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AUTOREGRESSIVE GAUSSIAN RANDOM VECTORS
OF FIRST ORDER

A. R. SOLTANI, A.R. NEMATOLLAHTI*, M. SADEGHIFAR

Communicated by Samad Hedayat

ABSTRACT. Autoregressive Gaussian random vectors of order one
are introduced, characterized and studied. The characterization in-
volves the existence and structural identification of the covariance
matrix. Prediction for future values together with necessary and
sufficient conditions for the stationarity are established. Some ba-
sic statistical properties are also presented. This class of random
vectors appears to be suitable for modeling samples of small size
of values with short range dependency and autoregressive property
where an observation has persistent effect on its subsequent obser-
vation.

1. Introduction

In this work we will introduce and study a class of Gaussian random
vectors, that are called here “autoregressive Gaussian random vectors of
order 17”. Let us define such a random vector: A Gaussian random vec-
tor X , = (Xq, - ,Xn)/ is said to be autoregressive of order 1 if there is
a real number « for which X9 —aXq, -+, X,, —aX,,_1 are independent
and identically distributed (i.i.d in short). We refer to the parameter o
as the coefficient. If we let Z; = X; — aX;_1, then X; = aX; 1 + Z;,
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i = 2,---,n; thereby justifying the term autoregressive. The term is
familiar in time series. An autoregressive process of order one, AR(1),
is a process with short range dependency where the immediate future
value is a finite linear combination, with fixed coefficients, of the present
value and an innovation. The process is also stationary if and only if
la| < 1, see Brockwell and Davis (1991). The process has intensively
been applied to model data in different applied fields, specially in econ-
omy and hydrology. To build an AR(1) model evidently, data should
come from an ideal environment where stationarity is feasible for a long
enough period of time and the dependency structure does not vary in
time. In practice, assuming such an ideal state is not plausible. The
global warming, the economy disaster of 1998 in Asia which caused a
sharp decrease in the price of the crude oil, and affected its forthcom-
ing economic figures, and also the Tsunami of 2004 in East Asia that
has depressed the tourist industry indices in its subsequent periods are
examples among many. Another issue in modeling of an AR(1) is the
sample size. Such a models usually is not reliable for series of small sizes,
also early observations are of less value in fitting an AR(1); the corre-
lation between X1, X; (p (X1, X;)) decreases to zero exponentially, as i
increases. In the cited situations, if components of X,, = (Xy,---,X,,)
explain n immediate economic data after the incident, then it will not be
realistic to assume a sharp decrease in p (X1, X;) as i — n. In order to
overcome such discrepancies while still holding on to the autoregressive-
ness, as an alternative to the AR(1) model, we propose autoregressive
Gaussian random vectors of order 1 (ARGRV(1) in short). As we will
exhibit in the proceeding sections in contrast to AR (1) models, the effect
of X on forthcoming values in an ARGRV(1) remains feasible and can
be controlled to decrease slowly.

As we learned from a referee, modeling long lasting effects of certain
events in time series has been discussed in the literature, which is re-
ferred to as “intervention analysis”. The issue is discussed and modeled
in Chapter 12 of Box, Jenkins and Reinsel (1994), based on the work of
Box and Tiao (1975). In their model, the intervention event occurs at a
known point in time 7', causing a time series X; to be depressed by an
intervention component, say I;, and become Y; = I;+ X, ¢ > T. The in-
tervention component in the cited work is taken to be a certain analytic
operator acting on the step or the pulse functions. More importantly, in-
tervention component is taken to be deterministic (non-random). Thus,
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in contrast to ARGRV, the underlying stochastic phenomena of the se-
ries are not affected by the intervention event in the Box-Tiao model.
Indeed, in their model, the intervention factor only affects the mean,
and consequently the correlation between the observation at the time of
the intervention and any of the subsequent observations, in the series X,
is the same as that in the series Y;. But as we discussed earlier, auto-
correlations in an ARGRV are different from those of the corresponding
AR, exhibiting stochastic and statistical effects of an intervention event
on its successive values.

Another issue, as pointed out by a referee, is that similar to the second
order AR processes, one can define autoregressive second order random
vectors AR(SO)RV; assuming X, = (X1, -+, X,) to be a second order
random vector, i.e. every linear combination of its components possesses
the second moment, that X9 — aXy, -+, X,, — aX,_1 are uncorrelated.
In Remark 2.3 and in Section 5 we will discuss this model. The Gaussian
assumption will provide the joint distribution of the vector which is a
powerful tool in any statistical analysis.

AR(1) models and some of its variations have intensively been studied
by different authors such as Andel (1988), Andrews (1993), Abraham
and Balakrishnan (1999) and Zielinski (1999) among others.

The paper is organized as follows. In Section 2 we will provide a
necessary and sufficient condition for the existence of an ARGRV(1).
Regression and prediction are established in Section 3. Section 4 is
devoted to examples, where stationary ARGRV(1) is introduced. We
conclude the article by Section 5 which is for a discussion and future
works.

2. Characterization of ARGRV(1)

Let Z, = (Z1,Z2,....Z,) be a multivariate Gaussian (normal) ran-
dom vector with the zero mean vector and a variance-covariance matrix
¥z, 1.e. Zy, ~ N,(0,Xz, ). Suppose Xz, has the following structure

T2 L,/
2, = [ L, o2, }
where 72 = Var(Z,), 0% = Var(Z;), L, = ((ay ..., Cn), G = Cov(Zy, Z;),
i = 2,..,n. with “Var” and “Cov” standing for the variance and the
covariance, respectively, and I, = [0;j]; j=1,..n, 0ij = 15 @ = 7, §;5 = 0;

(2.1)
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i # j. In the following we present conditions under which ¥z_ is non-
negative definite. Equivalently, the determinant of every principle minor
of order k, of ¥z, ¥z,, k = 2,...,n must be non-negative, i.e.,

T2 (CQa"'aCk)
det l (CQa"'aCk)/ UZIk*l ]
1 %(CQaaCk)
_ 2k T
= T det [ %(CQa"'aCk)l ,or-_i:[kfl ]

2
= T2kdet[%1k71 - %(427 ey Ck)’(CQa ey Ck)]

_ 1 '
— 2420k 1)01et[1,H — W(@,...,Qﬂ) (Cay ooy Ci)]
1 &,
2) >
7202 ; ) =0,

_ 7_202(k—1)(1 _

see Goulb and Van Loan (1989). Therefore ¥z, is non-negative definite
if and only if

k
20?2 > ng,k =23,...,n,
=2
or equivalently
n
T20% > (7 (2.2)
i=2

Thus we have proved the following lemma.

Lemma 2.1. The matriz Xz, is non-negative definite if and only if
(2.2) is fulfilled.

Remark 2.1. Note that for every value of 72 and o2, we can find n,
(2y..-; Cp such that (2.2) is satisfied. This indicates that the class of
random vectors of type Z,, is rich enough.

In the following we present two examples where such vectors arrive in
more natural ways.
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Example 2.1. Let Y7, ..., Y, beii.d N(0,02). Define the random vector
(Z1, ..., Zy)" as follows:

Zl = Yla
i—1

Z; = <Yz —(1/(i-1)) ZYk>
k=1

We note that Z; is the normalization of the deviation of the immediate

1—1
1

, 1=2,..,Mn.

i—1
future value Y; from the current mean ﬁ > Y. Clearly E(Z;) = 0,
k=1

where E stands for the expected value, and

i—1 o?
Z) = 2
Var(Z;) < ; ) o° + F. 1]
= o2, i=1,..,n.
Also note that for ¢ > j > 1,
i—1 j—=1
lcz—:1YIC i—1 kz—:1Yk J—1
COV(ZZ',ZJ') = Cov | (V; — 7:__1 ) ; ,(Y] - j_— 1 ) ;
lil v, ij
. . k k
—“1(5 =1 — —
_ (4 ).(.J )Cov Y, — k=L Y — k=1
1) 1—1 j—1

(i=1)( 1) l_ ot G-1) ]

ij —1 -G -1

Similarly

1
¢ = Cov(Z;, Z1) o 1/2(2 —1y i=2,..,n.

n

Hence 72 = 02 and . (? = o (1 — %) , which imply (2.2), for every
i=2

n > 2.
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Example 2.2. Let (Y1,...,Y;) ~ N,(0,B), in which the covariance
matrix B assumes the following form:

160 - 6
o1 --- 0
B=| . . |l =0-01,+611",
0 0 - 1
where 1" = (1,...,1) and @ is restricted to # > ———. This matrix often

describes the correspondence among certain blologlcal variables such as
the sizes of living things, see Johnoson and Wichern (1988), page 349.
By using Johnoson and Wichern (1988), it readily follows that

B(YilYio1,Yico, s V2) = 7575 30 ZYk, i>3,

and

- 2
(=20 g
1+(—3)0

Define the random vector (Zy, Zs, ..., Zy,) as Z1 =Yy, Zo =Y, and

Var (Y;|Yi—1,Yi—2,....,Y2) =1 —

_1
o (i-2)6° \ * VY -
Z; = (1 Trioge) B0 Yia )i =3,

Therefore E(Z;) = 0, and for ¢ = 3,...,n, we have
—1
(i —2) 6 2
Zi) = |(1-—FF—%7 E(Y; —EYiYi-1,Yi,... Y.
Var(Z;) < T+ (=30 ( (YilYio1.Yi o 2))

(i — 2) 62 !
1- Y;|Yi_1,Yi o, ... Y-
1+ Z—3)9> [Var( Z| 1—1y Lg—25 -0y 2)]

=20 ! (=20
1+z—3)9 T 14+(i-3)6
1.

Also note that Zs, ..., Z, are normally distributed successive innovations
(co-projections) and therefore are independent. Furthermore

CQ = COV(ZQ, Zl) = Cov (YQ,Yl) = 9,
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and

Ci = COV(ZZ', Zl)

B (i — 2) 62 2
- COV( 1+(i—3)0 7,—3 ZY’“Y1><_1+(7:—3)9>

_ (g =26 \ [ (i—2)6” ~3

S 1+G-36) U 1+(-3)0
(1-6)8 \((1=0)(1+(i—-2)6)\?

<1+(i—3)0>< 1+ (i—3)6 >

—-

, M.

1-0 .
- 9\/(1+(i—3)9)(1+(i—2)0)’ 1=3,

Therefore for every 1 = 2,3, ..., n,

=0 1-6
N+ E=-3)0) 1+ (i —2)0)
On the other hand 72 = 02 = 1, and

n n 1
;ng ZZ<1+Z—3)9 1+(7;—2)9>
1 1
= 6196 <1 0 1+n—2)9>
B (n—1)80
= 00-0 (=5 13 =z
(n—1)62
14+ (n—2)0
(n—1)0?

Therefore (2.2) is equivalent to Tinozg < | which is satisfied if and

only if 6 > —ﬁ.
Now we are in a position to characterize an ARGRV(1). The following

theorem provides the details.

Theorem 2.1. A random vector X, = (X1, X9,....,X,)" is an AR-
GRV(1) if and only if

X,=A"'Z,, (2.3)
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where Zy ~ Np(0,%z,),3z, is given by (2.1) and satisfies (2.2), and
A = aijlij=1,..n* aii = 1,a;43-1) = —a,ai5 =0, for j #i,i—1. (2.4)

Proof. If X, = (X;,---,X,) is an ARGRV(1), then according to
the definition presented in Section 1, X;,, ~ N, (0 ,Xx ) and there is a
real number « for which X9 — aXq, -+, X, — aX,,_1 are i.i.d. If we let
Zl = X1 and Zz = Xz - O{Xz'_l, 1= 2,--- , T, then Zn = AXn ~ Nn(O
., Xz,), where Xz has the form given by (2.1). But ¥z = AYx,K A’
is non-negative definite, thus according to Lemma 2.1 it satisfies (2.2).
Also note that since A is nonsingular (det (A) = 1), X,, = A~ 'Z,.

On the other hands, let X,, = A~ !Z,,, where A is given by (2.4), Z,
~ N,(0,%z, ), ¥z, is given by (2.1) and satisfies (2.2). It readily follows
that Zl = Xl, Zz = X, - O{Xz'_l, 1 = 2,...,7’L. Thus X, - O{Xz'_l, 1=
2,...,n are independent, and consequently will be X,, ARGRV(1). O

Notation. We write X,, ~ ARG(0, a, ¥ ), if X,, = A" 'Z,, Z, ~
N,(0,%), A is given by (2.4) and ¥ is given by (2.1) satisfying (2.2).

Remark 2.2. Tt follows from (2.3) and (2.4) that
X, =Y a7z, i=1,..n, (2.5)

thus {X;},; _, is a non-anticipating moving average, as in AR(1), but
with different dependency structure.

It follows from (2.5) that

. o26-1) _ 1 : .
o? = Var (X;) = " V72 4 <27> o? +23° o* G, (26)
as—1 )

and for ¢ > j > 2,
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i J
oij = COV(XZ',X]') = Cov Z azika, Z O(Jkak
k=1 k=1
oo oL
= Z okl "k Var (Z;,) + 2 Z ot I=R=1Cov (71, Z1)
=1 k=2

7
Z o I=R=1Cov (21, Zy)
k=j+1

J J
T (Z Qi 62 4 9 Z Qi iRl
k=2 k=2

i
n Z aiti—k=l¢,

k=j+1

bl

+

az+]72 — ot

J
— az+]—2T2+( )02+2Zaz+]—k—lgk

a?—1 =
i
+ > Atk (2.7)
k=j+1
It follows from (2.7) that
04 — Q051 = COV(XZ', Zj) =o' Io? + aiflgj, (2.8)
and
o =a '+ o R (2.9)
k=2
Therefore,

p (X1, X;) = h=2 . - (2.10)
2
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In Example 2.1, by (2.5) we obtain
X1 = Zi =N,

i j—1 ,
o 1
X, = Yo |-/ -1) XV ][ I— i=2..n
=1 k=1 J
Hence it follows from (2.10) that
1—ay 1/ok/EE=T)
k=2
\/(oz?i 1) /(a2 = 1) = 2221 3 1/ak JRE=T)
k=2

Similarly in Example 2.2, we have
P (Xla XZ) =

P (Xla XZ) = aiil

1+afv/1-0 Zl: 1/ak\/(1+(k—3)0)(1+(k—2)0)
aZ*l k=2

\/(a2i—1)/(a2—1)+2a2i16m i 1/ak\/(1+(k—3)0)(1+(k—2)0)
k=2

These correlations together with the corresponding correlations in an
AR(1) are plotted in Figure 1. As it indicates p (X1, X;) vanishes for
i > 8 in AR(1), but in ARGRV(1), p (X1, X;) is significantly different
from zero, 1 < 20.

Remark 2.3. Similar to the second order processes, it is possible to
define an autoregressive second order random vector as follows. Assume
X, = (X1, ,X,) is a mean zero random vector whose components
possess second moments. Furthermore assume Xo — aXy,---, X, —
aX,_1 are uncorrelated. Then the linear space H generated by X, Xs—
aXy, -, X, —aX,_1, equipped with the inner product EXY, X,Y €
‘H, is a Hilbert space of dimension n, assuming that X is not a linear
combination of Xy — aXy, - -, X, — aX,,_1. Conversely, if H is an n-
dimensional Hilbert space of mean zero random variables, where the
inner product is given by the covariance, then an AR(SO)RV can easily
be formed as follows. Let Zi,---,Z, be an orthonormal basis in #,
and X; an arbitrary element in # which is not a linear combination
of Zy,-++ ,Zp, then the random vector X,, = (Xi,---,X,) in which
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FIGURE 1. Plots of p(X1,X;), i = 1,...,30; @ = 0.5 for
ARGRV(1); Example 2.1 and Example 2.2 (§ = .7); and
in AR(1); the subjects in Remark 2.2.
X; =aXj_1+ Zj, j=2,--- ,n, for any given nonzero real number «,

is an AR(SO)RV in H that generates H.
3. Regression and prediction

It is well-known that if X, = (X1, Xo,..., X;;)’ ~ N,(0,3x, ), then
Xip1 = (X1, Xo, 0y Xi1) ~ Ni1(0,¥x,,,), 4 = 0,...,n — 1, where

> _ | Bx X2
Xit1 2112 Uz2+1 ’

and Xy = (01(41), - Oii11)s Ojasny) = Cov(Xj, Xi1), o7y =
Var(X;4+1), 2 = 1,...,n — 1. Therefore

E(Xz‘_|_1|X1 =T, ,XZ = [EZ) = 2122)}1){2’,

where x; = (21,...,7;)", see Johnson and Wichern (1988). On the other
hand for A = [a;;];k=1,.i, n = 1, given by (2.4),
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Al = [aﬁ]j,kzl’m’n,aﬁ = 1,@;@?C =aol7F for j > k,a k= =0, for j < k.
Consequently, it follows from (2.3) that
1 1y’ 1 -1
Yx, = A7'Sz, (A7), Byl = A'SlA
giving that

2 L’.
2 ! -1 a” _
z; = | L; o Ty LL, |’
-1 _ L
! ! o grlicit gt

where h; = 720% — z(k and L;L; = (CLy, ....,¢; L), i = 2,.

We have prepared the ingredients for proving the main theorem of this
section.

Theorem 3.1. Let X, = (X1,---,X,) ~ARG(0, o, ¥ ). Then the
best (linear) predictor for X; 1 based on Xy,--- , X; is given by

X (i+1;1,. Zd (3.1)

with the mean-square prediction error
e(i+1;1,..,0) = o, +d(1)r +022d2

23 di(j) (o It
]‘_

+a'¢j) + 2d;( Zd (5)¢5, (3.2)

dl(l) =o' 4 M and dl(]) — azf]+1 _ CJCHI’

h I, J=2,..,1. (3.3)



Autoregressive Gaussian random vectors of first order 13

Proof. By (3.1) we have

X(@+5L1,..,4) = EX|Xi, .., X)) =E(X;41|Z1, ..., Z))
i+1
= EQ oM 7|2y, .. Zi)

j=1

2
= Z aZ—]-I-lzj + E(Zi-l-l‘Zla a3) Zl)
j=1

i
= Y "7 Zi 4+ (G41,0,...,0)35 Z;

=1
i Gi Git1
= Zaz_]—l_le-i-ilOzZl— : 1Z<ij
— hi hi <
j=1 j=2
i
= > di(4)Z,
=1

and the mean-square prediction error is also equal to
. 2
e(i+1;1,..,4) = E (Xi+1 — X (i+1:1, z))
i
= o+ ()7 + 0%y d())
j=2

i

=2 di(j) (@I ol ) + 2di(1) D i),
j=1

j=2
where d;(1) and d;(j) are given by (3.3). O
Remark 3.1. It is clear that
) i1
X (’l —I— 1; 1, ,Z) = Czh—i—l (02 — CQ) X1 —|— CZ_’TI Z (a<i+1 — C]) Xj
I3 I3 ]:2

Example 3.1. In Example 2.1; it is easy to show that

; 1
di(1) =a' — [ ——
Z() « ’l-l-l’
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and
7

() = giit
B = GG

§=2,..,1.
Example 3.2. In Example 2.2, it is easy to show that

o 1+ (i —2)6
di(1) =o' + 9\/(1 —0) (1+ (i—1)0)"

and

i 1+ (i—2)0
i) = o 92\/(”(j—3)9>(1+(j—2>0><1+(i—1)9>3’
for j =2,...,1.

4. Stationary ARG random vectors

Let X, ~ ARG (0,,Y). Then X,, = (X1, Xo,..., X;;)" is said to be
stationary if
E(X:X;)=~v(i—j|), 45=12,.,n
The following theorem provides necessary and sufficient conditions in
terms of v (k), for an ARG random vector to be stationary.

Theorem 4.1. Let X ~ ARG(0,,X). Then X is stationary if and
only if

P, = (1) 10 -2 ),

G o= a D (1) —ay(0), i=1,em,
subject to
-2(n-2) _ 1
(p— )’ (OéaT> +1-p* >0, (4.1)

where p = p(1) = % and |a| # 1.
Proof. Necessity: If X ~ ARG (0,q,¥) is stationary, then E(X;)? =
v (0) and E(X; — aX;_1)? = 02 Hence

72 =7(0), (1 +a*)y(0) - 2a7(1) = 0.
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By taking i = j in (2.8), we conclude that

() —ay(l) = o+,
YO —ay(1) = (1+a2)7(0) =20y (1) + ' ¢
and hence

Gi=a T (y(1) —ay(0)).
The condition (2.2) reduces to

15

30 ((1407)7(0) = 207 (1) = 30 % (3/(1) — a7 (0))%,

=2

.

or

o 2n-1)
@+¥%Hm—Mﬂnﬂmz(————%«ﬂn—mww,

which is equivalent to any of

(1+a?) —2ozp>(0‘_2(_n21)1 1) p—a)?,
72111
1—p*4(p— )22( = )(p—Oé)2

a—2(n-1)
L=p+(p— ) = () (p - @) >0,
,2)

—2(n _
L—p?+(p—a)? 1 >0,

Sufficiency: Let ¢; = o= (=2 (y(1) —ay (0)), 72 = v(0) and 02 =

)
(1+a?)y(0) —2ay(1). Welet i = j +k in (2. 7) Then for |a

gtk o, QR ok 2jtk—1—-1
o = 2 Th J+k—l—
O(j+k)j = @ T +( o — 1 )0' +220¢ Cl
=2
i
+ Z a2]+k7171<-l
l=j+1
yith Q2itk=2 _ Q2itk _ k2 k2 _ k2

= a®t +( D) ) — 2 - 2

a? -1 a?—1 a?—1

() o

(a‘:;? - ak> L0+ <ak+1 __a;k+1> )

which is independent of ¢ for each k. Thus X is stationary.

£1,
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Remark 4.1. The autocovariance function of a stationary ARGRV(1)
for |a| # 1 is given by

(4.2) v (k) = <7a7(1) — 7(0)> of + <a27(0) - 047(1)> ak k>0,

a?—1 a? -1

and in the matrix form,

(4.3) Sy = (W) 5 (azv(o) - m(l)> 5,

where ¥ = [a‘i*j‘]. ‘ and X9 = [a*‘i*j‘]‘ . .
2,j=1,...,n i,j=1,...,n

Let us present the following properties of a stationary ARG random
vector of order 1. Let X,, be a stationary ARGRV(1) with parameters
a, v(0) and 7 (1) . Then we have

(i) Xi~N(0,~(0)),

() (X0 o) ~Na0, [ 70 T ) and P <y = 1,
(i) (Xip1|Xi = zi)~N(pzi, 7(0)(1 = p?)),

(iv) (X3, Xipx) ~Nao(0, [ %2; 128 }) and P(X)"(tk < p(k)) = 3,
(v) (XisalX: = 2)~N(p(k)zs, 7(0)(1 = p(k)?)),

The effect of z; on the best predictor for X;; is apparent from (vi),
this is in contrast to the case of classical AR(1) in which

E(Xi—l—l‘Xi = T, ...,X1 = xl) = ax;.

Remark 4.2. It is easy to verify that if X, is stationary with parameter

« and p, then
k

) ptk) = Lﬁ? = (2857) ot () o7 = o (B )+ (),
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Therefore unlike the classical AR(1) models, the correlation {p (k)} are
specified with two parameters, a and p = p(1).

Throughout the rest of this section we consider the classical case of
a| < 1.

Remark 4.3. If in our definition for ARGRV(1), we impose the condi-
tion that X; —aX; ; is independent from X;, ¢« < j — 1, then we will
encounter to an ordinary AR(1) with finite length. Indeed, in this case
Gi=a (=2 (y(1) —ay(0)) =0,v(1) —ay (0) = 0, or & = p; and hence

v (k) =7(=k) =" 4(0), k>0.

Interestingly, a = p if and only if X; — aX;_; is independent from X,
i < j — 1. In this case X,, = (X1, X29,..., X;,)" is a classical AR(1).

Remark 4.4. It follows from Theorem 4.1 that the law of a stationary
ARG random vector is uniquely specified by parameters « and p; subject
to (4.1). The condition (4.1) is restrictive and narrows the class of
stationary ARG random vectors. For a given «, v(1) and v (0), or p,
(4.1) is fulfilled if and only if,

a—Un,a)<p<a+V(na),

2 2
where U(n,a) = ﬁ, and V(n,a) = #@Lz)‘ Consequently,

2a2n—3 (1 _ a2)

1 — 2(n-1)
which indicates that the deviation of p from « rather fast approaches
Zero as n increases .

Table 1 indicates the lower and upper bounds for p, for given a = 0.5
and some different values of n.

V(n,a) = U(n,a) =

= o(a”),

n 3 4 3 6 7 8 9 10 11 12

L | .0000 | .2857 | .4000 | .4516 | .4761 | .4881 | .4941 | .4970 | .4985 | .4992

U | .8000 | .6666 | .5882 | .5454 | .5230 | .5116 | .5058 | .5029 | .5014 | .5007

TABLE 1. n: series size; L: lower bound for p; U: Upper
bound for p; @ = 0.5.
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5. Discussion and further research

In the previous sections, we introduced and characterized autoregres-
sive Gaussian random vectors of order one. In contrast to the classical
AR models, the law of an ARGRYV is specified by more than one parame-
ter. This will alow the correlation between the first component and other
components to be more resistance and does not die out exponentially,
as the number of components increases. To the best of our knowledge,
this is the first time that ARGRV are introduced. This study is indeed
the beginning which initiates a new line of research and, we believe, will
give rise to a new class of time series models, say ARMAGRV (parallel
to ARMA). Such models are expected to be promising in modeling short
time series in which the early values will have dominant affect on the
entire series. The existence and stationarity of such Gaussian models
are not straightforward. Indeed, we expected them to be challenging
problems. In fact, based on our primary studies on ARGRV(p), we can
say at this stage that elaborated matrix algebra is needed to provide nec-
essary and sufficient conditions for the existence and stationarity. We
leave this for future research. However, we would like to stress that the
method presented here for the case p = 1 is very confined to this case,
and will fail for p > 1.

The derivations on ARGRYV in this work are also valid for AR(SO)RV.
In the section for the prediction, the term “the best prediction” should
be replaced by “the best linear prediction”. There are issues that are
not discussed in this work, and are postponed for later circumstances.
Those are estimation and simulation. It is more traditional to consider
the Gaussian random vectors. The Gaussian assumption will be use-
ful in estimating the parameters of the model, through the maximum
likelihood procedure, and will ease the work for the simulation.
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