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Abstract. In this paper we try to extend geometric concepts in the

context of operator valued tensors. To this end, we aim to replace the
field of scalars R by self-adjoint elements of a commutative C⋆-algebra,
and reach an appropriate generalization of geometrical concepts on man-
ifolds. First, we put forward the concept of operator-valued tensors and

extend semi-Riemannian metrics to operator valued metrics. Then, in
this new geometry, some essential concepts of Riemannian geometry such
as curvature tensor, Levi-Civita connection, Hodge star operator, exterior
derivative, divergence,... will be considered.
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1. Introduction

Tensors have a vast application in Mathematics and Physics. Tensors as
operators are scalar valued, and extension of tensors to vector valued tensors
arised naturally in Mathematics and Physics. Frölicher and Nijenhuis, defined
vector valued differential forms in [7]. This concept was very powerful and they
could characterize degreed derivations on the exterior algebra of differential
forms.

Since, scalars constitute an algebra, a natural extension of scalar valued
tensors is occurred when we replace the field of scalars by an algebra. For
example, Lie algebra 1-forms on a principle bundle are related to principal
connections. If we consider local functions on a manifold with value in the
exterior algebra of a vector space, we find the notion of super-manifolds. Non-
commutative Geometry arises when we use non-commutative algebras [3].

Since, C⋆-algebras are very similar to the complex numbers, C⋆-algebra val-
ued tensors are very similar to ordinary tensors and can play a significant role
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in Physics and Mathematics. In fact, elements of a C⋆-algebra can be viewed as
linear operators on a Hilbert space and observables in a quantum system cor-
responds to self-adjoint operators, so to describe a quantum system we should
deal with operators as scalars. Therefore, operator valued tensors can be used
for describing quantum systems.

The first aim of the present paper is to extend the theory of semi-Riemannian
metrics to operator-valued semi-Riemannian metrics. Spaces of linear opera-
tors are directly related to C⋆-algebras, so C⋆-algebras are considered as a basic
concept in this article. The first definition of C⋆-algebra valued positive defi-
nite inner products can be found in [14]. These spaces are called pre Hilbert
modules and are frequently used in the theory of operator algebras. Hilbert
C⋆-modules provide a natural generalization of Hilbert spaces arising when the
field of scalars C is replaced by an arbitrary C⋆-algebra. This generalization, in
the case of commutative C⋆-algebras appeared in the paper of Kaplansky [9],
however the non-commutative case seemed too complicated at that time. The
general theory of Hilbert C⋆-modules appeared in the pioneering papers of W.
Paschke [14] and M. Rieffel [16]. The theory of Hilbert C⋆-modules may also be
considered as a non-commutative generalization of the theory of vector bundles
and non-commutative geometry [3].

A number of results on geometrical structures of Hilbert C⋆-modules and
their operators have been obtained [6]. Henceforth, Hilbert C⋆-modules are
generalizations of inner product spaces that on the level of manifolds, provide
a generalization of Riemannian manifolds. Due to the physical applications, we
extend the definition to non-positive case and replace the positive definiteness of
the inner product by non-degeneracy. In this case, we should restrict ourselves
to finitely generated modules, because our application is intended for free finite
dimensional modules and the general case is more complicated. The content of
this paper might also provide a framework for field quantization which is not
elaborated in this paper. The main idea for quantization is to replace scalars
by operators on a Hilbert space. In the field of quantum mechanics, spectrum
of operators plays the role of values of the measurements. So replacements of
scalars by operators is the first step for quantization. In this direction, some
works have been done [1,2], but it seems C⋆-algebras are the best candidate to
play the role of scalars and we must deal with Modules over C⋆-algebras.

In this article, we only consider commutative C⋆-algebras for many reasons.
Non-commutative algebras can be used in the realm of non-commutative Ge-
ometry, and it is not our aim to enter in this realm. Many basic definition such
as vector field can not be extended properly for non-commutative C⋆-algebras,
because the set of derivations of an algebra is a module on the center of that
algebra. So, extended vector fields are modules on the center of that C⋆-algebra
and we need the center of that algebra be equal to itself, so the algebra must
be commutative. Definition of the inner product encounters the same problem.
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Bilinear maps over a module whose scalars are non-commutative are very re-
strictive. From physical point of view, commutativity means operators in the
C⋆-algebra represent quantities that are simultaneously measurable and this
assumption is not very restrictive.

The content of the present paper is structured as follows: Section 1 contains
the preliminary facts about the C⋆-algebras needed to explain our concepts,
Section 2 covers the definition of extended tangent bundle, operator-valued
vector fields, and operator-valued tensors and explains some of their basic
properties. The Pettis-integral of operator-valued volume forms are defined
and Stokes’ theorem is proved in Section 3. Section 4 is devoted to operator-
valued connections and curvature, and the definition of the covariant derivative
of operator-valued vector fields. In section 5, operator-valued inner product and
some of its basic properties will be illustrated. The existence, uniqueness and
the properties of the Hodge star operator for operator-valued inner product
spaces are the goal of Section 6. In Section 7 the concepts of Section 5 ex-
tend to manifolds. The existence and uniqueness of Levi-Civita connection of
operator-valued semi-Riemannian metrics is proved in Section 8. In the last
section Ricci tensor, scalar curvature, and sectional curvature are discussed.

2. Review of C⋆-algebras

In this section we review some definitions and results from C⋆-algebras that
we need in the sequel.

Definition 2.1. A Banach ∗-algebra is a complex Banach algebra A with a
conjugate linear involution ∗ which is an anti-isomorphism. That is, for all
a, b ∈ A and λ ∈ C,

(a+ b)
∗
= a∗ + b∗, (λa)

∗
= λa∗, a∗∗ = a, (ab)

∗
= b∗a∗.

Definition 2.2. A C⋆-algebra A, is a Banach ∗-algebra with the additional
norm condition, for all a ∈ A

∥a∗a∥ = ∥a∥2 .
For example the space of all bounded linear operators on a Hilbert space of

H is a C⋆-algebra. This C⋆-algebra is denoted by B (H) .

Remark 2.3. We only consider unital C⋆-algebras, and denote the unit ele-
ment by 1.

By Gelfand-Naimark theorem, all unital commutative C⋆-algebras have the
form C(X), in which X is a compact Hausdorff space.

Definition 2.4. An element a of a C⋆-algebra is said to be self-adjoint if
a∗ = a, normal if a∗a = aa∗, and unitary if a∗a = aa∗ = 1.

For now on, A is a C⋆-algebra. The set of all self-adjoint elements of A is
denoted by AR.
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Definition 2.5. The spectrum of an element a in a C⋆-algebra is the set

σ(a) = {z ∈ C : z1− a is not invertible}.

Theorem 2.6. The spectrum σ(a) of any element a of a C⋆-algebra is a non
empty compact set and contained in the {z ∈ C : |z| ⩽ ∥A∥}, if a ∈ AR, then
σ(a) ⊆ R [8, 17].

Remark 2.7. For any a ∈ A, if λ ∈ σ(a), then |λ| ≤ ∥a∥.

For each normal element a ∈ A there is a smallest C⋆-subalgebra C∗(a, 1) of
A which contains a, 1, and is isomorphic to C(σ(a)).

An element a ∈ AR is positive if σ(a) ⊆ R+. The set of positive elements of
AR is denoted by AR+ . For any a ∈ A, a∗a is positive.

Theorem 2.8. If a ∈ AR+ , then there exists a unique element b ∈ AR+ such
that b2 = a [12].

We denote by
√
a the unique positive element b such that b2 = a. If a is a

self-adjoint element, then a2 is positive, and we set |a| =
√
a2, a+ = 1

2 (|a|+ a),

a− = 1
2 (|a| − a). The elements |a|, a+, and a− are positive and a = a+ − a−,

a+a− = 0. If a, b ∈ AR, then |ab| = |a||b| (cf. [12]).

3. Extending tangent bundle

Throughout this paper, A is a commutative unital C⋆-algebra which ac-
cording to the Gelfand-Naimark second theorem can be thought as a C⋆-
subalgebra of some B (H). Let M be a smooth manifold, we set TMA =
∪

p∈M
(TpM ⊗RA), so TMA is a bundle of free A-modules over M . Smooth func-

tions from M to A can be defined and the set of them is denoted by C∞(M,A).
Addition, scalar multiplication, and multiplication of functions in C∞(M,A)
are defined pointwise. The involution of A can be extended to C∞(M,A) as
follows:

∗ : C∞(M,A) −→ C∞(M,A)

f 7−→ f∗

where f∗(x) = f(x)∗.

Definition 3.1. A A-vector field X̃ over M is a section of the bundle TMA.

The set of all smooth A-vector fields on M is denoted by X(M)A, in fact

X(M)A = X(M)⊗C∞(M) C
∞(M,A).

Smooth A-vector fields can be multiplied by smooth A-valued functions and
X(M)A is a module over the ⋆-algebra C∞(M,A). For a vector field X ∈ X(M)
and a function f ∈ C∞(M,A), define X ⊗ f as a A-vector field by

(X ⊗ f)p = Xp ⊗ f(p).
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These fields are called simple, and any A-vector field can be written locally as
a finite sum of simple A-vector fields. We can identify X and X ⊗ 1, so X(M)
is a C∞(M)-subspace of X(M)A.

A smooth vector field X ∈ X(M) defines a derivation on C∞(M,A) by f 7−→
Xf. In fact, for any integral curve α : I −→ M of X, we have, (Xf)(α(t)) =
d
dtf(α(t)).
This operation can be extended to A-vector fields, such that for simple ele-

ments of X(M)A such as X ⊗ h we have

(X ⊗ h)(f) = h (Xf) f ∈ C∞(M,A).

If A is non-commutative, this definition is not well-defined. This definition

implies that for f, h ∈ C∞(M,A) and X̃ ∈ X(M)A we have

(hX̃)(f) = h.(X̃f).

The Lie bracket of ordinary vector fields can be extended to A-vector fields as
the following, if X,Y ∈ X(M) and h, k ∈ C∞(M,A) then,

[X ⊗ h , Y ⊗ k] = [X,Y ]⊗ (hk) + Y ⊗ (hX(k))−X ⊗ (kY (h)).

The verification of main properties of the Lie bracket are routine.
An involution on X(M)A for simple A-vector field, such as X⊗ f , is defined by

(X ⊗ f)∗ = X ⊗ f∗.

For X̃, Ỹ ∈ X(M)A, f ∈ C∞(M,A), we have

(3.1) X̃(f)∗ = X̃∗(f∗),
[
X̃, Ỹ

]∗
=

[
X̃∗, Ỹ ∗

]
.

Definition 3.2. An A-valued covariant tensor field of order k on M is an
operator T : X(M)A × · · · × X(M)A −→ C∞(M,A) which is k − C∞(M,A)-
linear.

Contravariant and mixed A-valued tensors can be defined in a similar way.
Alternating covariant A-tensor fields are called A-differential forms, and the
set of all A-differential forms of order k is denoted by Ak(M,A). A-differential
forms and exterior product and exterior derivation of these forms are special
case of vector valued differential forms. The only difference is that A maybe
infinite dimensional.

Lie derivation of A-tensor fields along A-vector fields is defined naturally.
For X̃ ∈ X(M)A and a covariant A-tensor field of order k, such as T̃, Lie

derivation of T̃ along X̃ is also a covariant A-tensor field of order k and defined
as follows. For Ỹ1, · · · , Ỹk ∈ X(M)A we have

(LX̃T̃)(Ỹ1, · · · , Ỹk) = X̃(T̃(Ỹ1, · · · , Ỹk))−
k∑

i=1

T̃(Ỹ1, · · · , [X̃, Ỹi], · · · , Ỹk)
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If T̃ is a differential form, then its Lie derivation along any A-vector field is
also a differential form and Cartan formula for its derivation holds .i.e.,

LX̃T̃ = d(iX̃T̃) + iX̃( dT̃)

De Rham cohomology can be defined in the context of A-valued differential
forms similarly. Let Bk(M,A) be the space of closed forms, and Zk(M,A) be
the space of exact forms in Ak(M,A), then these spaces are A-modules and

Zk(M,A) ⊆ Bk(M,A) and set Hk
A(M) = Bk(M,A)

Zk(M,A)
. The space Hk

A(M) is an

A-module and its relation to ordinary cohomology is as follows.
As a computational tool, we can always assume A = C(X) for some compact

Hausdorff space X. In this case, any A-valued k-differential form ω̃, in a
coordinate system, can be written as ω̃ = ω̃i1···ik dx

i1 ∧ · · · ∧ dxik in which
ω̃i1···ik ∈ C∞(M,C(X)). For any x ∈ X, set ω̃x = ω̃i1···ik(x) dx

i1 ∧ · · · ∧ dxik

that is an ordinary k-differential form. We can show that ( dω̃)x = d(ω̃x), so if
ω̃ is closed (exact) then every ω̃x is closed (exact) too. conversely, If all ω̃x is
closed then ω̃ is closed, but for exactness this property is not straightforward.

Problem 3.3. For a C(X)-valued differential form ω̃ on a compact manifold,
if all ω̃x are exact, is it true that ω̃ is exact?

Theorem 3.4. For a compact manifold M , Hk
A(M) naturally contains

Hk(M)⊗R A.

Proof. For ω ∈ Bk(M), let [ω] be its equivalent class in Bk(M), and for ω̃ ∈
Bk(M,A), let [ω̃]A be its equivalent class in Bk(M,A). Define:

Φ : Hk(M)⊗R A −→ Hk
A(M)

[ω]⊗ a 7−→ [aω]A

Clearly, Φ is well defined and is A-linear. To complete the proof, suppose A =
C(X). Choose ω1, · · · , ωm ∈ Bk(M) such that {[ω1], · · · , [ωm]} is a basis for
Hk(M). To prove Φ is one to one, suppose Φ([ω1]⊗a1+· · ·+[ωm]⊗am) = 0. So
[a1ω1+· · ·+akωm]A = 0 and ω̃ = a1ω1+· · ·+akωm is exact. Therefore, for each
x ∈ X, ω̃x is exact and [a1(x)ω1+ · · ·+ak(x)ωm] = 0. Since {[ω1], · · · , [ωm]} is
a basis, for any x ∈ X we have a1(x) = · · · = am(x) = 0, so a1 = · · · = am = 0
and [ω1]⊗ a1 + · · ·+ [ωm]⊗ am = 0. □

4. Integration of A-valued volume forms and Stokes’ theorem

We remind the notion of integral of vector valued functions, called Pettis-
integral [5]. The Borel σ-algebra over Rn is denoted by Bn = B(Rn), and
suppose that µ is the Lebesgue measure.

Definition 4.1. Suppose V ∈ Bn. A measurable function f : V −→ A is called

(i) weakly integrable if Λ(f) is Lebesgue integrable for every Λ ∈ A∗

(ii) Pettis integrable if there exists x ∈ A such that Λ(x) =
∫
V
Λ(f) dµ, for

every Λ ∈ A∗.



1265 Feizabadi and Boroojerdian

If f is Pettis-integrable over V ∈ Bn then x is unique and is called Pettis-
integral of f over V . We use the notations

∫
V
f dµ or (P )

∫
V
f dµ to show the

Pettis-integral of f over V . It is proved that each function f ∈ Cc(Rn,A) is
Pettis integrable over any V ∈ Bn (cf. [17]).

Theorem 4.2 (Change of Variables). Suppose D and D′ are open domains
of integration in Rn, and G : D −→ D′ is a diffeomorphism . For every
Pettis-integrable function f : D′ −→ A,∫

D′
f dµ =

∫
D

(f ◦G) |det(DG)|dµ.

Proof. Applying the Pettis-integral’s definition and using classical change of
variables theorem, one can conclude the desired result. □
Definition 4.3. An A-valued n-form on M (n = dimM) is called an A-valued
volume form on M .

In the canonical coordinate system, an A-valued volume form ω̃ on Rn is
written as follows:

(4.1) ω̃ = f dx1 ∧ · · · ∧ dxn,

where f ∈ C∞(Rn,A).

Definition 4.4. Let ω̃ be a compactly supported A-valued n-form on Rn.
Define the integral of ω̃ over Rn by,∫

Rn

ω̃ = (P )

∫
Rn

f dx1 · · · dxn

where ω̃ is defined as in (4.1).

Definition 4.5. For Λ ∈ A∗, define the operator Λ : Ak(M,A) −→ Ak(M) by

(Λω̃)(X1, ..., Xk) = Λ(ω̃(X1, ..., Xk)),

where ω̃ ∈ Ak(M,A), Xi ∈ X(M).

Definition 4.6. Let M be an oriented smooth n-manifold, and let ω̃ be an
A-valued n-form on M . First suppose that the support of ω̃ is compact and
is included in the domain of a single chart (U,φ) which is positively oriented.
We define the integral of ω̃ over M as

(4.2)

∫
M

ω̃ = (P )

∫
φ(U)

(φ−1)∗(ω̃).

By using the change of variable’s theorem one can prove that
∫
M

ω̃ does not
depend on the choice of chart whose domain contains supp(ω̃). To integrate an
arbitrary compact support A-valued n-form, we can use partition of unity as
the same as ordinary n-forms.

Lemma 4.7. For any Λ ∈ A∗ we have,
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(i) if f : M −→ N is a smooth map, then for each ω̃ ∈ An(N,A), Λf∗(ω̃) =
f∗(Λω̃),

(ii) for a compactly supported A-valued volume n-form ω̃ on M , Λ(
∫
M

ω̃) =∫
M

Λ(ω̃),

(iii) for ω̃ ∈ Ak(M,A), Λ(dω̃) = d(Λω̃).

Proof. To prove (i) suppose that X1, · · · , Xk ∈ XM , then

f∗(Λω̃)(X1, · · · , Xk) =(Λω̃)(f∗(X1), · · · , f∗(Xk)) = Λ(ω̃(f∗(X1), · · · , f∗(Xk))

=Λ((f∗ω̃)(X1, · · · , Xk)) = (Λ(f∗ω̃))(X1, · · · , Xk).

To prove (ii) suppose that ω̃ is compactly supported in the domain of a
single chart (U,φ) that is positively oriented, thus

Λ(

∫
M

ω̃) = Λ(

∫
Rn

(φ−1)∗ω̃) =

∫
Rn

Λ((φ−1)∗ω̃) =

∫
Rn

(φ−1)∗(Λω̃) =

∫
M

Λω̃.

The general case follows from the above result and using partition of unity.
(iii) Note that in the special case k = 0, A0(M,A) = C∞(M,A) and the

continuity of Λ implies (iii) for the elements of C∞(M,A). The general case
follows from this one. □

Theorem 4.8 (Stokes’ Theorem). Let M be an oriented smooth n-manifold
with boundary and orientations of M and ∂M are compatible, and let ω̃ be a
compactly supported smooth valued (n− 1)-form on M .Then∫

M

dω̃ =

∫
∂M

ω̃.

Proof. By Lemma 4.7 for each Λ ∈ A∗ we have

Λ(

∫
M

dω̃) =

∫
M

Λ(dω̃) =

∫
M

d(Λω̃) =

∫
∂M

(Λω̃) = Λ(

∫
∂M

ω̃)

By use of the Han-Banach theorem, it follows that
∫
M

dω̃ =
∫
∂M

ω̃. □

5. Connection and curvature

The notion of covariant derivation of A-vector fields can be defined as follows.

Definition 5.1. An A-connection ∇ on M is a bilinear map

∇ : X(M)A × X(M)A −→ X(M)A

such that for all X̃, Ỹ ∈ X(M)A and any f ∈ C∞(M,A),

(i) ∇fX̃ Ỹ = f∇X̃ Ỹ

(ii) ∇X̃fỸ = X̃(f)Ỹ + f∇X̃ Ỹ .
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Every ordinary connection onM can be extended uniquely to an A-connection
on M . For an ordinary connection on M such as ∇, its extension as an A-
connection is defined as follows. If X,Y ∈ XM and h, k ∈ C∞(M,A), then
define

∇X⊗h(Y ⊗ k) = h((∇XY )⊗ k + Y ⊗X(k))

The torsion tensor of a A-connection ∇ is defined by

T (X̃, Ỹ ) = ∇X̃ Ỹ −∇Ỹ X̃ − [X̃, Ỹ ] X̃, Ỹ ∈ X(M)A

If T = 0, then ∇ is called torsion-free.

Definition 5.2. Let ∇ be an A-connection on M . The function
R : X(M)A × X(M)A × X(M)A −→ X(M)A given by

R(X̃, Ỹ )(Z̃) = ∇X̃∇Ỹ Z̃ −∇Ỹ ∇X̃ Z̃ −∇[X̃,Ỹ ]Z̃

is a (1, 3) A-tensor on M and is called the curvature tensor of ∇.

Proposition 5.3 (The Bianchi identities). If R is the curvature of a torsion

free A-connection ∇ on M , then for all X̃, Ỹ , Z̃ ∈ X(M)A,

(i) R(X̃, Ỹ )Z̃ +R(Ỹ , Z̃)X̃ +R(Z̃, X̃)Ỹ = 0;

(ii) (∇X̃R)(Ỹ , Z̃) + (∇Ỹ R)(Z̃, X̃) + (∇Z̃R)(X̃, Ỹ ) = 0.

Proof. The proof is similar to the one for ordinary connections (cf. [15]). □

If ∇1, ∇2 are A-connections on M , then, the operator T = ∇1 − ∇2 is a
(1, 2) A-tensor and the space of A-connections on M is an affine space which
is modeled on the space of (1, 2) A-tensors.

6. Operator-valued inner product

In this section, we introduce the notion A-valued inner products on A-
modules, and investigate some of their basic properties . For the case of Hilbert
C⋆-modules refer to [10, 11, 14]. For an A-module V , denote the collection of
all A-linear mappings from V into A by V ♯. This space is also an A-module. If
V is a free finite dimensional module, then V ♯ is also a free finite dimensional
module of the same dimension.

In the following, we define the notion of A-valued inner products. In this
definition, inner products are not necessarily positive definite, so we must re-
strict ourselves to finite dimensional or finitely generated modules. This topic,
for arbitrary modules, is more complicated and is far from the scope of this
article.

Definition 6.1. Let V be a finitely generated A-module. A mapping ⟨·, ·⟩ :
V × V −→ A is called an A-valued inner product on V if for all a ∈ A, and
x, y, z ∈ V the following conditions hold:

(i) ⟨x, y⟩∗ = ⟨y, x⟩
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(ii) ⟨ax+ y, z⟩ = a⟨x, z⟩+ ⟨y, z⟩
(iii) ∀w ∈ V ⟨w, x⟩ = 0 ⇒ x = 0
(iv) ∀T ∈ V ♯ ∃x ∈ V ∀y ∈ V (T (y) = ⟨y, x⟩)

Conditions (iii) and (iv) are called nondegeneracy of the inner product. Note
that for each x ∈ V the mapping x̂ : V −→ A, defined by x̂(y) = ⟨y, x⟩ belongs
to V ♯. One can see that the mapping x 7−→ x̂ from V into V ♯ is conjugate
A-linear and nondegenracy of the inner product is equivalent to the bijectivity
of this map. If for all x ∈ V , ⟨x, x⟩ is a positive selfadjoint element of A, this
inner product is called positive.

In the context of Hilbert modules, condition (iv) is not part of the definition
and this condition is called self-duality of Hilbert modules [9]. This property,
automatically, holds for free finite dimensional Hilbert modules. Here, because
of non-positivity of inner product, this property is part of the definition.

Theorem 6.2. Let V be a finite dimensional free A-module and ⟨·, ·⟩ :
V ×V −→ A satisfy (i) and (ii) of the above-mentioned definition, and let {ei}
be a basis for V . Then, ⟨·, ·⟩ is nondegenerate if and only if, det(⟨ei, ej⟩) is
invertible in A.

Proof. First, assume that det(⟨ei, ej⟩) is invertible in A. Set gij = ⟨ei, ej⟩, so
(gij) is an invertible A-valued matrix. Denote the inversion of this matrix by
(gij). Set ei = gijej ; {ei} is also a basis and is called the reciprocal base of

{ei}. The characteristic property of the reciprocal base is that ⟨ei, ej⟩ = δji , so
for every x ∈ V , if x = λiei, then λi = ⟨x, ei⟩. To prove nondegenracy, suppose
for all w ∈ V we have ⟨w, x⟩ = 0. So, for all index i we have ⟨x, ei⟩ = 0 that
implies λi = 0, so x = 0. For any T ∈ V ♯, set λi = T (ei) so, for x = λ̄ie

i we
have x̂ = T .

Conversely, suppose that ⟨·, ·⟩ is nondegenerate. For each i, consider the
A-linear map T i : V −→ A defined by T i(ej) = δij . By nondegenarcy, the map

x 7−→ x̂ is bijective and there exists ui ∈ V such that ûi = T i, so ⟨ej , ui⟩ = δij .

Any ui can be written as ui = aijej for some aij ∈ A. An easy computation
shows that the matrix A = (aij) is the inverse of the matrix D = (gij), In fact,

δij = ⟨ej , ui⟩ = ⟨ui, ej⟩ = ⟨aikek, ej⟩ = aik⟨ek, ej⟩ = aikgkj

Therefore AD = I, so det(A) det(D) = 1 and det(D) is invertible. □

Let V be an A module. V , may have an involution that is a conjugate A-
linear isomorphism ∗ : V −→ V such that ∗2 = 1V . An inner product ⟨·, ·⟩ on
V is called compatible with the involution if for all x, y ∈ V

⟨x∗, y∗⟩ = ⟨x, y⟩∗.

In these spaces, if x and y are self-conjugate elements of V , then ⟨x, y⟩ is
self-adjoint.
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Example 6.3. Let W be a finite dimensional real vector space and
⟨·, ·⟩ : W × W −→ AR be a symmetric bilinear map such that for some basis
{ei} of W , det(⟨ei, ej⟩) is invertible in A. The tensor product WA = W ⊗RA is
a free A-module and ⟨·, ·⟩ can be extended uniquely to a A-valued inner product
on it as follows. For all u, v ∈ W and a, b ∈ A set

⟨u⊗ a , v ⊗ b⟩ = a b∗ ⟨u , v⟩.

The A-module WA has a natural involution that is (u⊗ a)∗ = u⊗ a∗ and the
extended inner product on WA is compatible with this involution. In fact, any
inner product on WA which is compatible with this involution can be obtained
by the above method.

For an inner product on a free finite dimensional A-module, we define an
element of A as its signature. In the ordinary cases, signature is a scalar that
is ±1 and is defined by orthonormal bases. Here, we must define signature by
arbitrary bases.

Theorem 6.4. Let V be a free finite dimensional A-module and ⟨·, ·⟩ be an
inner product on it. If {ei} is a basis on V , set gij = ⟨ei, ej⟩ and g = det(gij).

Then, g is selfadjoint and
|g|
g does not depend on the choice of the base.

Proof. Put G = (gij), since g∗ij = gji we find tG = G∗, therefore

g = det(G) = det(tG) = det(G∗) = det(G)∗ = g∗.

Now, suppose that {e′i} is another basis. Set g′ij = ⟨e′i, e′j⟩ and G′ = (g′ij) and

g′ = det(G′). For some matrix A = (aji ) we have e′i = ajiej , so

g′ij = ⟨e′i, e′j⟩ = ⟨aki ek, aljel⟩ = aki a
l∗
j ⟨ek, el⟩ = aki a

l∗
j gkl.

This equality implies that G′ = AG(tA∗), so g′ = g det(A) det(A)∗. Since
det(A) det(A)∗ is a positive selfadjoint element of A we deduce that |g′| =
|g| det(A) det(A)∗. Consequently,

|g′|
g′

=
|g| det(A) det(A)∗

g det(A) det(A)∗
=

|g|
g
.

□

The value ν =
|g|
g which does not depend on the choice of the base, is called

the signature of the inner product.Note that σ(ν) ⊆ {−1, 1} and ν−1 = ν.
In the ordinary metrics, ν is exactly (−1)q where q is the index of the inner
product.

Note that in free finite dimensional A modules such as V that has an A-inner
product, V and V ♯ are naturally isomorphic and this isomorphism induces an
inner product on V ♯. So, all results about V , can be stated for V ♯ too.
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7. The hodge star operator

To define the Hodge star operator, first we need the notion of orientation of
free modules. Let V be a free finite dimensional A-module. By definition two
ordered bases of V have the same orientation if determinant of the transition
matrix between them is a positive element of A. This is an equivalence relation
between the bases of V , but there exist many equivalence classes. We choose
one of these classes as an orientation for V and we call it an orientation for V .
In this case, we call V an orientated space and every basis in the orientation,
is called a proper base of V . Note that there are many orientations on V and
it is not appropriate to call some of them positive.

Definition 7.1. Let V be an oriented free n-dimensional A-module that has
an A-inner product. For each proper base {ei} with reciprocal base {ei}, and
g = det(gij), set Ω =

√
|g| e1 ∧ · · · ∧ en. This tensor is called the canonical

volume form of the inner product.

Theorem 7.2. The canonical volume form does not depend on the choice of
the proper base.

Proof. Assume that {ui} is another proper base with reciprocal base {uj}. For
some matrix A = (aji ), we have ui = aji ej . The same orientation of {ei} and

{ui} implies that det(A) is positive. If A−1 = (βj
i ), then ei = βj

i uj . According
to the proof of Theorem 6.4 if

gij = ⟨ei, ej⟩, uij = ⟨ui, uj⟩, g = det(gij), u = det(uij),

then, u = det(A) det(A∗)g = (detA)2 g. Positivity of det(A) yields
√

|u| =
det(A)

√
|g|, henceforth√

|g| e1 ∧ · · · ∧ en =

√
|g|
g

e1 ∧ · · · ∧ en =

√
|g|
g

(βi1
1 ui1) ∧ · · · ∧ (βin

n uin)

=

√
|g|
g

det(A−1) u1 ∧ · · · ∧ un

=

√
|g|

g det(A)
(u1i1 ui1) ∧ · · · ∧ (unin uin)

=

√
|g| u

g det(A)
u1 ∧ · · · ∧ un

=

√
|g| u det(A)

g (detA)2
u1 ∧ · · · ∧ un =

√
|u| u1 ∧ · · · ∧ un.

□

Any A-inner product on the free n-dimensional A-module V , in a natural
way, can be extended to the space of each exterior powers ΛkV . For α =
u1 ∧ · · · ∧ uk and β = v1 ∧ · · · ∧ vk, set ⟨α, β⟩ = det(⟨ui, vj⟩). If {ei} is
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a base of V with reciprocal base {ej} , then it is straightforward to check
that {ei1 ∧ · · · ∧ eik}1≤i1<...<ik≤n is a basis of ΛkV and its reciprocal base is
{ei1 ∧ · · · ∧ eik}1≤i1<...<ik≤n. If the inner product on V is positive, then the
induced inner product on ΛkV is also positive.

Remark 7.3. Note that ⟨Ω,Ω⟩ = ν.

We now define the operation ⋆, called the Hodge star operator which is
similar to the Hodge star operator for ordinary metrics. This is a conjugate
linear isomorphism from ΛkV into Λn−kV . This operator depends on the
inner product and also on the orientation of V . For each β ∈ ΛkV , define
µβ ∈ (Λn−kV )♯ by

µβ : Λn−kV −→ A, α 7→ ν ⟨β ∧ α,Ω⟩.

Because of the non-degeneracy of the inner product on Λn−kV , it follows that
there is a unique ⋆β ∈ Λn−kV such that µβ(α) = ⟨α, ⋆β⟩, that is; ⟨α, ⋆β⟩ =
ν ⟨β ∧ α,Ω⟩. So ⋆ : ΛkV −→ Λn−kV is an operator that for all β ∈ ΛkV and
α ∈ Λn−kV we have

⟨α, ⋆β⟩ = ν ⟨β ∧ α,Ω⟩.
The above equation shows that ⋆ is a conjugate linear map, that is

⋆(β1 + β2) = ⋆(β1) + ⋆(β2), ⋆(aβ) = a∗ ⋆ β.

Since β ∧ α is a multiple of Ω, and the coefficient is ν ⟨β ∧ α,Ω⟩, we find that

∀β ∈ ΛkV, ∀α ∈ Λn−kV, β ∧ α = ⟨α, ⋆β⟩Ω.

We now summarize the properties of the operator ⋆ in the following theorem.

Theorem 7.4. If V is an oriented free n-dimensional A-module that has an
A-valued inner product with signature ν, and {ei} is a proper base of V , then
the operator ⋆ satisfies

(i) ⋆(eσ(1) ∧ · · · ∧ eσ(k)) = sgn(σ) 1√
|g|

eσ(k+1) ∧ · · · ∧ eσ(n); (σ ∈ Sn)

(ii) ⋆(eσ(1) ∧ · · · ∧ eσ(k)) = sgn(σ)
g√
|g|

eσ(k+1) ∧ · · · ∧ eσ(n); (σ ∈ Sn)

(iii) α ∧ ⋆β = ν ⟨α, β⟩Ω α, β ∈ ΛkV ;
(iv) ⋆(1) = ν Ω;
(v) ⋆(Ω) = 1;
(vi) ⋆ ⋆ (α) = (−1)k(n−k)ν α, α ∈ ΛkV ;
(vii) ⟨⋆α, ⋆β⟩ = ν ⟨α, β⟩∗, α, β ∈ ΛkV.

Proof. The proof is a straightforward computation and is similar to the one in
ordinary case. □

Note that, all these results hold for V ♯.



Operator-valued tensors on manifolds 1272

8. Operator-valued metrics on manifolds

We now consider operator valued metrics on manifolds.

Definition 8.1. An A-valued semi-Riemannian metric on a smooth manifold
M is a smooth map ⟨., .⟩ : TMA ⊕ TMA −→ A such that for each p ∈ M , ⟨., .⟩
restricts to an A-valued inner product on TpM

A that is compatible with its
natural involution. If restrictions of ⟨., .⟩ are positive inner products, we call it
an A-valued Riemannian metric.

This definition implies that the inner product of any two ordinary vector
fields on M is an AR-valued function on M .

For each p ∈ M , denote the signature of the inner product on TpM by νp.
The map ν : p 7→ νp is called the signature function of the metric. This function
is continuous on M and we can prove that it is constant on the each connected
components of M .

Theorem 8.2. Let M be a connected manifold and ⟨., .⟩ be a semi-Riemannian
A-valued metric on it. If ν is the signature function of the metric, then ν is
constant.

Proof. First, consider the following subset of A:

N = {a ∈ A | a∗ = a , a2 = 1}.
Clearly, N is nonempty and the values of ν are in N . We can prove that the
distance of any two distinct elements of N is greater than 2. Suppose a, b ∈ N
and a ̸= b. So,

∥a− b∥2 = ∥(a− b)2∥ = ∥a2 + b2 − 2ab∥ = 2∥(1− ab)∥.
Since (ab)2 = a2b2 = 1, we have σ(ab) ⊂ {−1, 1}. -1 must be in σ(ab),
otherwise σ(ab) = {1} that implies ab = 1, hence a = b that is contrary to the
assumption. So, 2 ∈ σ(1− ab) that implies ∥(1− ab)∥ ≥ 2. Consequently,

∥a− b∥2 = 2∥(1− ab)∥ ≥ 4 ⇒ ∥a− b∥ ≥ 2.

This property of N implies that the induced topology on N is discrete, on
the other hand ν(M) must be connected, so ν(M) is a singleton and ν is
constant. □

If M is an oriented manifold, then for each p ∈ M we can use any positive
oriented basis in TpM to define an orientation for TpM

A. Let Ωp be the canoni-
cal volume form on TpM

A, this gives rise to a globally defined A-valued volume

form Ω̃ over M . In a positively oriented coordinate system (U, x1, · · · , xn), if
we put gij = ⟨ ∂

∂xi ,
∂

∂xj ⟩ and g = det(gij), then

Ω̃ =
√
|g| dx1 ∧ · · · ∧ dxn.

We could also define the Hodge star operator on A-valued differential forms.
Here, for each p ∈ M we should consider the induced inner product on (TpM

A)♯.
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Definition 8.3. The Hodge star operator ⋆ : Ak(M,A) → An−k(M,A) maps
any k-form α ∈ Ak(M,A) to the (n− k)-form ⋆α ∈ An−k(M,A) such that for
any β ∈ An−k(M,A),

α ∧ β = ⟨β, ⋆α⟩ Ω̃.

Our previous results now imply that

⋆(1) = ν Ω̃, ⋆(Ω̃) = 1, α ∧ ⋆β = (β ∧ ⋆α)∗.

For each α ∈ Ak(M,A), Also we have the identity

⋆ ⋆ (α) = (−1)k(n−k) ν α.(8.1)

Using the Hodge star operator, one can define a new operator, called the
coderivative, denoted by δ.

Definition 8.4. The co-differential of α ∈ Ak(M,A) is δα ∈ Ak−1(M,A) that
is defined by

δα = (−1)n(k+1)+1ν (⋆d ⋆ α).

Note that the pointwise inner product, induces an A-valued inner product
on Ak

c (M,A) by

(α, β) =

∫
M

α ∧ ⋆β =

∫
M

ν ⟨α, β⟩ Ω̃.

If the A-valued metric on M is Riemannian, then this inner product is pos-
itive. The next theorem states that with respect to this inner product, the
co-differential operator is adjoint to the differential operator.

Theorem 8.5. For any α ∈ Ak
c (M,A) and β ∈ Ak−1

c (M,A), (dβ, α) = (β, δα)

Proof. We have

( dβ, α) =

∫
M

dβ ∧ ⋆α =

∫
M

d(β ∧ ⋆α)− (−1)k−1β ∧ d ⋆ α

= (−1)k
∫
M

β ∧ d ⋆ α,

On the other hand,

(β, δα) = (β, (−1)n(k+1)+1ν (⋆ d ⋆ α)) =

∫
M

β ∧ (−1)n(k+1)+1ν (⋆ ⋆ d ⋆ α)

= (−1)n(k+1)+1ν (−1)(n−k+1)(k−1)ν

∫
M

β ∧ d ⋆ α

= (−1)k
∫
M

β ∧ d ⋆ α,

therefore, (dβ, α) = (β, δα). □
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Using the operator δ, we can define Laplace operator ∆ on A-valued differ-
ential forms, as follows

∆ = (dδ + δd) : Ak(M,A) −→ Ak(M,A)

In particular, for a function f (0-form) we find

∆f = −ν ⋆ d ⋆ df = − 1√
|g|

∑
∂i(g

ij
√

|g| ∂jf).

An A-valued differential form ω is called harmonic, if ∆(ω) = 0. The ques-
tion of relation between De Rham cohomolgy class and A-valued harmonic
forms are answered here partially.

Lemma 8.6. If M is a compact A-valued Riemannian manifold and ω is a
harmonic form, then dω = 0 and δω = 0.

Proof.

0 = (∆ω, ω) = ((dδ + δd)(ω), ω) = (δω, δω) + (dω, dω).

Since, (δω, δω), and (dω, dω) are positive elements of A, we deduce that (δω, δω) =
0 and (dω, dω) = 0, so dω = 0 and δω = 0. □
Lemma 8.7. If M is a compact A-valued Riemannian manifold, then the only
exact harmonic form is zero.

Proof. Suppose ω = dη and ω is harmonic. We have:

(ω, ω) = (ω, dη) = (δω, η) = (0, η) = 0 =⇒ ω = 0.

□
Corollary 8.8. If M is a compact A-valued Riemannian manifold and two
A-valued harmonic forms ω1 and ω2 are in the same cohomology class, then
ω1 = ω2.

9. The Levi-Civita connection of operator-valued metrics

Suppose that M is an A-valued semi-Riemannian manifold. We say that an
A-connection ∇ is compatible with ⟨., .⟩ if for any three vector fields X̃, Ỹ , Z̃ ∈
X(M)A,

X̃⟨Ỹ , Z̃⟩ = ⟨∇X̃ Ỹ , Z̃⟩+ ⟨Ỹ ,∇X̃∗Z̃⟩.(9.1)

This equality holds iff it holds for ordinary vector fields in XM .

Lemma 9.1. Suppose that M is an A-valued semi-Riemannian manifold. For

Ṽ ∈ X(M)A, let Ṽ ♭ be the A-valued one-form on M given by

Ṽ ♭(X̃) = ⟨Ṽ , X̃∗⟩, for all X̃ ∈ X(M)A.

Then the map Ṽ −→ Ṽ ♭ is a C∞(M,A)-module isomorphism from X(M)A

onto A1(M,A).
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Proof. Nondegeneracy of the metric gives the result. □

Theorem 9.2. If M is an A-valued semi-Riemannian manifold, then there
exists a unique torsion free A-connection ∇ that is compatible with the metric.

Proof. Fix X̃, Ỹ ∈ X(M)A, and define µX̃,Ỹ : X(M)A −→ C∞(M,A) by

µX̃,Ỹ (Z̃) = X̃⟨Ỹ , Z̃∗⟩+ Ỹ ⟨Z̃, X̃∗⟩ − Z̃⟨X̃, Ỹ ∗⟩
+⟨[X̃, Ỹ ], Z̃∗⟩ − ⟨[Ỹ , Z̃], X̃∗⟩+ ⟨[Z̃, X̃], Ỹ ∗⟩.

A straightforward computation shows that the map Z̃ 7→ µX,Y (Z̃) is C∞(M,A)-
linear and is a A-valued one-form. By the lemma 9.1, there is a unique A-vector
field, denoted by 2∇X̃ Ỹ , such that µX̃,Ỹ (Z̃) = 2 ⟨∇X̃ Ỹ , Z̃∗⟩ for all Z̃ ∈ X(M)A.
Now, standard argument shows that ∇ is the unique torsion free A-connection
that is compatible with the metric. This connection is called the Levi-Civita
connection of the metric. □

Proposition 9.3. If X̃, Ỹ , Z̃, Ṽ ∈ X(M)A, then for the A-curvature tensor of
the Levi-Civita connection, we have

(i) ⟨R(X̃, Ỹ )(Z̃), Ṽ ⟩ = −⟨R(X̃, Ỹ )(Ṽ ∗), Z̃∗⟩;
(ii) ⟨R(X̃, Ỹ )(Z̃), Ṽ ⟩ = ⟨R(Z̃, Ṽ ∗)(X̃), Ỹ ∗⟩.

Proof. The method of proof is similar to the one for Semi-Riemannian mani-
folds (cf. [13]). □

On A-valued semi-Riemannian manifolds we can straightly generalize differ-
ential operators such as gradient, and divergence.

Definition 9.4. The gradient of a function f ∈ C∞(M,A) is the A-vector field
that is equivalent to the 1-differential form df ∈ A1(M,A), Thus

⟨∇f, X̃∗⟩ = X̃(f) ∀ X̃ ∈ X(M)A

in terms of a coordinate system, ∇f =
∂f
∂xi g

ij ∂
∂xj .

Definition 9.5. The Hessian of a function f ∈ C∞(M,A) is its second covari-
ant derivative Hess(f) = ∇( df).

The Hessian of f is a symmetric (0, 2) A-tensor field and its operation on

vector fields X̃, Ỹ ∈ X(M)A is defined as follows:

Hess(f)(X̃, Ỹ ) = X̃(Ỹ f)− ⟨∇f,∇X̃∗ Ỹ
∗⟩ = ⟨∇X̃(∇f), Ỹ ∗⟩.

Definition 9.6. If X̃ is an A-vector field, the contraction of its covariant

differential is called divergence of X̃ and is denoted by div(X̃) ∈ C∞(M,A).

In a coordinate system, div(X̃) = gij ⟨∇∂iX̃, ∂j⟩.
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Theorem 9.7. Let M be a an oriented A-valued semi-Riemannian manifold,
and Ω̃ be its canonical volume form. Then, for any A-vector field X̃ ∈ X(M)A

we have
LX̃Ω̃ = div(X̃)Ω̃.

Proof. Computations, as in [18], show that the equality holds in the case of
scalar metrics. But, all these computations, without any change, are also valid
in the case of A-valued metrics, except that the functions we encounter are
A-valued. □

10. Ricci, scalar curvature, and sectional curvature

In the past sections, we have presented the basic notions and facts about the
curvature of the Levi-Civita connection of a given A-valued semi-Riemannian
manifold. We begin to consider some invariants that truly characterize curva-
ture. In this section, M is an A-valued semi-Riemannian manifold with the
A-Levi-Civita connection ∇.

Definition 10.1. For each p ∈ M , the Ricci curvature tensor,
Ricp : TpM

A × TpM
A −→ A is given by

Ricp(ũ, ṽ) = trace
(
w̃ −→ R(w̃, ũ)ṽ

)
,

and the scalar curvature S is the trace of Ric.

In coordinate systems,

Ric(X̃, Ỹ ) = gij⟨R(
∂

∂xi
, X̃)Ỹ ,

∂

∂xj
⟩, S = gijRic(

∂

∂xi
,

∂

∂xj
)

Thus, Ric is a symmetric (0, 2) tensor on M.
A two-dimensional free A-submodule Π of TpM

A is called an A-tangent plane
toM at p. For p ∈ M , ũ, ṽ ∈ TpM

A, defineQ(ũ, ṽ) = ⟨ũ, ũ⟩⟨ṽ, ṽ⟩−⟨ũ, ṽ⟩ ⟨ũ, ṽ⟩∗.
In fact, Q(ũ, ṽ) = ⟨ũ ∧ ṽ, ũ ∧ ṽ⟩.

Definition 10.2. A A-tangent plane Π to M is called nondegenerate if for
some base {ũ, ṽ} of Π, Q(ũ, ṽ) is invertible in A .

The invertiblility of Q(ũ, ṽ) does not depend on the choice of the base. If
{ũ, ṽ} is a base TpM

A, then

K(ũ, ṽ) :=
⟨R(ũ, ṽ)ṽ∗, ũ⟩

Q(ũ, ṽ)

is well-defined and only depends on the 2-dimensional submodule determined
by ũ and ṽ.

Definition 10.3. We refer to K(ũ, ṽ) as the sectional curvature of the 2-plane
determined by ũ and ṽ.

Corollary 10.4. If M has constant curvature c, then

R(ũ, ṽ)w̃ = c{⟨ṽ, w̃∗⟩ũ− ⟨ũ, w̃∗⟩ṽ}.
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