition 2.4.

\[\Box \]

Theorem 3.3 gives a strongly negative answer to Question 1.1. It’s natural to propose the following question.

Question 3.2. If \(\{G; G_0, \ldots, G_{k-2}, G_{k-1}\} \in E_{0,1,\ldots,(k-1)} \) \((k \geq 3) \), then

\[\chi_e(\{G; G_0, \ldots, G_{k-2}, G_{k-1}\}) \geq 5 \]

4. Each graph in \(M_{0,1,2,3} \) has a Fulkerson-cover

A cycle of \(G \) is a subgraph of \(G \) with each vertex of even degree. A circuit of \(G \) is a minimal 2-regular cycle of \(G \).

The following theorem, due to Hao et al. [8], is very important in our main proof.

Theorem 4.1 (Hao, Niu, Wang, Zhang and Zhang [8]). A bridgeless cubic graph \(G \) has a Fulkerson-cover if and only if there are two disjoint matchings \(E_1 \) and \(E_2 \), such that \(E_1 \cup E_2 \) is a cycle and \(\overline{G \setminus E_i} \) is 3-edge colorable, for each \(i = 1, 2 \).

Theorem 4.2. If \(\{G; G_0, G_1, G_2, G_3\} \in M_{0,1,2,3} \), then \(\{G; G_0, G_1, G_2, G_3\} \) has a Fulkerson-cover.

Proof. Since \(G_i \) has a Fulkerson-cover, for each \(i = 0, 1, 2, 3 \), suppose that \(M_i^1, M_i^2, \ldots, M_i^6 \) is the Fulkerson-cover of \(G_i \). Let \(E_i^2 \) be the set of edges covered twice by \(M_i^1, M_i^2, M_i^3 \), \(E_i^0 \) be the set of edges not covered by \(M_i^1, M_i^2, M_i^3 \). Now \(E_i^2 \cup E_i^0 \) is an even cycle, and \(\{G; G_0, G_1, G_2, G_3\} \setminus E_i^2 \) can be colored by three colors 4, 5, 6, \(\{G; G_0, G_1, G_2, G_3\} \setminus E_i^0 \) can be colored by three colors 1, 2, 3. Then \(E_i^2, E_i^0 \) are the desired disjoint matchings as in Theorem 4.1. By choosing three perfect matchings of \(G_i \), we could obtain two desired disjoint matchings \(E_i^2, E_i^0 \), such that either \(x_i, y_i \in E_i^2 \cup E_i^0 \) or \(x_i, y_i \notin E_i^2 \cup E_i^0 \). Now for each \(i = 0, 2 \) we choose three perfect matchings of \(G_i \), such that \(x_i, y_i \notin E_i^2 \cup E_i^0 \). For each \(i = 1, 3 \), we choose three perfect matchings of \(G_i \), such that \(x_i, y_i \in E_i^2 \cup E_i^0 \). Suppose that \(x_i^1y_1, x_i^3y_3, x_3^2x_3, y_3^1y_3 \in E_i^2 \cup E_i^0 \). Replace \(x_i^1y_1 \)
and $y_3^4y_3$ by $x_2^3a_0c_0uc_3b_3y_3^4$, and replace $y_1^0y_1$ and $x_2^3x_3$ by $y_1^0a_1c_1ve_2a_2x_3^0$. Let C be the resulting cycle of \{G; G_0, G_1, G_2, G_3\} through the above operation. Let E_1 and E_2 be two disjoint perfect matchings of C. It’s easy to verify that \{G; G_0, G_1, G_2, G_3\} \setminus E_i is 3-edge colorable, for each $i = 1, 2$. Therefore by Theorem 4.1, \{G; G_0, G_1, G_2, G_3\} has a Fulkerson-cover.

\[\square\]

Similar to the proof of Theorem 4.2, we have the following theorem.

Theorem 4.3. If \{G; G_0, G_1\} $\in M_{0,1}$, then \{G; G_0, G_1\} has a Fulkerson-cover.

Proof. Since G_i has a Fulkerson-cover, for each $i = 0, 1$, suppose that $M_1^i, M_2^i, \ldots, M_6^i$ is the Fulkerson-cover of G_i. Let E_2^i be the set of edges covered twice by M_1^i, M_2^i, M_3^i. E_0^i be the set of edges not covered by M_1^i, M_2^i, M_3^i, now $E_2^i \cup E_0^i$ is an even cycle, and \{G; G_0, G_1\} \setminus E_2^i can be colored by three colors 4, 5, 6, \{G; G_0, G_1\} \setminus E_0^i can be colored by three colors 1, 2, 3. Then E_2^i, E_0^i are the desired disjoint matchings as in Theorem 4.1. By choosing three perfect matchings of G_i, we could obtain two desired disjoint matchings E_2^i, E_0^i, such that $x_i, y_i \in E_2^i \cup E_0^i$. Now for each $i = 0, 1$, we choose three perfect matchings of G_i, such that $x_i, y_i \in E_2^i \cup E_0^i$. Suppose that $y_0^iy_0, x_0^iy_0, x_0^iy_0, x_0^iy_0 \in E_2^i \cup E_0^i$. Replace $y_0^iy_0$ and $x_0^iy_0$ by $y_0^ia_0y_0^i$ and replace $y_0^iy_0$ and $x_0^iy_0$ by $y_0^ib_1x_0^i$. Let C be the resulting cycle of \{G; G_0, G_1\} through the above operation. Let E_1 and E_2 be two disjoint perfect matchings of C. It’s easy to verify that \{G; G_0, G_1\} \setminus E_i is 3-edge colorable, for each $i = 1, 2$. Therefore by Theorem 4.1, \{G; G_0, G_1\} has a Fulkerson-cover.

\[\square\]

Since for $k = 2$ (by Theorem 4.3), $k = 3$ (Esperet et al. [4]) and $k = 4$ (by Theorem 4.2), $M_{0,1,2,\ldots, (k-1)}$ has a Fulkerson-cover. Thus it’s natural to consider the following question.

Question 4.1. If \{G; G_0, G_1, \ldots, G_k-1\} $\in M_{0,1,2,\ldots, (k-1)}$, then the graph \{G; G_0, G_1, \ldots, G_k-1\} has a Fulkerson-cover?

5. **Proof of Theorem 1.2**

In order to prove the main result, we first recall the following theorem that is important in our proof.

Theorem 5.1 (Robertson, Sanders, Seymour and Thomas [12]). Let G be a bridgeless cubic graph. If G doesn’t have Petersen graph as a minor, then G is 3-edge-colorable.

1.2 (1). Suppose that $N(v) = \{v_1, v_2, v_3\}$ and $\{M_1, M_2, M_3\}$ is the 3-edge-coloring of $G \setminus v$, such that $M_1 \cup M_2, M_1 \cup M_3$ and $M_2 \cup M_3$ are all Hamilton circuits.
If \(vv_1v_2v\) is a triangle of \(G\), then since \(\{M_1, M_2, M_3\}\) is the 3-edge-coloring of \(G\setminus v\), and \(M_1 \cup M_2, M_1 \cup M_3, M_2 \cup M_3\) are all Hamilton circuits, we have that \(G\) has a Hamilton circuit. Thus \(G\) is 3-edge-colorable and therefore admits a Fulkerson-cover. So suppose that \(v\) is in no triangle of \(G\).

Let \(a, b, c\) be the edges obtained from \(G\setminus v\) by contracting \(v_1, v_2, v_3\), respectively.

If \(a \in M_1, b \in M_2, c \in M_3\), then let \(C_1 = M_1 \cup M_2, C_2 = M_1 \cup M_3, C_3 = M_2 \cup M_3\). Let \(C'_1\) be the graph obtained from \(C_1\) by inserting \(v_1\) into \(a\) and \(v_2\) into \(b\). Let \(C'_2\) be the graph obtained from \(C_2\) by inserting \(v_1\) into \(a\) and \(v_3\) into \(c\). Let \(C'_3\) be the graph obtained from \(C_3\) by inserting \(v_2\) into \(b\) and \(v_3\) into \(c\). Now \(C'_1, C'_2\) and \(C'_3\) are all circuits of length \(|V(G)| - 2\) in \(G\). Let \(M'_1\) and \(M'_2\) be two disjoint perfect matchings of \(C'_1, M'_3\) and \(M'_4\) to be two disjoint perfect matchings of \(C'_2, M'_5\) and \(M'_6\) be two disjoint perfect matchings of \(C'_3\). Now \(\{M'_1 \cup \{vv_3\}, M'_2 \cup \{vv_3\}, M'_3 \cup \{vv_2\}, M'_4 \cup \{vv_2\}, M'_5 \cup \{vv_1\}, M'_6 \cup \{vv_1\}\}\) is a Fulkerson-cover of \(G\).

If \(a \in M_1, b \in M_2, c \in M_3\), then let \(C = M_1 \cup M_2\) and \(C_1\) be the graph obtained from \(C\) by inserting \(v_1\) into \(a\), \(v_2\) into \(b\) and \(v_3\) into \(c\). Let \(P(v_1, v_2)\) be a segment between \(v_1\) and \(v_2\) in \(C_1\), such that \(v_3 \notin P(v_1, v_2)\). Let \(C_2 = vv_1P(v_1, v_2)v_2v\). Now the length of \(C_2\) is even. Let \(E_1\) and \(E_2\) be two disjoint perfect matchings of \(C_2\). Suppose that \(E_1 \cap M_1 \neq \emptyset\), then \(E_1 \cap M_2 = \emptyset, E_2 \cap M_2 \neq \emptyset, \) and \(E_2 \cap M_1 = \emptyset\). Now both \(G\setminus E_1\) and \(G\setminus E_2\) are bridgeless, since \(M_2 \cup M_3\) and \(M_1 \cup M_3\) are Hamilton circuits. Since \(G\setminus vv_1 (i = 1, 2, 3)\) doesn’t have Petersen graph as a minor, both \(G\setminus E_1\) and \(G\setminus E_2\) don’t have Petersen graph as a minor. By Theorem 5.1, both \(G\setminus E_1\) and \(G\setminus E_2\) are 3-edge-colorable. Therefore, by Theorem 4.1, \(G\) has a Fulkerson-cover.

If \(a, b, c \in M_1\), then \(M_2 \cup M_3\) is an even circuit of \(G\). Let \(E_1\) be the graph obtained from \(M_1\) by inserting \(v_1\) into \(a\), \(v_2\) into \(b\) and \(v_3\) into \(c\). Since \(E_1 \cup M_{5-i}\) is in \(G\setminus M_i (i = 2, 3)\), we have that \(G\setminus M_i\) is bridgeless and has at most 4 vertices of degree 3. By Theorem 5.1, \(G\setminus M_i\) is 3-edge-colorable. Therefore, by Theorem 4.1, \(G\) has a Fulkerson-cover. □

By Theorem 1.2 (1), we obtain the following corollary.

Corollary 5.2. Let \(G\) be a bridgeless cubic graph. If there exists a vertex \(v \in V(G)\) such that \(G\setminus v\) doesn’t have Petersen graph as a minor for each edge \(e\) incident with \(v\) and \(G\setminus v\) is uniquely 3-edge-colorable, then \(G\) has a Fulkerson-cover.

Proof. Suppose that \(\{M_1, M_2, M_3\}\) is the uniquely 3-edge-coloring of \(G\setminus v\). We claim that \(M_1 \cup M_2, M_1 \cup M_3, M_2 \cup M_3\) are all Hamilton circuits. Since if \(M_1 \cup M_2\) isn’t a Hamilton circuit, then \(M_1 \cup M_2\) has another 2-edge-coloring \(M'_1\) and \(M'_2\). Now \(\{M'_1, M'_2, M_3\}\) is a 3-edge-coloring of \(G\setminus v\), which is different from \(\{M_1, M_2, M_3\}\), and a contradiction. Therefore, by Theorem 1.2 (1), \(G\) has a Fulkerson-cover. □
Proof of Theorem 1.2 (2). Suppose that $e = v_1v_2 \in E(G)$ and $\{M_1, M_2, M_3\}$ is the 3-edge-coloring of $G \setminus e$, such that $M_1 \cup M_2, M_1 \cup M_3$ and $M_2 \cup M_3$ are all Hamilton circuits. Let a and b be the edges of $G - e$ obtained from $G - e$ by contracting v_1 and v_2, respectively.

If a, b are in the same matching $M_i (i \in \{1, 2, 3\})$, then without loss of generality, suppose that $a, b \in M_1$. Let C be the graph obtained from $M_1 \cup M_2$ by inserting v_1 into a and v_2 into b. Now C is a Hamilton circuit of G. Thus G is 3-edge-colorable and therefore G has a Fulkerson-cover.

If a, b aren’t in the same matching $M_i (i \in \{1, 2, 3\})$, then without loss of generality, suppose that $a \in M_1$ and $b \in M_2$. Let C be the graph obtained from $M_1 \cup M_2$ by inserting v_1 into a and v_2 into b. Now C is a Hamilton circuit of G. Thus G is 3-edge-colorable and therefore G has a Fulkerson-cover. □

Proof of Theorem 1.2 (3). If G itself doesn’t have Petersen graph as a minor, then by Theorem 5.1, G is 3-edge-colorable. Therefore G has a Fulkerson-cover. So suppose that G has Petersen graph as a minor. But now, by assumption, G is Petersen graph. It’s easy to check that Petersen graph satisfies the first condition of Theorem 1.2. Therefore G has a Fulkerson-cover. □

Acknowledgements

This research was supported by NSFC Grant 11601001.

References

(Fuyuan Chen) **INSTITUTE OF STATISTICS AND APPLIED MATHEMATICS, ANHUI UNIVERSITY OF FINANCE AND ECONOMICS, BENGBU, ANHUI, 233030, P. R. CHINA.**

E-mail address: chenfuyuan19871018@163.com