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hara
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onditions for the stationarity are established. Some ba-si
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tionIn this work we will introdu
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lass of Gaussian randomve
tors, that are 
alled here \autoregressive Gaussian random ve
tors oforder 1". Let us de�ne su
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2 Soltani, Nematollahi, Sadeghifari = 2; � � � ; n; thereby justifying the term autoregressive. The term isfamiliar in time series. An autoregressive pro
ess of order one, AR(1),is a pro
ess with short range dependen
y where the immediate futurevalue is a �nite linear 
ombination, with �xed 
oeÆ
ients, of the presentvalue and an innovation. The pro
ess is also stationary if and only ifj�j < 1, see Bro
kwell and Davis (1991). The pro
ess has intensivelybeen applied to model data in di�erent applied �elds, spe
ially in e
on-omy and hydrology. To build an AR(1) model evidently, data should
ome from an ideal environment where stationarity is feasible for a longenough period of time and the dependen
y stru
ture does not vary intime. In pra
ti
e, assuming su
h an ideal state is not plausible. Theglobal warming, the e
onomy disaster of 1998 in Asia whi
h 
aused asharp de
rease in the pri
e of the 
rude oil, and a�e
ted its forth
om-ing e
onomi
 �gures, and also the Tsunami of 2004 in East Asia thathas depressed the tourist industry indi
es in its subsequent periods areexamples among many. Another issue in modeling of an AR(1) is thesample size. Su
h a models usually is not reliable for series of small sizes,also early observations are of less value in �tting an AR(1); the 
orre-lation between X1; Xi (� (X1;Xi)) de
reases to zero exponentially, as iin
reases. In the 
ited situations, if 
omponents of Xn = (X1; � � � ;Xn)explain n immediate e
onomi
 data after the in
ident, then it will not berealisti
 to assume a sharp de
rease in � (X1;Xi) as i �! n: In order toover
ome su
h dis
repan
ies while still holding on to the autoregressive-ness, as an alternative to the AR(1) model, we propose autoregressiveGaussian random ve
tors of order 1 (ARGRV(1) in short). As we willexhibit in the pro
eeding se
tions in 
ontrast to AR(1) models, the e�e
tof X1 on forth
oming values in an ARGRV(1) remains feasible and 
anbe 
ontrolled to de
rease slowly.As we learned from a referee, modeling long lasting e�e
ts of 
ertainevents in time series has been dis
ussed in the literature, whi
h is re-ferred to as \intervention analysis". The issue is dis
ussed and modeledin Chapter 12 of Box, Jenkins and Reinsel (1994), based on the work ofBox and Tiao (1975). In their model, the intervention event o

urs at aknown point in time T , 
ausing a time series Xt to be depressed by anintervention 
omponent, say It, and be
ome Yt = It+Xt; t � T . The in-tervention 
omponent in the 
ited work is taken to be a 
ertain analyti
operator a
ting on the step or the pulse fun
tions. More importantly, in-tervention 
omponent is taken to be deterministi
 (non-random). Thus,



Autoregressive Gaussian random ve
tors of �rst order 3in 
ontrast to ARGRV, the underlying sto
hasti
 phenomena of the se-ries are not a�e
ted by the intervention event in the Box-Tiao model.Indeed, in their model, the intervention fa
tor only a�e
ts the mean,and 
onsequently the 
orrelation between the observation at the time ofthe intervention and any of the subsequent observations, in the series Xtis the same as that in the series Yt. But as we dis
ussed earlier, auto-
orrelations in an ARGRV are di�erent from those of the 
orrespondingAR, exhibiting sto
hasti
 and statisti
al e�e
ts of an intervention eventon its su

essive values.Another issue, as pointed out by a referee, is that similar to the se
ondorder AR pro
esses, one 
an de�ne autoregressive se
ond order randomve
tors AR(SO)RV; assuming Xn = (X1; � � � ;Xn) to be a se
ond orderrandom ve
tor, i.e. every linear 
ombination of its 
omponents possessesthe se
ond moment, that X2 � �X1; � � � ;Xn � �Xn�1 are un
orrelated.In Remark 2.3 and in Se
tion 5 we will dis
uss this model. The Gaussianassumption will provide the joint distribution of the ve
tor whi
h is apowerful tool in any statisti
al analysis.AR(1) models and some of its variations have intensively been studiedby di�erent authors su
h as Andel (1988), Andrews (1993), Abrahamand Balakrishnan (1999) and Zielinski (1999) among others.The paper is organized as follows. In Se
tion 2 we will provide ane
essary and suÆ
ient 
ondition for the existen
e of an ARGRV(1).Regression and predi
tion are established in Se
tion 3. Se
tion 4 isdevoted to examples, where stationary ARGRV(1) is introdu
ed. We
on
lude the arti
le by Se
tion 5 whi
h is for a dis
ussion and futureworks. 2. Chara
terization of ARGRV(1)Let Zn = (Z1; Z2; :::; Zn)0 be a multivariate Gaussian (normal) ran-dom ve
tor with the zero mean ve
tor and a varian
e-
ovarian
e matrix�Zn , i.e. Zn � Nn(0;�Zn): Suppose �Zn has the following stru
ture�Zn = � �2 Ln0Ln �2In�1 � ; (2.1)where �2 = Var(Z1); �2 = Var(Zi); Ln0 = (�2; :::; �n); �i = Cov(Z1; Zi);i = 2; :::; n: with \Var" and \Cov" standing for the varian
e and the
ovarian
e, respe
tively, and In = [Æij ℄i;j=1;:::;n; Æij = 1; i = j; Æij = 0;



4 Soltani, Nematollahi, Sadeghifari 6= j: In the following we present 
onditions under whi
h �Zn is non-negative de�nite. Equivalently, the determinant of every prin
iple minorof order k, of �Zn , �Zk , k = 2; :::; n must be non-negative, i.e.,det " �2 (�2; :::; �k)(�2; :::; �k)0 �2Ik�1 #= �2k det " 1 1�2 (�2; :::; �k)1�2 (�2; :::; �k)0 �2�2 Ik�1 #= �2kdet[�2�2 Ik�1 � 1�4 (�2; :::; �k)0(�2; :::; �k)℄= �2�2(k�1)det[Ik�1 � 1�2�2 (�2; :::; �k)0(�2; :::; �k)℄= �2�2(k�1)(1� 1�2�2 kXi=2 �2i ) � 0;see Goulb and Van Loan (1989). Therefore �Zn is non-negative de�niteif and only if �2�2 � kXi=2 �2i ; k = 2; 3; :::; n;or equivalently �2�2 � nXi=2 �2i : (2.2)Thus we have proved the following lemma.Lemma 2.1. The matrix �Zn is non-negative de�nite if and only if(2.2) is ful�lled.Remark 2.1. Note that for every value of �2 and �2; we 
an �nd n;�2; :::; �n su
h that (2.2) is satis�ed. This indi
ates that the 
lass ofrandom ve
tors of type Zn is ri
h enough.In the following we present two examples where su
h ve
tors arrive inmore natural ways.



Autoregressive Gaussian random ve
tors of �rst order 5Example 2.1. Let Y1; :::; Yn be i.i.d N(0; �2). De�ne the random ve
tor(Z1; :::; Zn)0 as follows:Z1 = Y1;Zi =  Yi � (1= (i� 1)) i�1Xk=1Yk!s i� 1i ; i = 2; :::; n:We note that Zi is the normalization of the deviation of the immediatefuture value Yi from the 
urrent mean 1i�1 i�1Pk=1Yk: Clearly E(Zi) = 0;where E stands for the expe
ted value, andVar(Zi) = � i� 1i �"�2 + �2i� 1#= �2; i = 1; :::; n:Also note that for i > j > 1;Cov(Zi; Zj) = Cov0BBB�(Yi � i�1Pk=1Yki� 1 )s i� 1i ; (Yj � j�1Pk=1Ykj � 1 )sj � 1j 1CCCA= s(i� 1)(j � 1)ij Cov0BBB�Yi � i�1Pk=1Yki� 1 ; Yj � j�1Pk=1Ykj � 1 1CCCA= s(i� 1)(j � 1)ij "� �2i� 1 + �2(j � 1)(i� 1)(j � 1)#= 0:Similarly �i = Cov(Zi; Z1) = ��2s 1i (i� 1) ; i = 2; :::; n:Hen
e �2 = �2 and nPi=2 �2i = �4 �1� 1n� ; whi
h imply (2.2), for everyn � 2.



6 Soltani, Nematollahi, SadeghifarExample 2.2. Let (Y1; :::; Yn)0 � Nn(0;B); in whi
h the 
ovarian
ematrix B assumes the following form:B = 26664 1 � � � � �� 1 � � � �... ... � � � ...� � � � � 1 37775 = (1� �)In + �110 ;where 10 = (1; :::; 1) and � is restri
ted to � � � 1n�1 : This matrix oftendes
ribes the 
orresponden
e among 
ertain biologi
al variables su
h asthe sizes of living things, see Johnoson and Wi
hern (1988), page 349.By using Johnoson and Wi
hern (1988), it readily follows thatE (YijYi�1; Yi�2; :::; Y2) = �1 + (i� 3) � i�1Xk=2Yk; i � 3;and Var (YijYi�1; Yi�2; :::; Y2) = 1� (i� 2) �21 + (i� 3) � ; i � 3:De�ne the random ve
tor (Z1; Z2; :::; Zn) as Z1 = Y1; Z2 = Y2 andZi =  1� (i� 2) �21 + (i� 3) �!� 12 (Yi � E (YijYi�1; Yi�2; :::; Y2)); i = 3; :::; n:Therefore E(Zi) = 0; and for i = 3; :::; n; we haveVar(Zi) =  1� (i� 2) �21 + (i� 3) �!�1 E(Yi � E (YijYi�1; Yi�2; :::; Y2))2=  1� (i� 2) �21 + (i� 3) �!�1 [Var (YijYi�1; Yi�2; :::; Y2)℄=  1� (i� 2) �21 + (i� 3) �!�1 "1� (i� 2) �21 + (i� 3) �#= 1:Also note that Z2; :::; Zn are normally distributed su

essive innovations(
o-proje
tions) and therefore are independent. Furthermore�2 = Cov(Z2; Z1) = Cov (Y2; Y1) = �;



Autoregressive Gaussian random ve
tors of �rst order 7and�i = Cov(Zi; Z1)= Cov Yi � �1 + (i� 3) � i�1Xk=2Yk; Y1! 1� (i� 2) �21 + (i� 3) �!� 12=  � � (i� 2) �21 + (i� 3) �! 1� (i� 2) �21 + (i� 3) �!� 12= � (1� �) �1 + (i� 3) ���(1� �) (1 + (i� 2) �)1 + (i� 3) � �� 12= �s 1� �(1 + (i� 3) �) (1 + (i� 2) �) ; i = 3; :::; n:Therefore for every i = 2; 3; :::; n;�i = �s 1� �(1 + (i� 3) �) (1 + (i� 2) �) :On the other hand �2 = �2 = 1; andnXi=2 �2i = � (1� �) nXi=2� 11 + (i� 3)� � 11 + (i� 2)��= � (1� �)� 11� � � 11 + (n� 2)��= � (1� �)� (n� 1) �(1� �) (1 + (n� 2)�)�= (n� 1) �21 + (n� 2)� :Therefore (2.2) is equivalent to (n�1)�21+(n�2)� � 1 whi
h is satis�ed if andonly if � � � 1n�1 :Now we are in a position to 
hara
terize an ARGRV(1). The followingtheorem provides the details.Theorem 2.1. A random ve
tor Xn = (X1;X2; :::;Xn)0 is an AR-GRV(1) if and only if Xn= A�1Zn; (2.3)



8 Soltani, Nematollahi, Sadeghifarwhere Zn � Nn(0;�Zn);�Zn is given by (2.1) and satis�es (2.2), andA = [aij ℄i;j=1;:::;n : aii = 1; ai(i�1) = ��; aij = 0; for j 6= i; i� 1: (2.4)Proof. If Xn = (X1; � � � ;Xn)0 is an ARGRV(1), then a

ording tothe de�nition presented in Se
tion 1, Xn � Nn(0 ;�Xn) and there is areal number � for whi
h X2 � �X1; � � � ;Xn � �Xn�1 are i.i.d. If we letZ1 = X1 and Zi = Xi � �Xi�1; i = 2; � � � ; n, then Zn = AXn � Nn(0; �Zn); where �Zn has the form given by (2.1). But �Zn = A�XnA0is non-negative de�nite, thus a

ording to Lemma 2.1 it satis�es (2.2).Also note that sin
e A is nonsingular (det (A) = 1), Xn = A�1Zn:On the other hands, let Xn = A�1Zn; where A is given by (2.4), Zn� Nn(0;�Zn); �Zn is given by (2.1) and satis�es (2.2). It readily followsthat Z1 = X1; Zi = Xi � �Xi�1; i = 2; :::; n: Thus Xi � �Xi�1; i =2; :::; n are independent, and 
onsequently will be Xn ARGRV(1). �Notation. We write Xn � ARG(0; �; � ), if Xn = A�1Zn; Zn �Nn(0;�); A is given by (2.4) and � is given by (2.1) satisfying (2.2).Remark 2.2. It follows from (2.3) and (2.4) thatXi = iXj=1�i�jZj; i = 1; :::; n; (2.5)thus fXigi=1;:::;n is a non-anti
ipating moving average, as in AR(1), butwith di�erent dependen
y stru
ture.It follows from (2.5) that�2i = Var (Xi) = �2(i�1)�2 +  �2(i�1) � 1�2 � 1 !�2 + 2 iXk=2�2i�k�1�k; (2.6)and for i > j � 2;
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�ij = Cov(Xi;Xj) = Cov0� iXk=1�i�kZk; jXk=1�j�kZk1A= jXk=1�i�k�j�kVar (Zk) + 2 jXk=2�i+j�k�1Cov (Z1; Zk)+ iXk=j+1�i+j�k�1Cov (Z1; Zk)= �i+j�2�2 + ( jXk=2�i+j�2k)�2 + 2 jXk=2�i+j�k�1�k+ iXk=j+1�i+j�k�1�k;= �i+j�2�2 + (�i+j�2 � �i�j�2 � 1 )�2 + 2 jXk=2�i+j�k�1�k+ iXk=j+1�i+j�k�1�k: (2.7)It follows from (2.7) that�ij � ��ij�1 = Cov(Xi; Zj) = �i�j�2 + �i�1�j; (2.8)and �1i = �i�1�2 + iXk=2�i�k�k: (2.9)Therefore,� (X1;Xi) = �i�1�2 + iPk=2�i�k�k� ��2(i�1)�2 + ��2(i�1)�1�2�1 ��2 + 2 iPk=2�2i�k�1�k� 12 :(2.10)



10 Soltani, Nematollahi, SadeghifarIn Example 2.1, by (2.5) we obtainX1 = Z1 = Y1;Xi = iXj=1�i�j 0�Yj � (1= (j � 1)) j�1Xk=1Yk1Asj � 1j ; i = 2; :::; n:Hen
e it follows from (2.10) that� (X1;Xi) = �i�10BBBB� 1� � iPk=2 1=�kpk(k � 1)s(�2i � 1) = (�2 � 1)� 2�2i�1 iPk=2 1=�kpk(k � 1)1CCCCA :Similarly in Example 2.2, we have� (X1;Xi) =�i�10BBBB� 1+��p1�� iPk=2 1=�kp(1+(k�3)�)(1+(k�2)�)s(�2i�1)=(�2�1)+2�2i�1�p1�� iPk=2 1=�kp(1+(k�3)�)(1+(k�2)�)1CCCCA :These 
orrelations together with the 
orresponding 
orrelations in anAR(1) are plotted in Figure 1. As it indi
ates � (X1;Xi) vanishes fori � 8 in AR(1), but in ARGRV(1), � (X1;Xi) is signi�
antly di�erentfrom zero, i � 20:Remark 2.3. Similar to the se
ond order pro
esses, it is possible tode�ne an autoregressive se
ond order random ve
tor as follows. AssumeXn = (X1; � � � ;Xn) is a mean zero random ve
tor whose 
omponentspossess se
ond moments. Furthermore assume X2 � �X1; � � � ;Xn ��Xn�1 are un
orrelated. Then the linear spa
e H generated by X1;X2��X1; � � � ;Xn � �Xn�1; equipped with the inner produ
t EXY; X; Y 2H; is a Hilbert spa
e of dimension n, assuming that X1 is not a linear
ombination of X2 � �X1; � � � ;Xn � �Xn�1. Conversely, if H is an n-dimensional Hilbert spa
e of mean zero random variables, where theinner produ
t is given by the 
ovarian
e, then an AR(SO)RV 
an easilybe formed as follows. Let Z1; � � � ; Zn be an orthonormal basis in H,and X1 an arbitrary element in H whi
h is not a linear 
ombinationof Z2; � � � ; Zn, then the random ve
tor Xn = (X1; � � � ;Xn) in whi
h
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Figure 1. Plots of �(X1;Xi); i = 1; :::; 30; � = 0:5 forARGRV(1); Example 2.1 and Example 2.2 (� = :7); andin AR(1); the subje
ts in Remark 2.2.Xj = �Xj�1 + Zj ; j = 2; � � � ; n, for any given nonzero real number �,is an AR(SO)RV in H that generates H.3. Regression and predi
tionIt is well-known that if Xn = (X1;X2; :::;Xn)0 � Nn(0;�Xn); thenXi+1 = (X1;X2; :::;Xi+1)0 � Ni+1(0;�Xi+1); i = 0; :::; n � 1; where�Xi+1 = � �Xi �12�012 �2i+1 � ;and �012 = (�1(i+1); :::; �i(i+1)); �j(i+1) = Cov(Xj ; Xi+1); �2i+1 =Var(Xi+1); i = 1; :::; n � 1: ThereforeE(Xi+1jX1 = x1; :::;Xi = xi) = �12��1Xixi;where xi = (x1; :::; xi)0 ; see Johnson and Wi
hern (1988). On the otherhand for A = [ajk℄j;k=1;:::i; n = i; given by (2.4),



12 Soltani, Nematollahi, SadeghifarA�1 = [a#jk℄j;k=1;:::;n; a#ii = 1; a#jk = �j�k; for j > k; a#jk = 0; for j < k:Consequently, it follows from (2.3) that�Xi = A�1�Zi �A�1�0 ; ��1Xi = A0��1ZiAgiving that��1Zi = � �2 L0iLi �2Ii�1 ��1 = 24 �2hi �L0ihi�Lihi 1�2 Ii�1 + LiL0ihi�2 35 ;where hi = �2�2 � iPk=2 �2k and LiL0i = (�2Li; :::;�iLi)0 ; i = 2; :::; n:We have prepared the ingredients for proving the main theorem of thisse
tion.Theorem 3.1. Let Xn = (X1; � � � ;Xn)0�ARG(0; �; � ): Then thebest (linear) predi
tor for Xi+1 based on X1; � � � ;Xi is given byX̂ (i+ 1; 1; :::; i) = iXj=1di(j)Zj; (3.1)with the mean-square predi
tion errore (i+ 1; 1; :::; i) = �2i+1 + d2i (1)�2 + �2 iXj=2 d2i (j)�2 iXj=1 di(j)(�i�j+1�2+�i�j) + 2di(1) iXj=2 di(j)�j ; (3.2)wheredi(1) = �i + �2�i+1hi and di(j) = �i�j+1 � �j�i+1hi ; j = 2; :::; i: (3.3)



Autoregressive Gaussian random ve
tors of �rst order 13Proof. By (3.1) we haveX̂ (i+ 1; 1; :::; i) = E(Xi+1jX1; :::;Xi) = E(Xi+1jZ1; :::; Zi)= E(i+1Xj=1�i�j+1Zj jZ1; :::; Zi)= iXj=1�i�j+1Zj + E(Zi+1jZ1; :::; Zi)= iXj=1�i�j+1Zj + (�i+1; 0; :::; 0)��1Zi Zi= iXj=1�i�j+1Zj + �i+1hi �2Z1 � �i+1hi iXj=2 �jZj= iXj=1 di(j)Zj;and the mean-square predi
tion error is also equal toe (i+ 1; 1; :::; i) = E �Xi+1 � X̂ (i+ 1; 1; :::; i)�2= �2i+1 + d2i (1)�2 + �2 iXj=2 d2i (j)�2 iXj=1 di(j)(�i�j+1�2 + �i�j) + 2di(1) iXj=2 di(j)�j ;where di(1) and di(j) are given by (3.3). �Remark 3.1. It is 
lear thatX̂ (i+ 1; 1; :::; i) = �i+1hi ��2 � �2�X1 + �i+1hi i�1Xj=2 (��i+1 � �j)Xj+��� �i�i+1hi �Xi:Example 3.1. In Example 2.1; it is easy to show thatdi(1) = �i �s ii+ 1 ;



14 Soltani, Nematollahi, Sadeghifarand di(j) = �i�j+1 �s i(i+ 1)j(j � 1) ; j = 2; :::; i:Example 3.2. In Example 2.2, it is easy to show thatdi(1) = �i + �s 1 + (i� 2)�(1� �) (1 + (i� 1)�)3 ;anddi(j) = �i�j+1 � �2s 1 + (i� 2)�(1 + (j � 3)�) (1 + (j � 2)�) (1 + (i� 1)�)3 ;for j = 2; :::; i: 4. Stationary ARG random ve
torsLet Xn � ARG (0; �;�). Then Xn = (X1;X2; :::;Xn)0 is said to bestationary if E (XiXj) = 
 (ji� jj) ; i; j = 1; 2; ::; n:The following theorem provides ne
essary and suÆ
ient 
onditions interms of 
 (k), for an ARG random ve
tor to be stationary.Theorem 4.1. Let X � ARG (0; �;�) : Then X is stationary if andonly if �2 = 
 (0) ; �2 = �1 + �2�
 (0)� 2�
 (1) ;�i = ��(i�2) (
 (1)� �
 (0)) ; i = 1; :::; n;subje
t to (�� �)2 ��2(n�2) � 1�2 � 1 !+ 1� �2 � 0; (4.1)where � = �(1) = 
(1)
(0) and j�j 6= 1:Proof. Ne
essity: If X � ARG (0; �;�) is stationary, then E(X1)2 =
 (0) and E(Xi � �Xi�1)2 = �2: Hen
e�2 = 
 (0) ; (1 + �2)
(0) � 2�
(1) = �2:



Autoregressive Gaussian random ve
tors of �rst order 15By taking i = j in (2.8), we 
on
lude that
 (0)� �
 (1) = �2 + �i�1�i;
 (0)� �
 (1) = �1 + �2� 
 (0)� 2�
 (1) + �i�1�i;and hen
e �i = ��(i�2) (
 (1)� �
 (0)) :The 
ondition (2.2) redu
es to
 (0) ��1 + �2� 
 (0)� 2�
 (1)� � nXi=2 ��2(i�2) (
 (1)� �
 (0))2 ;or�1 + �2� 
2 (0)� 2�
 (1) 
 (0) �  ��2(n�1) � 1��2 � 1 ! ((
 (1)� �
 (0))2 ;whi
h is equivalent to any of�1 + �2�� 2�� � ���2(n�1)�1��2�1 � (�� �)2 ;1� �2 + (�� �)2 � ���2(n�1)�1��2�1 � (�� �)2 ;1� �2 + (�� �)2 � ���2(n�1)�1��2�1 � (�� �)2 � 0;1� �2 + (�� �)2 ��2(n�2)�1�2�1 � 0 :SuÆ
ien
y: Let �i = ��(i�2) (
 (1)� �
 (0)) ; �2 = 
 (0) and �2 =�1 + �2� 
 (0)� 2�
 (1) : We let i = j + k in (2.7). Then for j�j 6= 1;�(j+k)j = �2j+k�2�2 + (�2j+k�2 � �k�2 � 1 )�2 + 2 jXl=2 �2j+k�l�1�l+ iXl=j+1�2j+k�l�1�l= ��2j+k�2 + (�2j+k�2 � �k�2 � 1 )� �2j+k � �k+2�2 � 1 ���k+2 � ��k+2�2 � 1 �� 
 (0)+���k�1 � ��k+1�2 � 1 �� 
 (1)= ���k+2 � �k�2 � 1 � 
 (0) +��k+1 � ��k+1�2 � 1 � 
 (1)= ��
(1)� 
(0)�2 � 1 ��k +��2
(0)� �
(1)�2 � 1 ���k;whi
h is independent of i for ea
h k. Thus X is stationary. �



16 Soltani, Nematollahi, SadeghifarRemark 4.1. The auto
ovarian
e fun
tion of a stationary ARGRV(1)for j�j 6= 1 is given by(4:2) 
 (k) = ��
(1) � 
(0)�2 � 1 ��k +  �2
(0) � �
(1)�2 � 1 !��k; k > 0;and in the matrix form,(4:3) �X = ��
(1) � 
(0)�2 � 1 ��1 + �2
(0) � �
(1)�2 � 1 !�2;where �1 = h�ji�jjii;j=1;:::;n and �2 = h��ji�jjii;j=1;:::;n :Let us present the following properties of a stationary ARG randomve
tor of order 1. Let Xn be a stationary ARGRV(1) with parameters�; 
 (0) and 
 (1) : Then we have(i) Xi�N(0; 
(0));(ii) (Xi;Xi+1)�N2(0; � 
(0) 
(1)
(1) 
(0) �) and P (Xi+1Xi < �) = 12 ;(iii) (Xi+1jXi = xi)�N(�xi; 
(0)(1 � �2));(iv) (Xi;Xi+k)�N2(0; � 
(0) 
(k)
(k) 
(0) �) and P (Xi+kXi < �(k)) = 12 ;(v) (Xi+kjXi = xi)�N(�(k)xi; 
(0)(1 � �(k)2));(vi) E(Xi+1jXi = xi; :::;X1 = x1) = �i+1h ��2 � �2� x1+��� �i+1�ih �xi:The e�e
t of x1 on the best predi
tor for Xi+1 is apparent from (vi),this is in 
ontrast to the 
ase of 
lassi
al AR(1) in whi
hE(Xi+1jXi = xi; :::;X1 = x1) = �xi:Remark 4.2. It is easy to verify that ifXn is stationary with parameter� and �; then(i) �(k) = 
(k)
(0) = ����1�2�1��k+��2����2�1 ���k = ���k���k����1 �+���k+1��k�1����1 �,(ii) �(k+1)+�(k�1)�(k) = �+ ��1,(iii) �(k)� ��(k � 1) = ��k+1 (�� �).



Autoregressive Gaussian random ve
tors of �rst order 17Therefore unlike the 
lassi
al AR(1) models, the 
orrelation f� (k)g arespe
i�ed with two parameters, � and � = �(1):Throughout the rest of this se
tion we 
onsider the 
lassi
al 
ase ofj�j < 1:Remark 4.3. If in our de�nition for ARGRV(1), we impose the 
ondi-tion that Xj � �Xj�1 is independent from Xi; i � j � 1 , then we willen
ounter to an ordinary AR(1) with �nite length. Indeed, in this 
ase�i = ��(i�2) (
 (1)� �
 (0)) = 0; 
 (1)��
 (0) = 0; or � = �; and hen
e
 (k) = 
(�k) = �k 
(0); k > 0:Interestingly, � = � if and only if Xj � �Xj�1 is independent from Xi;i � j � 1: In this 
ase Xn = (X1;X2; :::;Xn)0 is a 
lassi
al AR(1).Remark 4.4. It follows from Theorem 4.1 that the law of a stationaryARG random ve
tor is uniquely spe
i�ed by parameters � and �; subje
tto (4.1). The 
ondition (4.1) is restri
tive and narrows the 
lass ofstationary ARG random ve
tors. For a given �; 
 (1) and 
 (0) ; or �;(4.1) is ful�lled if and only if,�� U(n; �) < � < �+ V (n; �);where U(n; �) = 1��2�+j��(n�2)j ; and V (n; �) = �2�1��j��(n�2)j : Consequently,V (n; �)� U(n; �) = 2�2n�3 �1� �2�1� �2(n�1) = o(�n);whi
h indi
ates that the deviation of � from � rather fast approa
heszero as n in
reases .Table 1 indi
ates the lower and upper bounds for �; for given � = 0:5and some di�erent values of n:n 3 4 5 6 7 8 9 10 11 12L .0000 .2857 .4000 .4516 .4761 .4881 .4941 .4970 .4985 .4992U .8000 .6666 .5882 .5454 .5230 .5116 .5058 .5029 .5014 .5007Table 1. n: series size; L: lower bound for �; U: Upperbound for �; � = 0:5.



18 Soltani, Nematollahi, Sadeghifar5. Dis
ussion and further resear
hIn the previous se
tions, we introdu
ed and 
hara
terized autoregres-sive Gaussian random ve
tors of order one. In 
ontrast to the 
lassi
alAR models, the law of an ARGRV is spe
i�ed by more than one parame-ter. This will alow the 
orrelation between the �rst 
omponent and other
omponents to be more resistan
e and does not die out exponentially,as the number of 
omponents in
reases. To the best of our knowledge,this is the �rst time that ARGRV are introdu
ed. This study is indeedthe beginning whi
h initiates a new line of resear
h and, we believe, willgive rise to a new 
lass of time series models, say ARMAGRV (parallelto ARMA). Su
h models are expe
ted to be promising in modeling shorttime series in whi
h the early values will have dominant a�e
t on theentire series. The existen
e and stationarity of su
h Gaussian modelsare not straightforward. Indeed, we expe
ted them to be 
hallengingproblems. In fa
t, based on our primary studies on ARGRV(p), we 
ansay at this stage that elaborated matrix algebra is needed to provide ne
-essary and suÆ
ient 
onditions for the existen
e and stationarity. Weleave this for future resear
h. However, we would like to stress that themethod presented here for the 
ase p = 1 is very 
on�ned to this 
ase,and will fail for p > 1.The derivations on ARGRV in this work are also valid for AR(SO)RV.In the se
tion for the predi
tion, the term \the best predi
tion" shouldbe repla
ed by \the best linear predi
tion". There are issues that arenot dis
ussed in this work, and are postponed for later 
ir
umstan
es.Those are estimation and simulation. It is more traditional to 
onsiderthe Gaussian random ve
tors. The Gaussian assumption will be use-ful in estimating the parameters of the model, through the maximumlikelihood pro
edure, and will ease the work for the simulation.A
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